D-A-D Compounds Combining Dithienopyrrole Donors and Acceptors of Increasing Electron-Withdrawing Capability: Synthesis, Spectroscopy, Electropolymerization, and Electrochromism
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35616402
PubMed Central
PMC9189846
DOI
10.1021/acs.jpcb.2c01772
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Five D-π-A-π-D compounds consisting of the same donor unit (dithieno[3,2-b:2',3'-d]pyrrole, DTP), the same π-linker (2,5-thienylene), and different acceptors of increasing electron-withdrawing ability (1,3,4-thiadiazole (TD), benzo[c][1,2,5]thiadiazole (BTD), 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP), 1,2,4,5-tetrazine (TZ), and benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)) were synthesized. DTP-TD, DTP-BTD, and DTP-DPP turned out to be interesting luminophores emitting either yellow (DTP-TD) or near-infrared (DTP-BTD and DTP-DPP) radiation in dichloromethane solutions. The emission bands were increasingly bathochromically shifted with increasing solvent polarity. Electrochemically determined electron affinities (|EA|s) were found to be strongly dependent on the nature of the acceptor changing from 2.86 to 3.84 eV for DTP-TD and DTP-NDI, respectively, while the ionization potential (IP) values varied only weakly. Experimental findings were strongly supported by theoretical calculations, which correctly predicted the observed solvent dependence of the emission spectra. Similarly, the calculated IP and EA values were in excellent agreement with the experiment. DTP-TD, DTP-BTD, DTP-TZ, and DTP-NDI could be electropolymerized to yield polymers of very narrow electrochemical band gap and characterized by redox states differing in color coordinates and lightness. Poly(DTP-NDI) and poly(DTP-TD) showed promising electrochromic behavior, not only providing a rich color palette in the visible but also exhibiting near-infrared (NIR) electrochromism.
Faculty of Chemistry Silesian University of Technology Strzody 9 44 100 Gliwice Poland
Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00 664 Warsaw Poland
Institute of Physics Polish Academy of Sciences Al Lotnikow 32 44 02 668 Warsaw Poland
Zobrazit více v PubMed
Xing L.; Luscombe C. K. Advances in Applying C–H Functionalization and Naturally Sourced Building Blocks in Organic Semiconductor Synthesis. J. Mater. Chem. C 2021, 9, 16391–16409. 10.1039/D1TC04128B. DOI
Bronstein H.; Nielsen C. B.; Schroeder B. C.; McCulloch I. The Role of Chemical Design in the Performance of Organic Semiconductors. Nat. Rev. Chem. 2020, 4, 66–77. 10.1038/s41570-019-0152-9. PubMed DOI
Liu C.; Wang K.; Gong X.; Heeger A. J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. 10.1039/C5CS00650C. PubMed DOI
Su Y.-W.; Lin Y.-C.; Wei K.-H. Evolving Molecular Architectures of Donor–Acceptor Conjugated Polymers for Photovoltaic Applications: From One-Dimensional to Branched to Two-Dimensional Structures. J. Mater. Chem. A 2017, 5, 24051–24075. 10.1039/C7TA07228G. DOI
