D-A-D Compounds Combining Dithienopyrrole Donors and Acceptors of Increasing Electron-Withdrawing Capability: Synthesis, Spectroscopy, Electropolymerization, and Electrochromism

. 2022 Jun 09 ; 126 (22) : 4089-4105. [epub] 20220526

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35616402

Five D-π-A-π-D compounds consisting of the same donor unit (dithieno[3,2-b:2',3'-d]pyrrole, DTP), the same π-linker (2,5-thienylene), and different acceptors of increasing electron-withdrawing ability (1,3,4-thiadiazole (TD), benzo[c][1,2,5]thiadiazole (BTD), 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP), 1,2,4,5-tetrazine (TZ), and benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)) were synthesized. DTP-TD, DTP-BTD, and DTP-DPP turned out to be interesting luminophores emitting either yellow (DTP-TD) or near-infrared (DTP-BTD and DTP-DPP) radiation in dichloromethane solutions. The emission bands were increasingly bathochromically shifted with increasing solvent polarity. Electrochemically determined electron affinities (|EA|s) were found to be strongly dependent on the nature of the acceptor changing from 2.86 to 3.84 eV for DTP-TD and DTP-NDI, respectively, while the ionization potential (IP) values varied only weakly. Experimental findings were strongly supported by theoretical calculations, which correctly predicted the observed solvent dependence of the emission spectra. Similarly, the calculated IP and EA values were in excellent agreement with the experiment. DTP-TD, DTP-BTD, DTP-TZ, and DTP-NDI could be electropolymerized to yield polymers of very narrow electrochemical band gap and characterized by redox states differing in color coordinates and lightness. Poly(DTP-NDI) and poly(DTP-TD) showed promising electrochromic behavior, not only providing a rich color palette in the visible but also exhibiting near-infrared (NIR) electrochromism.

Zobrazit více v PubMed

Xing L.; Luscombe C. K. Advances in Applying C–H Functionalization and Naturally Sourced Building Blocks in Organic Semiconductor Synthesis. J. Mater. Chem. C 2021, 9, 16391–16409. 10.1039/D1TC04128B. DOI

Bronstein H.; Nielsen C. B.; Schroeder B. C.; McCulloch I. The Role of Chemical Design in the Performance of Organic Semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. 10.1038/s41570-019-0152-9. PubMed DOI

Liu C.; Wang K.; Gong X.; Heeger A. J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. 10.1039/C5CS00650C. PubMed DOI

Su Y.-W.; Lin Y.-C.; Wei K.-H. Evolving Molecular Architectures of Donor–Acceptor Conjugated Polymers for Photovoltaic Applications: From One-Dimensional to Branched to Two-Dimensional Structures. J. Mater. Chem. A 2017, 5, 24051–24075. 10.1039/C7TA07228G. DOI

Kim M.; Ryu S. U.; Park S. A.; Choi K.; Kim T.; Chung D.; Park T. Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Adv. Funct. Mater. 2020, 30, 190454510.1002/adfm.201904545. DOI

Lv X.; Li W.; Ouyang M.; Zhang Y.; Wright D. S.; Zhang C. Polymeric Electrochromic Materials with Donor–Acceptor Structures. J. Mater. Chem. C 2017, 5, 12–28. 10.1039/C6TC04002K. DOI

Rasmussen S. C.; Evenson S. J. Dithieno[3,2-b:2′,3′-d]Pyrrole-Based Materials: Synthesis and Application to Organic Electronics. Prog. Polym. Sci. 2013, 38, 1773–1804. 10.1016/j.progpolymsci.2013.04.004. DOI

Geng Y.; Tang A.; Tajima K.; Zeng Q.; Zhou E. Conjugated Materials Containing Dithieno[3,2- b :2′,3′- d]Pyrrole and its Derivatives for Organic and Hybrid Solar Cell Applications. J. Mater. Chem. A 2019, 7, 64–96. 10.1039/C8TA09383K. DOI

