Abscisic Acid: Role in Fruit Development and Ripening
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35620694
PubMed Central
PMC9127668
DOI
10.3389/fpls.2022.817500
Knihovny.cz E-resources
- Keywords
- abscisic acid, biosynthesis, development, ethylene, fruit ripening, regulatory pathways, transport,
- Publication type
- Journal Article MeSH
- Review MeSH
Abscisic acid (ABA) is a plant growth regulator known for its functions, especially in seed maturation, seed dormancy, adaptive responses to biotic and abiotic stresses, and leaf and bud abscission. ABA activity is governed by multiple regulatory pathways that control ABA biosynthesis, signal transduction, and transport. The transport of the ABA signaling molecule occurs from the shoot (site of synthesis) to the fruit (site of action), where ABA receptors decode information as fruit maturation begins and is significantly promoted. The maximum amount of ABA is exported by the phloem from developing fruits during seed formation and initiation of fruit expansion. In the later stages of fruit ripening, ABA export from the phloem decreases significantly, leading to an accumulation of ABA in ripening fruit. Fruit growth, ripening, and senescence are under the control of ABA, and the mechanisms governing these processes are still unfolding. During the fruit ripening phase, interactions between ABA and ethylene are found in both climacteric and non-climacteric fruits. It is clear that ABA regulates ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism controlling the interaction between ABA and ethylene has not yet been discovered. The effects of ABA and ethylene on fruit ripening are synergistic, and the interaction of ABA with other plant hormones is an essential determinant of fruit growth and ripening. Reaction and biosynthetic mechanisms, signal transduction, and recognition of ABA receptors in fruits need to be elucidated by a more thorough study to understand the role of ABA in fruit ripening. Genetic modifications of ABA signaling can be used in commercial applications to increase fruit yield and quality. This review discusses the mechanism of ABA biosynthesis, its translocation, and signaling pathways, as well as the recent findings on ABA function in fruit development and ripening.
Centre of Agricultural Biochemistry and Biotechnology University of Agriculture Faisalabad Pakistan
Department of Biology Faculty of Science University of Bisha Bisha Saudi Arabia
Department of Biotechnology Deen Dayal Upadhyaya Gorakhpur University Gorakhpur India
Department of Biotechnology Siddharth University Kapilvastu India
Division of Crop Improvement ICAR Indian Institute of Sugarcane Research Lucknow India
Faculty of Agricultural Sciences SGT University Haryana India
Government Department of School Education Jammu India
Institut of Plant and Environmental Sciences Slovak University of Agriculture Nitra Slovakia
See more in PubMed
Ampomah-Dwamena C., McGhie T., Wibisono R., Montefiori M., Hellens R. P., Allan A. C. (2009). The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J. Exp. Bot. 60 3765–3779. 10.1093/jxb/erp218 PubMed DOI PMC
Amritphale D., Yoneyama K., Takeuchi Y., Ramakrishna P., Kusumoto D. (2005). The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber. J. Exp. Bot. 56 2173–2181. 10.1093/jxb/eri217 PubMed DOI
Arc E., Sechet J., Corbineau F., Rajjou L., Marion-Poll A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4:63. 10.3389/fpls.2013.00063 PubMed DOI PMC
Asselbergh B., De Vleesschauwer D., Höfte M. (2008). Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21 709–719. 10.1094/MPMI-21-6-0709 PubMed DOI