Kim M.; Ryu S. U.; Park S. A.; Choi K.; Kim T.; Chung D.; Park T. Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Adv. Funct. Mater. 2020, 30, 190454510.1002/adfm.201904545. DOI
Lv X.; Li W.; Ouyang M.; Zhang Y.; Wright D. S.; Zhang C. Polymeric Electrochromic Materials with Donor–Acceptor Structures. J. Mater. Chem. C 2017, 5, 12–28. 10.1039/C6TC04002K. DOI
Rasmussen S. C.; Evenson S. J. Dithieno[3,2-b:2′,3′-d]Pyrrole-Based Materials: Synthesis and Application to Organic Electronics. Prog. Polym. Sci. 2013, 38, 1773–1804. 10.1016/j.progpolymsci.2013.04.004. DOI
Geng Y.; Tang A.; Tajima K.; Zeng Q.; Zhou E. Conjugated Materials Containing Dithieno[3,2- b :2′,3′- d]Pyrrole and its Derivatives for Organic and Hybrid Solar Cell Applications. J. Mater. Chem. A 2019, 7, 64–96. 10.1039/C8TA09383K. DOI
Lin F.-J.; Lin S.-D.; Chin C.-H.; Chuang W.-T.; Hsu C.-S. Novel Conjugated Polymers Based on Bis-Dithieno[3,2- b ;2′,3′- d]Pyrrole Vinylene Donor and Diketopyrrolopyrrole Acceptor: Side Chain Engineering in Organic Field Effect Transistors. Polym. Chem. 2018, 9, 28–37. 10.1039/C7PY01340J. DOI
Chung C.-L.; Chen H.-C.; Yang Y.-S.; Tung W.-Y.; Chen J.-W.; Chen W.-C.; Wu C.-G.; Wong K.-T. S, N -Heteroacene-Based Copolymers for Highly Efficient Organic Field Effect Transistors and Organic Solar Cells: Critical Impact of Aromatic Subunits in the Ladder π-System. ACS Appl. Mater. Interfaces 2018, 10, 6471–6483. 10.1021/acsami.7b15584. PubMed DOI
Lin G.; Qin Y.; Guan Y.-S.; Xu H.; Xu W.; Zhu D. π-Conjugated Dithieno[3,2-b:2′,3′-d]Pyrrole (DTP) Oligomers for Organic Thin-Film Transistors. RSC Adv. 2016, 6, 4872–4876. 10.1039/C5RA24845K. DOI
Zhang W.; Li J.; Zou L.; Zhang B.; Qin J.; Lu Z.; Poon Y. F.; Chan-Park M. B.; Li C. M. Semiconductive Polymers Containing Dithieno[3,2- b :2′,3′- d]Pyrrole for Organic Thin-Film Transistors. Macromolecules 2008, 41, 8953–8955. 10.1021/ma802004e. DOI
Liu J.; Zhang R.; Sauvé G.; Kowalewski T.; McCullough R. D. Highly Disordered Polymer Field Effect Transistors: N -Alkyl Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Copolymers with Surprisingly High Charge Carrier Mobilities. J. Am. Chem. Soc. 2008, 130, 13167–13176. 10.1021/ja803077v. PubMed DOI
Truong M. A.; Lee H.; Shimazaki A.; Mishima R.; Hino M.; Yamamoto K.; Otsuka K.; Handa T.; Kanemitsu Y.; Murdey R.; Wakamiya A. Near-Ultraviolet Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1484–1495. 10.1021/acsaem.0c02677. DOI
Mabrouk S.; Zhang M.; Wang Z.; Liang M.; Bahrami B.; Wu Y.; Wu J.; Qiao Q.; Yang S. Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Hole Transport Materials for Perovskite Solar Cells with Efficiencies over 18%. J. Mater. Chem. A 2018, 6, 7950–7958. 10.1039/C8TA01773E. DOI
Cao J.; Du F.; Yang L.; Tang W. The Design of Dithieno[3,2-b:2′,3′-d]Pyrrole Organic Photovoltaic Materials for High-Efficiency Organic/Perovskite Solar Cells. J. Mater. Chem. A 2020, 8, 22572–22592. 10.1039/D0TA08706H. DOI
Hendriks K. H.; Li W.; Wienk M. M.; Janssen R. A. J. Small-Bandgap Semiconducting Polymers with High Near-Infrared Photoresponse. J. Am. Chem. Soc. 2014, 136, 12130–12136. 10.1021/ja506265h. PubMed DOI