Lin F.-J.; Lin S.-D.; Chin C.-H.; Chuang W.-T.; Hsu C.-S. Novel Conjugated Polymers Based on Bis-Dithieno[3,2- b ;2′,3′- d]Pyrrole Vinylene Donor and Diketopyrrolopyrrole Acceptor: Side Chain Engineering in Organic Field Effect Transistors. Polym. Chem. 2018, 9, 28–37. 10.1039/C7PY01340J. DOI

Chung C.-L.; Chen H.-C.; Yang Y.-S.; Tung W.-Y.; Chen J.-W.; Chen W.-C.; Wu C.-G.; Wong K.-T. S, N -Heteroacene-Based Copolymers for Highly Efficient Organic Field Effect Transistors and Organic Solar Cells: Critical Impact of Aromatic Subunits in the Ladder π-System. ACS Appl. Mater. Interfaces 2018, 10, 6471–6483. 10.1021/acsami.7b15584. PubMed DOI

Lin G.; Qin Y.; Guan Y.-S.; Xu H.; Xu W.; Zhu D. π-Conjugated Dithieno[3,2-b:2′,3′-d]Pyrrole (DTP) Oligomers for Organic Thin-Film Transistors. RSC Adv. 2016, 6, 4872–4876. 10.1039/C5RA24845K. DOI

Zhang W.; Li J.; Zou L.; Zhang B.; Qin J.; Lu Z.; Poon Y. F.; Chan-Park M. B.; Li C. M. Semiconductive Polymers Containing Dithieno[3,2- b :2′,3′- d]Pyrrole for Organic Thin-Film Transistors. Macromolecules 2008, 41, 8953–8955. 10.1021/ma802004e. DOI

Liu J.; Zhang R.; Sauvé G.; Kowalewski T.; McCullough R. D. Highly Disordered Polymer Field Effect Transistors: N -Alkyl Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Copolymers with Surprisingly High Charge Carrier Mobilities. J. Am. Chem. Soc. 2008, 130, 13167–13176. 10.1021/ja803077v. PubMed DOI

Truong M. A.; Lee H.; Shimazaki A.; Mishima R.; Hino M.; Yamamoto K.; Otsuka K.; Handa T.; Kanemitsu Y.; Murdey R.; Wakamiya A. Near-Ultraviolet Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1484–1495. 10.1021/acsaem.0c02677. DOI

Mabrouk S.; Zhang M.; Wang Z.; Liang M.; Bahrami B.; Wu Y.; Wu J.; Qiao Q.; Yang S. Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Hole Transport Materials for Perovskite Solar Cells with Efficiencies over 18%. J. Mater. Chem. A 2018, 6, 7950–7958. 10.1039/C8TA01773E. DOI

Cao J.; Du F.; Yang L.; Tang W. The Design of Dithieno[3,2-b:2′,3′-d]Pyrrole Organic Photovoltaic Materials for High-Efficiency Organic/Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 22572–22592. 10.1039/D0TA08706H. DOI

Hendriks K. H.; Li W.; Wienk M. M.; Janssen R. A. J. Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. J. Am. Chem. Soc. 2014, 136, 12130–12136. 10.1021/ja506265h. PubMed DOI

Zhang X.; Steckler T. T.; Dasari R. R.; Ohira S.; Potscavage W. J.; Tiwari S. P.; Coppée S.; Ellinger S.; Barlow S.; Brédas; et al. Dithienopyrrole-Based Donor–Acceptor Copolymers: Low Band-Gap Materials for Charge Transport, Photovoltaics and Electrochromism. J. Mater. Chem. 2010, 20, 123–134. 10.1039/B915940A. DOI

Wang K.; Azouz M.; Babics M.; Cruciani F.; Marszalek T.; Saleem Q.; Pisula W.; Beaujuge P. M. Solvent Annealing Effects in Dithieno[3,2- b :2′,3′- d]Pyrrole–5,6-Difluorobenzo[c][1,2,5]Thiadiazole Small Molecule Donors for Bulk-Heterojunction Solar Cells. Chem. Mater. 2016, 28, 5415–5425. 10.1021/acs.chemmater.6b01763. DOI