Astle M. C., Rubery P. H. (1980). A study of abscisic acid uptake by apical and proximal root segments of Phaseolus coccineus L. Planta 150 312–320. 10.1007/BF00384661 PubMed DOI
Astle M., Rubery P. (1983). Carriers for abscisic acid and indole-3-acetic acid in primary roots: their regional localisation and thermodynamic driving forces. Planta 157 53–63. 10.1007/BF00394540 PubMed DOI
Baier M., Gimmler H., Hartung W. (1990). The permeability of the guard cell plasma membrane and tonoplast. J. Exp. Bot. 41 351–358. 10.1093/jxb/41.3.351 PubMed DOI
Bansal M., Wani S. H. (2021). “Cross-talk of compatible solutes with other signalling pathways in plants,” in Compatible Solutes Engineering for Crop Plants Facing Climate Change, eds Wani S. H., Gangola M. P., Ramadoss B. R. (Cham: Springer). 10.1007/978-3-030-80674-3_9 DOI
Bastías A., López-Climent M., Valcárcel M., Rosello S., Gómez-Cadenas A., Casaretto J. A. (2011). Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor. Physiol. Plant. 141 215–226. 10.1111/j.1399-3054.2010.01435.x PubMed DOI
Bastías A., Yañez M., Osorio S., Arbona V., Gómez-Cadenas A., Fernie A. R., et al. (2014). The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. J. Exp. Bot. 65 2351–2363. 10.1093/jxb/eru114 PubMed DOI PMC
Beauvieux R., Wenden B., Dirlewanger E. (2018). Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues. Front. Plant Sci. 9:657. 10.3389/fpls.2018.00657 PubMed DOI PMC
Berli F. J., Fanzone M., Piccoli P., Bottini R. (2011). Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agricultural Food Chem. 59 4874–4884. 10.1021/jf200040z PubMed DOI
Biale J. B. (1964). Growth, maturation, and senescence in fruits. Science 146 880–888. 10.1126/science.146.3646.880 PubMed DOI
Bianco-Colomas J., Barthe P., Orlandini M., Le Page-Degivry M. T. (1991). Carrier-mediated uptake of abscisic acid by suspension-cultured Amaranthus tricolor cells. Plant Physiol. 95 990–996. 10.1104/pp.95.4.990 PubMed DOI PMC
Binder B. M. (2020). Ethylene signaling in plants. J. Biol. Chem. 295 7710–7725. 10.1074/jbc.REV120.010854 PubMed DOI PMC
Boneh U., Biton I., Schwartz A., Ben-Ari G. (2012). Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci. 187 89–96. 10.1016/j.plantsci.2012.01.015 PubMed DOI
Cantín C. M., Fidelibus M. W., Crisosto C. H. (2007). Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol. Technol. 46 237–241. 10.1016/j.postharvbio.2007.05.017 DOI
Carrera E., Ruiz-Rivero O., Peres L. E. P., Atares A., Garcia-Martinez J. L. (2012). Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160 1581–1596. 10.1104/pp.112.204552 PubMed DOI PMC
Chai Y.-M., Jia H.-F., Li C.-L., Dong Q.-H., Shen Y.-Y. (2011). FaPYR1 is involved in strawberry fruit ripening. J. Exp. Bot. 62 5079–5089. 10.1093/jxb/err207 PubMed DOI
Chai Y.-M., Zhang Q., Tian L., Li C.-L., Xing Y., Qin L., et al. (2013). Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regulation 69 63–69. 10.1007/s10725-012-9747-9746 DOI
Chen H., Ruan J., Chu P., Fu W., Liang Z., Li Y., et al. (2020a). AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J. 101 310–323. 10.1111/tpj.14542 PubMed DOI
Chen K., Li G. J., Bressan R. A., Song C. P., Zhu J. K., Zhao Y. (2020b). Abscisic acid dynamics, signaling, and functions in plants. J. Integrative Plant Biol. 62 25–54. 10.1111/jipb.12899 PubMed DOI
Chen P., Sun Y.-F., Kai W.-B., Liang B., Zhang Y.-S., Zhai X.-W., et al. (2016). Interactions of ABA signaling core components (SlPYLs, SlPP2Cs, and SlSnRK2s) in tomato (Solanum lycopersicon). J. Plant Physiol. 205 67–74. 10.1016/j.jplph.2016.07.016 PubMed DOI