Zhang X.; Steckler T. T.; Dasari R. R.; Ohira S.; Potscavage W. J.; Tiwari S. P.; Coppée S.; Ellinger S.; Barlow S.; Brédas; et al. Dithienopyrrole-Based Donor–Acceptor Copolymers: Low Band-Gap Materials for Charge Transport, Photovoltaics and Electrochromism. J. Mater. Chem. 2010, 20, 123–134. 10.1039/B915940A. DOI
Wang K.; Azouz M.; Babics M.; Cruciani F.; Marszalek T.; Saleem Q.; Pisula W.; Beaujuge P. M. Solvent Annealing Effects in Dithieno[3,2- b :2′,3′- d]Pyrrole–5,6-Difluorobenzo[c][1,2,5]Thiadiazole Small Molecule Donors for Bulk-Heterojunction Solar Cells. Chem. Mater. 2016, 28, 5415–5425. 10.1021/acs.chemmater.6b01763. DOI
Mishra A.; Keshtov M. L.; Looser A.; Singhal R.; Stolte M.; Würthner F.; Bäuerle P.; Sharma G. D. Unprecedented Low Energy Losses in Organic Solar Cells with High External Quantum Efficiencies by Employing Non-Fullerene Electron Acceptors. J. Mater. Chem. A 2017, 5, 14887–14897. 10.1039/C7TA04703G. DOI
Sun J.; Ma X.; Zhang Z.; Yu J.; Zhou J.; Yin X.; Yang L.; Geng R.; Zhu R.; Zhang F.; Tang W. Dithieno[3,2-b:2′,3′-d]Pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. Adv. Mater. 2018, 30, 170715010.1002/adma.201707150. PubMed DOI
Li G.; Li D.; Ma R.; Liu T.; Luo Z.; Cui G.; Tong L.; Zhang M.; Wang Z.; Liu F.; et al. Efficient Modulation of End Groups for the Asymmetric Small Molecule Acceptors Enabling Organic Solar Cells with over 15% Efficiency. J. Mater. Chem. A 2020, 8, 5927–5935. 10.1039/D0TA01032D. DOI
Kumar S.; Justin Thomas K. R.; Li C.-T.; Fan M.-S.; Ho K.-C. Effect of Auxiliary Donors and Position of Benzothiadiazole on the Optical and Photovoltaic Properties of Dithieno[3,2-b:2′,3′-d]Pyrrole-Based Sensitizers. Sol. Energy 2020, 208, 539–547. 10.1016/j.solener.2020.08.001. DOI
Polander L. E.; Yella A.; Teuscher J.; Humphry-Baker R.; Curchod B. F. E.; Ashari Astani N.; Gao P.; Moser J.-E.; Tavernelli I.; Rothlisberger U.; et al. Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chem. Mater. 2013, 25, 2642–2648. 10.1021/cm401144j. DOI
Cai N.; Zhang J.; Xu M.; Zhang M.; Wang P. Improving the Photovoltage of Dithienopyrrole Dye-Sensitized Solar Cells via Attaching the Bulky Bis(Octyloxy)Biphenyl Moiety to the Conjugated π-Linker. Adv. Funct. Mater. 2013, 23, 3539–3547. 10.1002/adfm.201203348. DOI
Leenaers P. J.; Maufort A. J. L. A.; Wienk M. M.; Janssen R. A. J. Impact of π-Conjugated Linkers on the Effective Exciton Binding Energy of Diketopyrrolopyrrole–Dithienopyrrole Copolymers. J. Phys. Chem. C 2020, 124, 27403–27412. 10.1021/acs.jpcc.0c08768. PubMed DOI PMC
Evenson S. J.; Mumm M. J.; Pokhodnya K. I.; Rasmussen S. C. Highly Fluorescent Dithieno[3,2- b :2′,3′- d]Pyrrole-Based Materials: Synthesis, Characterization, and OLED Device Applications. Macromolecules 2011, 44, 835–841. 10.1021/ma102633d. DOI
Mishra S. P.; Palai A. K.; Srivastava R.; Kamalasanan M. N.; Patri M. Dithieno[3,2- b :2′,3′- d]Pyrrole–Alkylthiophene–Benzo[c][1,2,5]Thiadiazole-based Highly Stable and Low Band Gap Polymers for Polymer Light-emitting Diodes. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6514–6525. 10.1002/pola.23694. DOI