Mishra A.; Keshtov M. L.; Looser A.; Singhal R.; Stolte M.; Würthner F.; Bäuerle P.; Sharma G. D. Unprecedented Low Energy Losses in Organic Solar Cells with High External Quantum Efficiencies by Employing Non-Fullerene Electron Acceptors. J. Mater. Chem. A 2017, 5, 14887–14897. 10.1039/C7TA04703G. DOI

Sun J.; Ma X.; Zhang Z.; Yu J.; Zhou J.; Yin X.; Yang L.; Geng R.; Zhu R.; Zhang F.; Tang W. Dithieno[3,2-b:2′,3′-d]Pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. Adv. Mater. 2018, 30, 170715010.1002/adma.201707150. PubMed DOI

Li G.; Li D.; Ma R.; Liu T.; Luo Z.; Cui G.; Tong L.; Zhang M.; Wang Z.; Liu F.; et al. Efficient Modulation of End Groups for the Asymmetric Small Molecule Acceptors Enabling Organic Solar Cells with over 15% Efficiency. J. Mater. Chem. A 2020, 8, 5927–5935. 10.1039/D0TA01032D. DOI

Kumar S.; Justin Thomas K. R.; Li C.-T.; Fan M.-S.; Ho K.-C. Effect of Auxiliary Donors and Position of Benzothiadiazole on the Optical and Photovoltaic Properties of Dithieno[3,2-b:2′,3′-d]Pyrrole-Based Sensitizers. Sol. Energy 2020, 208, 539–547. 10.1016/j.solener.2020.08.001. DOI

Polander L. E.; Yella A.; Teuscher J.; Humphry-Baker R.; Curchod B. F. E.; Ashari Astani N.; Gao P.; Moser J.-E.; Tavernelli I.; Rothlisberger U.; et al. Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chem. Mater. 2013, 25, 2642–2648. 10.1021/cm401144j. DOI

Cai N.; Zhang J.; Xu M.; Zhang M.; Wang P. Improving the Photovoltage of Dithienopyrrole Dye-Sensitized Solar Cells via Attaching the Bulky Bis(Octyloxy)Biphenyl Moiety to the Conjugated π-Linker. Adv. Funct. Mater. 2013, 23, 3539–3547. 10.1002/adfm.201203348. DOI

Leenaers P. J.; Maufort A. J. L. A.; Wienk M. M.; Janssen R. A. J. Impact of π-Conjugated Linkers on the Effective Exciton Binding Energy of Diketopyrrolopyrrole–Dithienopyrrole Copolymers. J. Phys. Chem. C 2020, 124, 27403–27412. 10.1021/acs.jpcc.0c08768. PubMed DOI PMC

Evenson S. J.; Mumm M. J.; Pokhodnya K. I.; Rasmussen S. C. Highly Fluorescent Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Materials: Synthesis, Characterization, and OLED Device Applications. Macromolecules 2011, 44, 835–841. 10.1021/ma102633d. DOI

Mishra S. P.; Palai A. K.; Srivastava R.; Kamalasanan M. N.; Patri M. Dithieno[3,2- b :2′,3′- d]Pyrrole–Alkylthiophene–Benzo[c][1,2,5]Thiadiazole-based Highly Stable and Low Band Gap Polymers for Polymer Light-emitting Diodes. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6514–6525. 10.1002/pola.23694. DOI

Zhang J.; Chen Z.; Yang L.; Hu F.; Yu G.-A.; Yin J.; Liu S.-H. Dithienopyrrole Compound with Twisted Triphenylamine Termini: Reversible near-Infrared Electrochromic and Mechanochromic Dual-Responsive Characteristics. Dyes Pigm. 2017, 136, 168–174. 10.1016/j.dyepig.2016.08.051. DOI