Chen Q., Liu X.-F., Zheng P.-S. (2014). Grape seed proanthocyanidins (GSPs) inhibit the growth of cervical cancer by inducing apoptosis mediated by the mitochondrial pathway. PLoS One 9:e107045. 10.1371/journal.pone.0107045 PubMed DOI PMC
Chen S. Y., Kuo S. R., Chien C. T. (2008). Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol. 28 1431–1439. 10.1093/treephys/28.9.1431 PubMed DOI
Chen W., Wang W., Lyu Y., Wu Y., Huang P., Hu S., et al. (2021). OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J. 9 68–78. 10.1016/j.cj.2020.06.005 DOI
Chernys J. T., Zeevaart J. A. (2000). Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124 343–354. 10.1104/pp.124.1.343 PubMed DOI PMC
Chiba Y., Shimizu T., Miyakawa S., Kanno Y., Koshiba T., Kamiya Y., et al. (2015). Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J. Plant Res. 128 679–686. 10.1007/s10265-015-0710-712 PubMed DOI
Christmann A., Hoffmann T., Teplova I., Grill E., Muller A. (2005). Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 137 209–219. 10.1104/pp.104.053082 PubMed DOI PMC
Christmann A., Weiler E. W., Steudle E., Grill E. (2007). A hydraulic signal in root-to-shoot signalling of water shortage. Plant J. 52 167–174. 10.1111/j.1365-313X.2007.03234.x PubMed DOI
Corbineau F., Bianco J., Garello G., Côme D. (2002). Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiol. Plant. 114 313–319. 10.1034/j.1399-3054.2002.1140218.x PubMed DOI
Corratgé-Faillie C., Lacombe B. (2017). Substrate (un) specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot. 68 3107–3113. 10.1093/jxb/erw499 PubMed DOI
Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61 651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI
Davey J., Van Staden J. (1978). Endogenous cytokinins in the fruits of ripening and non-ripening tomatoes. Plant Sci. Lett. 11 359–364. 10.1016/0304-4211(78)90023-90028 DOI
de Jong M., Wolters-Arts M., García-Martínez J. L., Mariani C., Vriezen W. H. (2011). The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J. Exp. Bot. 62 617–626. 10.1093/jxb/erq293 PubMed DOI PMC
DellaPenna D., Pogson B. J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57 711–738. 10.1146/annurev.arplant.56.032604.144301 PubMed DOI
Deluc L. G., Quilici D. R., Decendit A., Grimplet J., Wheatley M. D., Schlauch K. A., et al. (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212. 10.1186/1471-2164-10-212 PubMed DOI PMC
Destefano-Beltrán L., Knauber D., Huckle L., Suttle J. (2006). Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J. Exp. Bot. 57 2879–2886. 10.1093/jxb/erl050 PubMed DOI
Dodd I., Tan L., He J. (2003). Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J. Exp. Botany 54 1281–1288. 10.1093/jxb/erg122 PubMed DOI
Dong T., Hwang I. (2014). Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signal. Behav. 9:e28888. 10.4161/psb.28888 PubMed DOI PMC
Dreyer I., Horeau C., Lemaillet G., Zimmermann S., Bush D. R., Rodríguez-Navarro A., et al. (1999). Identification and characterization of plant transporters using heterologous expression systems. J. Exp. Bot. 50 1073–1087. 10.1093/jexbot/50.suppl_1.1073 DOI
Else M. A., Stankiewicz-Davies A. P., Crisp C. M., Atkinson C. J. (2004). The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. J. Exp. Botany 55 2099–2109. 10.1093/jxb/erh208 PubMed DOI
Endo A., Okamoto M., Koshiba T. (2014). “ABA biosynthetic and catabolic pathways,” in Abscisic Acid: Metabolism, Transport and Signaling, ed. Zhang D. P. (Dordrecht: Springer; ).