Zhang J.; Chen Z.; Yang L.; Hu F.; Yu G.-A.; Yin J.; Liu S.-H. Dithienopyrrole Compound with Twisted Triphenylamine Termini: Reversible near-Infrared Electrochromic and Mechanochromic Dual-Responsive Characteristics. Dyes Pigm. 2017, 136, 168–174. 10.1016/j.dyepig.2016.08.051. DOI
Wu T.-Y.; Tung Y.-H. Phenylthiophene-Containing Poly(2,5-Dithienylpyrrole)s as Potential Anodic Layers for High-Contrast Electrochromic Devices. J. Electrochem. Soc. 2018, 165, H183–H195. 10.1149/2.0401805jes. DOI
Azak H.; Yildiz H. B.; Bezgin Carbas B. Synthesis and Characterization of a New Poly(Dithieno (3,2-b:2′, 3′-d) Pyrrole) Derivative Conjugated Polymer: Its Electrochromic and Biosensing Applications. Polymer 2018, 134, 44–52. 10.1016/j.polymer.2017.11.044. DOI
Rybakiewicz R.; Skorka L.; Louarn G.; Ganczarczyk R.; Zagorska M.; Pron A. N-Substituted Dithienopyrroles as Electrochemically Active Monomers: Synthesis, Electropolymerization and Spectroelectrochemistry of the Polymerization Products. Electrochim. Acta 2019, 295, 472–483. 10.1016/j.electacta.2018.10.123. DOI
Rybakiewicz R.; Ganczarczyk R.; Charyton M.; Skorka L.; Ledwon P.; Nowakowski R.; Zagorska M.; Pron A. Low Band Gap Donor-Acceptor-Donor Compounds Containing Carbazole and Naphthalene Diimide Units: Synthesis, Electropolymerization and Spectroelectrochemical Behaviour. Electrochim. Acta 2020, 358, 13692210.1016/j.electacta.2020.136922. DOI
Jarosz T.; Gebka K.; Stolarczyk A.; Domagala W. Transparent to Black Electrochromism—The “Holy Grail” of Organic Optoelectronics. Polymers 2019, 11, 273.10.3390/polym11020273. PubMed DOI PMC
Niu J.; Wang Y.; Zou X.; Tan Y.; Jia C.; Weng X.; Deng L. Infrared Electrochromic Materials, Devices and Applications. Appl. Mater. Today 2021, 24, 10107310.1016/j.apmt.2021.101073. DOI
Miomandre F.; Audebert P. 1,2,4,5-Tetrazines: An Intriguing Heterocycles Family with Outstanding Characteristics in the Field of Luminescence and Electrochemistry. J. Photochem. Photobiol., C 2020, 44, 10037210.1016/j.jphotochemrev.2020.100372. DOI
Quinton C.; Alain-Rizzo V.; Dumas-Verdes C.; Miomandre F.; Clavier G.; Audebert P. Redox-Controlled Fluorescence Modulation (Electrofluorochromism) in Triphenylamine Derivatives. RSC Adv. 2014, 4, 34332–34342. 10.1039/C4RA02675F. DOI
Drewniak A.; Tomczyk M. D.; Knop K.; Walczak K. Z.; Ledwon P. Multiple Redox States and Multielectrochromism of Donor–Acceptor Conjugated Polymers with Aromatic Diimide Pendant Groups. Macromolecules 2019, 52, 8453–8465. 10.1021/acs.macromol.9b01069. DOI
Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Yu H. S.; He X.; Li S. L.; Truhlar D. G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032–5051. 10.1039/C6SC00705H. PubMed DOI PMC
Makrlík E.; Toman P.; Vaňura P. Complexation of the Thallium Cation with Nonactin: An Experimental and Theoretical Study. Monatsh. Chem. 2014, 145, 551–555. 10.1007/s00706-014-1153-5. DOI