Wu T.-Y.; Tung Y.-H. Phenylthiophene-Containing Poly(2,5-Dithienylpyrrole)s as Potential Anodic Layers for High-Contrast Electrochromic Devices. J. Electrochem. Soc. 2018, 165, H183–H195. 10.1149/2.0401805jes. DOI

Azak H.; Yildiz H. B.; Bezgin Carbas B. Synthesis and Characterization of a New Poly(Dithieno (3,2-b:2′, 3′-d) Pyrrole) Derivative Conjugated Polymer: Its Electrochromic and Biosensing Applications. Polymer 2018, 134, 44–52. 10.1016/j.polymer.2017.11.044. DOI

Rybakiewicz R.; Skorka L.; Louarn G.; Ganczarczyk R.; Zagorska M.; Pron A. N-Substituted Dithienopyrroles as Electrochemically Active Monomers: Synthesis, Electropolymerization and Spectroelectrochemistry of the Polymerization Products. Electrochim. Acta 2019, 295, 472–483. 10.1016/j.electacta.2018.10.123. DOI

Rybakiewicz R.; Ganczarczyk R.; Charyton M.; Skorka L.; Ledwon P.; Nowakowski R.; Zagorska M.; Pron A. Low Band Gap Donor-Acceptor-Donor Compounds Containing Carbazole and Naphthalene Diimide Units: Synthesis, Electropolymerization and Spectroelectrochemical Behaviour. Electrochim. Acta 2020, 358, 13692210.1016/j.electacta.2020.136922. DOI

Jarosz T.; Gebka K.; Stolarczyk A.; Domagala W. Transparent to Black Electrochromism—The “Holy Grail” of Organic Optoelectronics. Polymers 2019, 11, 273.10.3390/polym11020273. PubMed DOI PMC

Niu J.; Wang Y.; Zou X.; Tan Y.; Jia C.; Weng X.; Deng L. Infrared Electrochromic Materials, Devices and Applications. Appl. Mater. Today 2021, 24, 10107310.1016/j.apmt.2021.101073. DOI

Miomandre F.; Audebert P. 1,2,4,5-Tetrazines: An Intriguing Heterocycles Family with Outstanding Characteristics in the Field of Luminescence and Electrochemistry. J. Photochem. Photobiol., C 2020, 44, 10037210.1016/j.jphotochemrev.2020.100372. DOI

Quinton C.; Alain-Rizzo V.; Dumas-Verdes C.; Miomandre F.; Clavier G.; Audebert P. Redox-Controlled Fluorescence Modulation (Electrofluorochromism) in Triphenylamine Derivatives. RSC Adv. 2014, 4, 34332–34342. 10.1039/C4RA02675F. DOI

Drewniak A.; Tomczyk M. D.; Knop K.; Walczak K. Z.; Ledwon P. Multiple Redox States and Multielectrochromism of Donor–Acceptor Conjugated Polymers with Aromatic Diimide Pendant Groups. Macromolecules 2019, 52, 8453–8465. 10.1021/acs.macromol.9b01069. DOI

Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Yu H. S.; He X.; Li S. L.; Truhlar D. G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032–5051. 10.1039/C6SC00705H. PubMed DOI PMC

Makrlík E.; Toman P.; Vaňura P. Complexation of the Thallium Cation with Nonactin: An Experimental and Theoretical Study. Monatsh. Chem. 2014, 145, 551–555. 10.1007/s00706-014-1153-5. DOI

Ehala S.; Toman P.; Rathore R.; Makrlík E.; Kašička V. Affinity Capillary Electrophoresis and Density Functional Theory Employed for the Characterization of Hexaarylbenzene-Based Receptor Complexation with Alkali Metal Ions. Electrophoresis 2011, 32, 981–987. 10.1002/elps.201000568. PubMed DOI