Ernst L., Goodger J. Q., Alvarez S., Marsh E. L., Berla B., Lockhart E., et al. (2010). Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J. Exp. Bot. 61 3395–3405. 10.1093/jxb/erq160 PubMed DOI
Etehadnia M., Waterer D. R., Tanino K. K. (2008). The method of ABA application affects salt stress responses in resistant and sensitive potato lines. J. Plant Growth Regulation 27 331–341. 10.1007/s00344-008-9060-9069 DOI
Fan X., Naz M., Fan X., Xuan W., Miller A. J., Xu G. (2017). Plant nitrate transporters: from gene function to application. J. Exp. Bot. 68 2463–2475. 10.1093/jxb/erx011 PubMed DOI
Fenn M. A., Giovannoni J. J. (2021). Phytohormones in fruit development and maturation. Plant J. 105 446–458. 10.1111/tpj.15112 PubMed DOI
Feurtado J. A., Ambrose S. J., Cutler A. J., Ross A. R., Abrams S. R., Kermode A. R. (2004). Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218 630–639. 10.1007/s00425-003-1139-1138 PubMed DOI
Finch-Savage W. E., Leubner-Metzger G. (2006). Seed dormancy and the control of germination. New Phytol. 171 501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Fu F. Q., Mao W. H., Shi K., Zhou Y. H., Asami T., Yu J. Q. (2008). A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot. 59 2299–2308. 10.1093/jxb/ern093 PubMed DOI PMC
Fuentes L., Figueroa C. R., Valdenegro M. (2019). Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae 5:45. 10.3390/horticulturae5020045 DOI
Fujii H., Chinnusamy V., Rodrigues A., Rubio S., Antoni R., Park S.-Y., et al. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462 660–664. 10.1038/nature08599 PubMed DOI PMC
Fukao T., Yeung E., Bailey-Serres J. (2011). The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23 412–427. 10.1105/tpc.110.080325 PubMed DOI PMC
Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., et al. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. U S A. 103 1988–1993. 10.1073/pnas.0505667103 PubMed DOI PMC
Galpaz N., Wang Q., Menda N., Zamir D., Hirschberg J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53 717–730. 10.1111/j.1365-313X.2007.03362.x PubMed DOI
Gambetta G. A., Matthews M. A., Shaghasi T. H., McElrone A. J., Castellarin S. D. (2010). Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232 219–234. 10.1007/s00425-010-1165-2 PubMed DOI PMC
Gao Z., Li Q., Li J., Chen Y., Luo M., Li H., et al. (2018). Characterization of the ABA receptor VlPYL1 that regulates anthocyanin accumulation in grape berry skin. Front. Plant Sci. 9:592. 10.3389/fpls.2018.00592 PubMed DOI PMC
Giovannoni J. (2001). Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Biol. 52 725–749. 10.1146/annurev.arplant.52.1.725 PubMed DOI
Giribaldi M., Gény L., Delrot S., Schubert A. (2010). Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. J. Exp. Bot. 61 2447–2458. 10.1093/jxb/erq079 PubMed DOI PMC
González-Guzmán M., Rodríguez L., Lorenzo-Orts L., Pons C., Sarrión-Perdigones A., Fernández M. A., et al. (2014). Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J. Exp. Bot. 65 4451–4464. 10.1093/jxb/eru219 PubMed DOI PMC
Goodger J. Q., Schachtman D. P. (2010). Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal. Behav. 5 1298–1301. 10.4161/psb.5.10.13101 PubMed DOI PMC
Han Y., Dang R., Li J., Jiang J., Zhang N., Jia M., et al. (2015). SUCROSE Nonfermenting1-related protein Kinase2. 6, an ortholog of open Stomata1, is a negative regulator of strawberry fruit development and ripening. Plant Physiol. 167 915–930. 10.1104/pp.114.251314 PubMed DOI PMC
Hansen H., Dörffling K. (1999). Changes of free and conjugated abscisic acid and phaseic acid in xylem sap of drought-stressed sunflower plants. J. Exp. Bot. 50 1599–1605. 10.1093/jxb/50.339.1599 PubMed DOI
Hao Q., Yin P., Li W., Wang L., Yan C., Lin Z., et al. (2011). The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol. Cell. 42 662–672. 10.1016/j.molcel.2011.05.011 PubMed DOI
He Y., Gan S. (2004). A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol. Biol. 54 1–9. 10.1023/B:PLAN.0000028730.10834.e3 PubMed DOI