Ehala S.; Toman P.; Rathore R.; Makrlík E.; Kašička V. Affinity Capillary Electrophoresis and Density Functional Theory Employed for the Characterization of Hexaarylbenzene-Based Receptor Complexation with Alkali Metal Ions. Electrophoresis 2011, 32, 981–987. 10.1002/elps.201000568. PubMed DOI
Záliš S.; Kratochvilova I.; Zambova A.; Mbindyo J.; Mallouk T. E.; Mayer T. S. Combined Experimental and Theoretical DFT Study of Molecular Nanowires Negative Differential Resistance and Interaction with Gold Clusters. Eur. Phys. J. E 2005, 18, 201–206. 10.1140/epje/i2005-10043-5. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI
Bauernschmitt R.; Ahlrichs R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. 10.1016/0009-2614(96)00440-X. DOI
Casida M. E.; Jamorski C.; Casida K. C.; Salahub D. R. Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold. J. Chem. Phys. 1998, 108, 4439–4449. 10.1063/1.475855. DOI
Stratmann R. E.; Scuseria G. E.; Frisch M. J. An Efficient Implementation of Time-Dependent Density-Functional Theory for the Calculation of Excitation Energies of Large Molecules. J. Chem. Phys. 1998, 109, 8218–8224. 10.1063/1.477483. DOI
Cossi M.; Barone V. Time-Dependent Density Functional Theory for Molecules in Liquid Solutions. J. Chem. Phys. 2001, 115, 4708–4717. 10.1063/1.1394921. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.. et al.Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.
Hill I. G.; Kahn A.; Soos Z. G.; Pascal R. A. Jr. Charge-Separation Energy in Films of π-Conjugated Organic Molecules. Chem. Phys. Lett. 2000, 327, 181–188. 10.1016/S0009-2614(00)00882-4. DOI
Förtsch S.; Mena-Osteritz E.; Bäuerle P. Synthesis and Characterization of β,B′-Dimethylated Dithieno[3,2- b :2′,3′- d]Pyrroles and Their Corresponding Regioregular Conducting Electropolymers. Polym. Chem. 2021, 12, 3332–3345. 10.1039/D1PY00479D. DOI
McCairn M. C.; Kreouzis T.; Turner M. L. Microwave Accelerated Synthesis and Evaluation of Conjugated Oligomers Based on 2,5-Di-Thiophene-[1,3,4]Thiadiazole. J. Mater. Chem. 2010, 20, 1999–2006. 10.1039/b922714h. DOI
Kurach E.; Kotwica K.; Zapala J.; Knor M.; Nowakowski R.; Djurado D.; Toman P.; Pfleger J.; Zagorska M.; Pron A. Semiconducting Alkyl Derivatives of 2,5-Bis(2,2′-Bithiophene-5-Yl)-1,3,4-Thiadiazole—Effect of the Substituent Position on the Spectroscopic, Electrochemical, and Structural Properties. J. Phys. Chem. C 2013, 117, 15316–15326. 10.1021/jp4033832. DOI
Ledwon P.; Thomson N.; Angioni E.; Findlay N. J.; Skabara P. J.; Domagala W. The Role of Structural and Electronic Factors in Shaping the Ambipolar Properties of Donor–Acceptor Polymers of Thiophene and Benzothiadiazole. RSC Adv. 2015, 5, 77303–77315. 10.1039/C5RA06993A. DOI
Cansu-Ergun E. G.; Akbayrak M.; Akdag A.; Önal A. M. Effect of Thiophene Units on the Properties of Donor Acceptor Type Monomers and Polymers Bearing Thiophene-Benzothiadiazole- Scaffolds. J. Electrochem. Soc. 2016, 163, G153–G158. 10.1149/2.0711610jes. DOI
Eroglu D.; Cansu Ergun E. G.; Önal A. M. Cross-Exchange of Donor Units in Donor-Acceptor-Donor Type Conjugated Molecules: Effect of Symmetrical and Unsymmetrical Linkage on the Electrochemical and Optical Properties. Tetrahedron 2020, 76, 131164–131172. 10.1016/j.tet.2020.131164. DOI