Záliš S.; Kratochvilova I.; Zambova A.; Mbindyo J.; Mallouk T. E.; Mayer T. S. Combined Experimental and Theoretical DFT Study of Molecular Nanowires Negative Differential Resistance and Interaction with Gold Clusters. Eur. Phys. J. E 2005, 18, 201–206. 10.1140/epje/i2005-10043-5. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI

Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI

Bauernschmitt R.; Ahlrichs R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. 10.1016/0009-2614(96)00440-X. DOI

Casida M. E.; Jamorski C.; Casida K. C.; Salahub D. R. Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold. J. Chem. Phys. 1998, 108, 4439–4449. 10.1063/1.475855. DOI

Stratmann R. E.; Scuseria G. E.; Frisch M. J. An Efficient Implementation of Time-Dependent Density-Functional Theory for the Calculation of Excitation Energies of Large Molecules. J. Chem. Phys. 1998, 109, 8218–8224. 10.1063/1.477483. DOI

Cossi M.; Barone V. Time-Dependent Density Functional Theory for Molecules in Liquid Solutions. J. Chem. Phys. 2001, 115, 4708–4717. 10.1063/1.1394921. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.. et al.Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.

Hill I. G.; Kahn A.; Soos Z. G.; Pascal R. A. Jr. Charge-Separation Energy in Films of π-Conjugated Organic Molecules. Chem. Phys. Lett. 2000, 327, 181–188. 10.1016/S0009-2614(00)00882-4. DOI

Förtsch S.; Mena-Osteritz E.; Bäuerle P. Synthesis and Characterization of β,B′-Dimethylated Dithieno[3,2- b :2′,3′- d]Pyrroles and Their Corresponding Regioregular Conducting Electropolymers. Polym. Chem. 2021, 12, 3332–3345. 10.1039/D1PY00479D. DOI

McCairn M. C.; Kreouzis T.; Turner M. L. Microwave Accelerated Synthesis and Evaluation of Conjugated Oligomers Based on 2,5-Di-Thiophene-[1,3,4]Thiadiazole. J. Mater. Chem. 2010, 20, 1999–2006. 10.1039/b922714h. DOI

Kurach E.; Kotwica K.; Zapala J.; Knor M.; Nowakowski R.; Djurado D.; Toman P.; Pfleger J.; Zagorska M.; Pron A. Semiconducting Alkyl Derivatives of 2,5-Bis(2,2′-Bithiophene-5-Yl)-1,3,4-Thiadiazole—Effect of the Substituent Position on the Spectroscopic, Electrochemical, and Structural Properties. J. Phys. Chem. C 2013, 117, 15316–15326. 10.1021/jp4033832. DOI

Ledwon P.; Thomson N.; Angioni E.; Findlay N. J.; Skabara P. J.; Domagala W. The Role of Structural and Electronic Factors in Shaping the Ambipolar Properties of Donor–Acceptor Polymers of Thiophene and Benzothiadiazole. RSC Adv. 2015, 5, 77303–77315. 10.1039/C5RA06993A. DOI

Cansu-Ergun E. G.; Akbayrak M.; Akdag A.; Önal A. M. Effect of Thiophene Units on the Properties of Donor Acceptor Type Monomers and Polymers Bearing Thiophene-Benzothiadiazole- Scaffolds. J. Electrochem. Soc. 2016, 163, G153–G158. 10.1149/2.0711610jes. DOI

Eroglu D.; Cansu Ergun E. G.; Önal A. M. Cross-Exchange of Donor Units in Donor-Acceptor-Donor Type Conjugated Molecules: Effect of Symmetrical and Unsymmetrical Linkage on the Electrochemical and Optical Properties. Tetrahedron 2020, 76, 131164–131172. 10.1016/j.tet.2020.131164. DOI

Kurach E.; Djurado D.; Rimarčik J.; Kornet A.; Wlostowski M.; Lukeš V.; Pécaut J.; Zagorska M.; Pron A. Effect of Substituents on Redox, Spectroscopic and Structural Properties of Conjugated Diaryltetrazines—a Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2011, 13, 2690–2700. 10.1039/C0CP01553A. PubMed DOI