Hirayama T., Shinozaki K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 12 343–351. 10.1016/j.tplants.2007.06.013 PubMed DOI
Holbrook N. M., Shashidhar V., James R. A., Munns R. (2002). Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J. Exp. Bot. 53 1503–1514. 10.1093/jexbot/53.373.1503 PubMed DOI
Holdsworth M. J., Bentsink L., Soppe W. J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179 33–54. 10.1111/j.1469-8137.2008.02437.x PubMed DOI
Hou B.-Z., Chen X.-H., Shen Y.-Y. (2020). Interactions between strawberry ABA receptor PYR/PYLs and protein phosphatase PP2CS on basis of transcriptome and yeast two-hybrid analyses. J. Plant Growth Regulation 40 1–9. 10.1007/s00344-020-10121-10124 DOI
Hou B.-Z., Li C.-L., Han Y.-Y., Shen Y.-Y. (2018a). Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. BMC Plant Biol. 18:162. 10.1186/s12870-018-1377-1373 PubMed DOI PMC
Hou B.-Z., Xu C., Shen Y.-Y. (2018b). A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. J. Exp. Bot. 69 1569–1582. 10.1093/jxb/erx488 PubMed DOI PMC
Huang N.-C., Liu K.-H., Lo H.-J., Tsay Y.-F. (1999). Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11 1381–1392. 10.1105/tpc.11.8.1381 PubMed DOI PMC
Ikegami K., Okamoto M., Seo M., Koshiba T. (2009). Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J. Plant Res. 122 235–243. 10.1007/s10265-008-0201-209 PubMed DOI
Inomata M., Hirai N., Yoshida R., Ohigashi H. (2004). Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta. Biosci. Biotechnol. Biochem. 68 2571–2580. 10.1271/bbb.68.2571 PubMed DOI
Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., et al. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27 325–333. 10.1046/j.1365-313x.2001.01096.x PubMed DOI
Iyer-Pascuzzi A. S., Jackson T., Cui H., Petricka J. J., Busch W., Tsukagoshi H., et al. (2011). Cell identity regulators link development and stress responses in the Arabidopsis root. Dev. Cell 21 770–782. 10.1016/j.devcel.2011.09.009 PubMed DOI PMC
Jaakola L., Määttä K., Pirttilä A. M., Törrönen R., Kärenlampi S., Hohtola A. (2002). Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 130 729–739. 10.1104/pp.006957 PubMed DOI PMC
Jeong S. T., Goto-Yamamoto N., Kobayashi S., Esaka M. (2004). Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167 247–252. 10.1016/j.plantsci.2004.03.021 DOI
Ji K., Chen P., Sun L., Wang Y., Dai S., Li Q., et al. (2012). Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct. Plant Biol. 39 351–357. 10.1071/FP11293 PubMed DOI
Ji K., Kai W., Zhao B., Sun Y., Yuan B., Dai S., et al. (2014). SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J. Exp. Bot. 65 5243–5255. 10.1093/jxb/eru288 PubMed DOI PMC
Ji X., Dong B., Shiran B., Talbot M. J., Edlington J. E., Hughes T., et al. (2011). Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol. 156 647–662. 10.1104/pp.111.176164 PubMed DOI PMC
Jia H., Wang C., Zhang C., Haider M. S., Zhao P., Liu Z., et al. (2016). Functional analysis of VvBG1 during fruit development and ripening of grape. J. Plant Growth Regulation 35 987–999. 10.1007/s00344-016-9597-y DOI
Jia H.-F., Chai Y.-M., Li C.-L., Lu D., Luo J.-J., Qin L., et al. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157 188–199. 10.1104/pp.111.177311 PubMed DOI PMC
Jia H.-F., Lu D., Sun J.-H., Li C.-L., Xing Y., Qin L., et al. (2013). Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J. Exp. Bot. 64 1677–1687. 10.1093/jxb/ert028 PubMed DOI PMC
Jia W., Davies W. J. (2007). Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol. 143 68–77. 10.1104/pp.106.089110 PubMed DOI PMC
Jiang F., Hartung W. (2008). Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J. Exp. Bot. 59 37–43. 10.1093/jxb/erm127 PubMed DOI
Jiang Y., Joyce D. C. (2003). ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation 39 171–174. 10.1023/A:1022539901044 DOI