Kurach E.; Djurado D.; Rimarčik J.; Kornet A.; Wlostowski M.; Lukeš V.; Pécaut J.; Zagorska M.; Pron A. Effect of Substituents on Redox, Spectroscopic and Structural Properties of Conjugated Diaryltetrazines—a Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2011, 13, 2690–2700. 10.1039/C0CP01553A. PubMed DOI
Gora M.; Pluczyk S.; Zassowski P.; Krzywiec W.; Zagorska M.; Mieczkowski J.; Lapkowski M.; Pron A. EPR and UV–Vis Spectroelectrochemical Studies of Diketopyrrolopyrroles Disubstituted with Alkylated Thiophenes. Synth. Met. 2016, 216, 75–82. 10.1016/j.synthmet.2015.09.012. DOI
Wiosna-Salyga G.; Gora M.; Zagorska M.; Toman P.; Luszczynska B.; Pfleger J.; Glowacki I.; Ulanski J.; Mieczkowski J.; Pron A. Diketopyrrolopyrroles Disubstituted with Alkylated Thiophenes: Effect of the Donor Unit Size and Solubilizing Substituents on Their Redox, Photo- and Electroluminescence Properties. RSC Adv. 2015, 5, 59616–59629. 10.1039/C5RA06811H. DOI
Qian G.; Qi J.; Davey J. A.; Wright J. S.; Wang Z. Y. Family of Diazapentalene Chromophores and Narrow-Band-Gap Polymers: Synthesis, Halochromism, Halofluorism, and Visible–Near Infrared Photodetectivity. Chem. Mater. 2012, 24, 2364–2372. 10.1021/cm300938s. DOI
Pron A.; Reghu R. R.; Rybakiewicz R.; Cybulski H.; Djurado D.; Grazulevicius J. V.; Zagorska M.; Kulszewicz-Bajer I.; Verilhac J.-M. Triarylamine Substituted Arylene Bisimides as Solution Processable Organic Semiconductors for Field Effect Transistors. Effect of Substituent Position on Their Spectroscopic, Electrochemical, Structural, and Electrical Transport Properties. J. Phys. Chem. C 2011, 115, 15008–15017. 10.1021/jp202553h. DOI
Pluczyk S.; Zassowski P.; Rybakiewicz R.; Wielgosz R.; Zagorska M.; Lapkowski M.; Pron A. UV-Vis and EPR Spectroelectrochemical Investigations of Triarylamine Functionalized Arylene Bisimides. RSC Adv. 2015, 5, 7401–7412. 10.1039/C4RA12603C. DOI
Sefer E.; Baycan Koyuncu F. Naphthalenediimide Bridged D-A Polymers: Design, Synthesis and Electrochromic Properties. Electrochim. Acta 2014, 143, 106–113. 10.1016/j.electacta.2014.08.019. DOI
Çakal D.; Ercan Y. E.; Önal A. M.; Cihaner A. Effect of Fluorine Substituted Benzothiadiazole on Electro-Optical Properties of Donor-Acceptor-Donor Type Monomers and Their Polymers. Dyes Pigm. 2020, 182, 108622–108629. 10.1016/j.dyepig.2020.108622. DOI
Tanguy J.; Mermilliod N.; Hoclet M. Capacitive Charge and Noncapacitive Charge in Conducting Polymer Electrodes. J. Electrochem. Soc. 1987, 134, 795–802. 10.1149/1.2100575. DOI
Admassie S.; Inganäs O.; Mammo W.; Perzon E.; Andersson M. R. Electrochemical and Optical Studies of the Band Gaps of Alternating Polyfluorene Copolymers. Synth. Met. 2006, 156, 614–623. 10.1016/j.synthmet.2006.02.013. DOI
Audebert P.; Sadki S.; Miomandre F.; Clavier G.; Vernières M. C.; Saoud M.; Hapiot P. Synthesis of New Substituted Tetrazines: Electrochemical and Spectroscopic Properties. New J. Chem. 2004, 28, 387–392. 10.1039/B310737J. DOI