Gora M.; Pluczyk S.; Zassowski P.; Krzywiec W.; Zagorska M.; Mieczkowski J.; Lapkowski M.; Pron A. EPR and UV–Vis Spectroelectrochemical Studies of Diketopyrrolopyrroles Disubstituted with Alkylated Thiophenes. Synth. Met. 2016, 216, 75–82. 10.1016/j.synthmet.2015.09.012. DOI

Wiosna-Salyga G.; Gora M.; Zagorska M.; Toman P.; Luszczynska B.; Pfleger J.; Glowacki I.; Ulanski J.; Mieczkowski J.; Pron A. Diketopyrrolopyrroles Disubstituted with Alkylated Thiophenes: Effect of the Donor Unit Size and Solubilizing Substituents on Their Redox, Photo- and Electroluminescence Properties. RSC Adv. 2015, 5, 59616–59629. 10.1039/C5RA06811H. DOI

Qian G.; Qi J.; Davey J. A.; Wright J. S.; Wang Z. Y. Family of Diazapentalene Chromophores and Narrow-Band-Gap Polymers: Synthesis, Halochromism, Halofluorism, and Visible–Near Infrared Photodetectivity. Chem. Mater. 2012, 24, 2364–2372. 10.1021/cm300938s. DOI

Pron A.; Reghu R. R.; Rybakiewicz R.; Cybulski H.; Djurado D.; Grazulevicius J. V.; Zagorska M.; Kulszewicz-Bajer I.; Verilhac J.-M. Triarylamine Substituted Arylene Bisimides as Solution Processable Organic Semiconductors for Field Effect Transistors. Effect of Substituent Position on Their Spectroscopic, Electrochemical, Structural, and Electrical Transport Properties. J. Phys. Chem. C 2011, 115, 15008–15017. 10.1021/jp202553h. DOI

Pluczyk S.; Zassowski P.; Rybakiewicz R.; Wielgosz R.; Zagorska M.; Lapkowski M.; Pron A. UV-Vis and EPR Spectroelectrochemical Investigations of Triarylamine Functionalized Arylene Bisimides. RSC Adv. 2015, 5, 7401–7412. 10.1039/C4RA12603C. DOI

Sefer E.; Baycan Koyuncu F. Naphthalenediimide Bridged D-A Polymers: Design, Synthesis and Electrochromic Properties. Electrochim. Acta 2014, 143, 106–113. 10.1016/j.electacta.2014.08.019. DOI

Çakal D.; Ercan Y. E.; Önal A. M.; Cihaner A. Effect of Fluorine Substituted Benzothiadiazole on Electro-Optical Properties of Donor-Acceptor-Donor Type Monomers and Their Polymers. Dyes Pigm. 2020, 182, 108622–108629. 10.1016/j.dyepig.2020.108622. DOI

Tanguy J.; Mermilliod N.; Hoclet M. Capacitive Charge and Noncapacitive Charge in Conducting Polymer Electrodes. J. Electrochem. Soc. 1987, 134, 795–802. 10.1149/1.2100575. DOI

Admassie S.; Inganäs O.; Mammo W.; Perzon E.; Andersson M. R. Electrochemical and Optical Studies of the Band Gaps of Alternating Polyfluorene Copolymers. Synth. Met. 2006, 156, 614–623. 10.1016/j.synthmet.2006.02.013. DOI

Audebert P.; Sadki S.; Miomandre F.; Clavier G.; Vernières M. C.; Saoud M.; Hapiot P. Synthesis of New Substituted Tetrazines: Electrochemical and Spectroscopic Properties. New J. Chem. 2004, 28, 387–392. 10.1039/B310737J. DOI

Hwang D. K.; Dasari R. R.; Fenoll M.; Alain-Rizzo V.; Dindar A.; Shim J. W.; Deb N.; Fuentes-Hernandez C.; Barlow S.; Bucknall D. G.; et al. Stable Solution-Processed Molecular n-Channel Organic Field-Effect Transistors. Adv. Mater. 2012, 24, 4445–4450. 10.1002/adma.201201689. PubMed DOI