Jiang Y., Joyce D. C., Macnish A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. J. Plant Growth Regulation 19 106–111. 10.1007/s003440000011 PubMed DOI
Ju Y.-L., Liu M., Zhao H., Meng J.-F., Fang Y.-L. (2016). Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules 21:1354. 10.3390/molecules21101354 PubMed DOI PMC
Kai W., Wang J., Liang B., Fu Y., Zheng Y., Zhang W., et al. (2019). PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. J. Exp. Bot. 70 6305–6319. 10.1093/jxb/erz396 PubMed DOI PMC
Kaiser W. M., Hartung W. (1981). Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending on pH gradients. Plant Physiol. 68 202–206. 10.1104/pp.68.1.202 PubMed DOI PMC
Kalua C. M., Boss P. K. (2009). Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (Vitis vinifera L.). J. Agricultural Food Chem. 57 3818–3830. 10.1021/jf803471n PubMed DOI
Kang J., Hwang J.-U., Lee M., Kim Y.-Y., Assmann S. M., Martinoia E., et al. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. U S A. 107 2355–2360. 10.1073/pnas.0909222107 PubMed DOI PMC
Kang J., Yim S., Choi H., Kim A., Lee K. P., Lopez-Molina L., et al. (2015). Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 6:8113. 10.1038/ncomms9113 PubMed DOI PMC
Kannangara T., Durley R., Simpson G., Seetharama N. (1983). Drought resistance of Sorghum bicolor. 6. changes in endogenous growth regulators of plants grown across an irrigation gradient. Canadian J. Plant Sci. 63 147–155. 10.4141/cjps83-014 DOI
Kanno Y., Hanada A., Chiba Y., Ichikawa T., Nakazawa M., Matsui M., et al. (2012). Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc. Natl. Acad. Sci. U S A. 109 9653–9658. 10.1073/pnas.1203567109 PubMed DOI PMC
Karppinen K., Hirvelä E., Nevala T., Sipari N., Suokas M., Jaakola L. (2013). Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry 95 127–134. 10.1016/j.phytochem.2013.06.023 PubMed DOI
Karppinen K., Tegelberg P., Häggman H., Jaakola L. (2018). Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front. Plant Sci. 9:1259. 10.3389/fpls.2018.01259 PubMed DOI PMC
Kępczyński J., Wójcik A., Dziurka M. (2021). Avena fatua caryopsis dormancy release is associated with changes in KAR 1 and ABA sensitivity as well as with ABA reduction in coleorhiza and radicle. Planta 253:52. 10.1007/s00425-020-03562-3564 PubMed DOI PMC
Khadri M., Tejera N. A., Lluch C. (2006). Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J. Plant Growth Regulation 25 110–119. 10.1007/s00344-005-0004-3 DOI
Kim J., Lee J. G., Hong Y., Lee E. J. (2019). Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry. J. Plant Physiol. 239 52–60. 10.1016/j.jplph.2019.05.013 PubMed DOI
Kim W., Lee Y., Park J., Lee N., Choi G. (2013). HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant Cell Physiol. 54 555–572. 10.1093/pcp/pct017 PubMed DOI
Kitahata N., Saito S., Miyazawa Y., Umezawa T., Shimada Y., Min Y. K., et al. (2005). Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorgan. Med. Chem. 13 4491–4498. 10.1016/j.bmc.2005.04.036 PubMed DOI
Klee H. J., Giovannoni J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45 41–59. 10.1146/annurev-genet-110410-132507 PubMed DOI
Klingler J. P., Batelli G., Zhu J.-K. (2010). ABA receptors: the START of a new paradigm in phytohormone signalling. J. Exp. Bot. 61 3199–3210. 10.1093/jxb/erq151 PubMed DOI PMC
Kobashi K., Gemma H., Iwahori S. (1999). Sugar accumulation in peach fruit as affected by abscisic acid (ABA) treatment in relation to some sugar metabolizing enzymes. J. Japanese Soc. Horticultural Sci. 68 465–470. 10.2503/jjshs.68.465 DOI
Koiwai H., Nakaminami K., Seo M., Mitsuhashi W., Toyomasu T., Koshiba T. (2004). Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 134 1697–1707. 10.1104/pp.103.036970 PubMed DOI PMC
Kondo S., Gemma H. (1993). Relationship between abscisic acid (ABA) content and maturation of the sweet cherry. J. Japanese Soc. Horticultural Sci. 62 63–68. 10.2503/jjshs.62.63 DOI