Hwang D. K.; Dasari R. R.; Fenoll M.; Alain-Rizzo V.; Dindar A.; Shim J. W.; Deb N.; Fuentes-Hernandez C.; Barlow S.; Bucknall D. G.; et al. Stable Solution-Processed Molecular n-Channel Organic Field-Effect Transistors. Adv. Mater. 2012, 24, 4445–4450. 10.1002/adma.201201689. PubMed DOI
Quinton C.; Chi S.-H.; Dumas-Verdes C.; Audebert P.; Clavier G.; Perry J. W.; Alain-Rizzo V. Novel S-Tetrazine-Based Dyes with Enhanced Two-Photon Absorption Cross-Section. J. Mater. Chem. C 2015, 3, 8351–8357. 10.1039/C5TC00531K. DOI
Bredas J. L.; Street G. B. Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309–315. 10.1021/ar00118a005. DOI
Rybakiewicz R.; Glowacki E. D.; Skorka L.; Pluczyk S.; Zassowski P.; Apaydin D. H.; Lapkowski M.; Zagorska M.; Pron A. Low and High Molecular Mass Dithienopyrrole-Naphthalene Bisimide Donor-Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour. Chem. Eur. J. 2017, 23, 2839–2851. 10.1002/chem.201604672. PubMed DOI
Unlu N. A.; Deniz T. K.; Sendur M.; Cirpan A. Effect of Dithienopyrrole Unit on Electrochromic and Optical Properties of Benzotriazole-Based Conjugated Polymers. Macromol. Chem. Phys. 2012, 213, 1885–1891. 10.1002/macp.201200274. DOI
Hu B. Neutral Black Color Showing Electrochromic Copolymer Based on Dithienopyrroles and Benzothiadiazole Derivatives. ECS J. Solid State Sci. Technol. 2021, 10, 07600310.1149/2162-8777/ac10b9. DOI
Udum Y. A.; Hızlıateş C. G.; Ergün Y.; Toppare L. Electrosynthesis and Characterization of an Electrochromic Material Containing Biscarbazole–Oxadiazole Units and Its Application in an Electrochromic Device. Thin Solid Films 2015, 595, 61–67. 10.1016/j.tsf.2015.10.055. DOI
Constantin C.-P.; Bejan A.-E.; Damaceanu M.-D. Synergetic Effect between Structural Manipulation and Physical Properties toward Perspective Electrochromic N-Type Polyimides. Macromolecules 2019, 52, 8040–8055. 10.1021/acs.macromol.9b01576. DOI
Pluczyk S.; Zassowski P.; Quinton C.; Audebert P.; Alain-Rizzo V.; Lapkowski M. Unusual Electrochemical Properties of the Electropolymerized Thin Layer Based on a s -Tetrazine-Triphenylamine Monomer. J. Phys. Chem. C 2016, 120, 4382–4391. 10.1021/acs.jpcc.5b11555. DOI
Ledwon P.; Ovsiannikova D.; Jarosz T.; Gogoc S.; Nitschke P.; Domagala W. Insight into the Properties and Redox States of N-Dopable Conjugated Polymers Based on Naphtalene Diimide Units. Electrochim. Acta 2019, 307, 525–535. 10.1016/j.electacta.2019.03.169. DOI
Wang K.; Zhu L.; Hu X.; Han M.; Lin J.; Guo Z.; Zhan H. Novel Core-Substituted Naphthalene Diimide-Based Conjugated Polymers for Electrochromic Applications. J. Mater. Chem. C 2021, 9, 16959–16965. 10.1039/D1TC04446J. DOI
Huang Y.-R.; Hsiao S.-H. Electrochemical and Electrochromic Properties of Arylene Diimide Dyes with N-Phenylphenothiazine Units. Dyes Pigm. 2022, 199, 110056–110068. 10.1016/j.dyepig.2021.110056. DOI
AlKaabi K.; Wade C. R.; Dincă M. Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem 2016, 1, 264–272. 10.1016/j.chempr.2016.06.013. DOI
In Situ Electropolymerized Ambipolar Copolymers for Vertical OECTs