Quinton C.; Chi S.-H.; Dumas-Verdes C.; Audebert P.; Clavier G.; Perry J. W.; Alain-Rizzo V. Novel S-Tetrazine-Based Dyes with Enhanced Two-Photon Absorption Cross-Section. J. Mater. Chem. C 2015, 3, 8351–8357. 10.1039/C5TC00531K. DOI

Bredas J. L.; Street G. B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309–315. 10.1021/ar00118a005. DOI

Rybakiewicz R.; Glowacki E. D.; Skorka L.; Pluczyk S.; Zassowski P.; Apaydin D. H.; Lapkowski M.; Zagorska M.; Pron A. Low and High Molecular Mass Dithienopyrrole-Naphthalene Bisimide Donor-Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour. Chem. Eur. J. 2017, 23, 2839–2851. 10.1002/chem.201604672. PubMed DOI

Unlu N. A.; Deniz T. K.; Sendur M.; Cirpan A. Effect of Dithienopyrrole Unit on Electrochromic and Optical Properties of Benzotriazole-Based Conjugated Polymers. Macromol. Chem. Phys. 2012, 213, 1885–1891. 10.1002/macp.201200274. DOI

Hu B. Neutral Black Color Showing Electrochromic Copolymer Based on Dithienopyrroles and Benzothiadiazole Derivatives. ECS J. Solid State Sci. Technol. 2021, 10, 07600310.1149/2162-8777/ac10b9. DOI

Udum Y. A.; Hızlıateş C. G.; Ergün Y.; Toppare L. Electrosynthesis and Characterization of an Electrochromic Material Containing Biscarbazole–Oxadiazole Units and Its Application in an Electrochromic Device. Thin Solid Films 2015, 595, 61–67. 10.1016/j.tsf.2015.10.055. DOI

Constantin C.-P.; Bejan A.-E.; Damaceanu M.-D. Synergetic Effect between Structural Manipulation and Physical Properties toward Perspective Electrochromic N-Type Polyimides. Macromolecules 2019, 52, 8040–8055. 10.1021/acs.macromol.9b01576. DOI

Pluczyk S.; Zassowski P.; Quinton C.; Audebert P.; Alain-Rizzo V.; Lapkowski M. Unusual Electrochemical Properties of the Electropolymerized Thin Layer Based on a s -Tetrazine-Triphenylamine Monomer. J. Phys. Chem. C 2016, 120, 4382–4391. 10.1021/acs.jpcc.5b11555. DOI

Ledwon P.; Ovsiannikova D.; Jarosz T.; Gogoc S.; Nitschke P.; Domagala W. Insight into the Properties and Redox States of N-Dopable Conjugated Polymers Based on Naphtalene Diimide Units. Electrochim. Acta 2019, 307, 525–535. 10.1016/j.electacta.2019.03.169. DOI

Wang K.; Zhu L.; Hu X.; Han M.; Lin J.; Guo Z.; Zhan H. Novel Core-Substituted Naphthalene Diimide-Based Conjugated Polymers for Electrochromic Applications. J. Mater. Chem. C 2021, 9, 16959–16965. 10.1039/D1TC04446J. DOI

Huang Y.-R.; Hsiao S.-H. Electrochemical and Electrochromic Properties of Arylene Diimide Dyes with N-Phenylphenothiazine Units. Dyes Pigm. 2022, 199, 110056–110068. 10.1016/j.dyepig.2021.110056. DOI

AlKaabi K.; Wade C. R.; Dincă M. Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem 2016, 1, 264–272. 10.1016/j.chempr.2016.06.013. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In Situ Electropolymerized Ambipolar Copolymers for Vertical OECTs

. 2025 Jul ; 21 (30) : e2411219. [epub] 20250430

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...