Kondo S., Sungcome K., Setha S., Hirai N. (2004). ABA catabolism during development and storage in mangoes: influence of jasmonates. J. Horticultural Sci. Biotechnol. 79 891–896. 10.1080/14620316.2004.11511862 DOI
Koyama K., Sadamatsu K., Goto-Yamamoto N. (2010). Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integrative Genomics 10 367–381. 10.1007/s10142-009-0145-148 PubMed DOI
Kumar R., Khurana A., Sharma A. K. (2013). Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 65 4561–4575. 10.1093/jxb/eru277 PubMed DOI
Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., et al. (2010). ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. U S A. 107 2361–2366. 10.1073/pnas.0912516107 PubMed DOI PMC
Kuromori T., Seo M., Shinozaki K. (2018). ABA transport and plant water stress responses. Trends Plant Sci. 23 513–522. 10.1016/j.tplants.2018.04.001 PubMed DOI
Lacampagne S., Gagné S., Gény L. (2010). Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J. Plant Growth Regulation 29 81–90. 10.1007/s00344-009-9115-9116 DOI
Lalk I., Dörffling K. (1985). Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol. Plant. 63 287–292. 10.1111/j.1399-3054.1985.tb04267.x DOI
Lefebvre V., North H., Frey A., Sotta B., Seo M., Okamoto M., et al. (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 45 309–319. 10.1111/j.1365-313X.2005.02622.x PubMed DOI
Leng P., Yuan B., Guo Y. (2013). The role of abscisic acid in fruit ripening and responses to abiotic stress. J. Exp. Bot. 65 4577–4588. 10.1093/jxb/eru204 PubMed DOI
Leng P., Zhang G., Li X., Wang L., Zheng Z. (2009). Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx. Chinese Sci. Bull. 54 2830–2838. 10.1007/s11434-009-0486-487 DOI
Leng P., Zhang Y., Du Y., Wang J., Jiang L., Kai W., et al. (2018). Expression pattern of ABA metabolic and signalling genes during floral development and fruit set in sweet cherry. Plant Growth Regulation 84 71–80. 10.1007/s10725-017-0322-z DOI
Léran S., Varala K., Boyer J.-C., Chiurazzi M., Crawford N., Daniel-Vedele F., et al. (2014). A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci. 19 5–9. 10.1016/j.tplants.2013.08.008 PubMed DOI
Li C., Jia H., Chai Y., Shen Y. (2011). Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signal. Behav. 6 1950–1953. 10.4161/psb.6.12.18024 PubMed DOI PMC
Li D., Mou W., Xia R., Li L., Zawora C., Ying T., et al. (2019). Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Horticulture Res. 6 1–13. 10.1038/s41438-018-0100-108 PubMed DOI PMC
Li J., Xu Y., Niu Q., He L., Teng Y., Bai S. (2018). Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia white pear group) flower bud endodormancy. Int. J. Mol. Sci. 19:310. 10.3390/ijms19010310 PubMed DOI PMC
Li N., Euring D., Cha J. Y., Lin Z., Lu M., Huang L.-J., et al. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 11:2318. 10.3389/fpls.2020.627969 PubMed DOI PMC
Li Q., Ji K., Sun Y. F., Luo H., Wang H. Q., Leng P. (2013). The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant J. 76 24–35. PubMed
Liao X., Li M., Liu B., Yan M., Yu X., Zi H., et al. (2018). Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc. Natl. Acad. Sci. U S. A. 115 E11542–E11550. 10.1073/pnas.1812575115 PubMed DOI PMC
Lichtenthaler H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Biol. 50 47–65. 10.1146/annurev.arplant.50.1.47 PubMed DOI
Liu Y., Ye N., Liu R., Chen M., Zhang J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61 2979–2990. 10.1093/jxb/erq125 PubMed DOI PMC
Lü P., Yu S., Zhu N., Chen Y.-R., Zhou B., Pan Y., et al. (2018). Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4 784–791. 10.1038/s41477-018-0249-z PubMed DOI
Luo X., Chen Z., Gao J., Gong Z. (2014). Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 79 44–55. 10.1111/tpj.12534 PubMed DOI
Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., et al. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324 1064–1068. 10.1126/science.1172408 PubMed DOI
Manz B., Muller K., Kucera B., Volke F., Leubner-Metzger G. (2005). Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol. 138 1538–1551. 10.1104/pp.105.061663 PubMed DOI PMC
Manzi M., Lado J., Rodrigo M. J., Arbona V., Gómez-Cadenas A. (2016). ABA accumulation in water-stressed Citrus roots does not rely on carotenoid content in this organ. Plant Sci. 252 151–161. 10.1016/j.plantsci.2016.07.017 PubMed DOI
Manzi M., Lado J., Rodrigo M. J., Zacarías L., Arbona V., Gómez-Cadenas A. (2015). Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol. 56 2457–2466. 10.1093/pcp/pcv161 PubMed DOI
Mariotti L., Picciarelli P., Lombardi L., Ceccarelli N. (2011). Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J. Plant Growth Regulation 30 405–415. 10.1007/s00344-011-9204-9201 DOI
McCourt P., Creelman R. (2008). The ABA receptors-we report you decide. Curr. Opin. Pant Biol. 11 474–478. 10.1016/j.pbi.2008.06.014 PubMed DOI
McMurchie E., McGlasson W., Eaks I. (1972). Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237 235–236. 10.1038/237235a0 PubMed DOI
Medina-Puche L., Cumplido-Laso G., Amil-Ruiz F., Hoffmann T., Ring L., Rodríguez-Franco A., et al. (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria× ananassa fruits. J. Exp. Bot. 65 401–417. 10.1093/jxb/ert377 PubMed DOI
Melcher K., Ng L.-M., Zhou X. E., Soon F.-F., Xu Y., Suino-Powell K. M., et al. (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462 602–608. 10.1038/nature08613 PubMed DOI PMC
Miyazono K.-I., Miyakawa T., Sawano Y., Kubota K., Kang H.-J., Asano A., et al. (2009). Structural basis of abscisic acid signalling. Nature 462 609–614. 10.1038/nature08583 PubMed DOI
Mizutani M., Todoroki Y. (2006). ABA 8’-hydroxylase and its chemical inhibitors. Phytochem. Rev. 5 385–404. 10.1007/s11101-006-9012-9016 DOI
Mohapatra S. S., Poole R. J., Dhindsa R. S. (1988). Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol. 87 468–473. 10.1104/pp.87.2.468 PubMed DOI PMC
Mohr P. G., Cahill D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct. Plant Biol. 30 461–469. 10.1071/FP02231 PubMed DOI
Mönke G., Seifert M., Keilwagen J., Mohr M., Grosse I., Hähnel U., et al. (2012). Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 40 8240–8254. 10.1093/nar/gks594 PubMed DOI PMC
Mou W., Li D., Bu J., Jiang Y., Khan Z. U., Luo Z., et al. (2016). Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS One 11:e0154072. 10.1371/journal.pone.0154072 PubMed DOI PMC
Nakashima K., Fujita Y., Kanamori N., Katagiri T., Umezawa T., Kidokoro S., et al. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2. 2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50 1345–1363. 10.1093/pcp/pcp083 PubMed DOI
Nambara E., Kuchitsu K. (2011). Opening a new era of ABA research. J. Plant Res. 124 431–435. 10.1007/s10265-011-0437-437 PubMed DOI
Nambara E., Marion-Poll A. (2003). ABA action and interactions in seeds. Trends Plant Sci. 8 213–217. 10.1016/S1360-1385(03)00060-68 PubMed DOI
Nambara E., Marion-Poll A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56 165–185. 10.1146/annurev.arplant.56.032604.144046 PubMed DOI
Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. (2010). Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20 55–67. 10.1017/S0960258510000012 DOI
Née G., Kramer K., Nakabayashi K., Yuan B., Xiang Y., Miatton E., et al. (2017). DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 8:72. 10.1038/s41467-017-00113-116 PubMed DOI PMC
Neelapu N. R. R., Dutta T., Wani S. H., Surekha C. (2021). “Oxidative stress tolerance in response to salinity in plants,” in Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors, eds Abdel A., Latef H. A. (city: publisher). (Boca Raton, FL: CRC Press; ).
Nishimura N., Hitomi K., Arvai A. S., Rambo R. P., Hitomi C., Cutler S. R., et al. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326 1373–1379. 10.1126/science.1181829 PubMed DOI PMC
Nitsch L., Kohlen W., Oplaat C., Charnikhova T., Cristescu S., Michieli P., et al. (2012). ABA-deficiency results in reduced plant and fruit size in tomato. J. Plant Physiol. 169 878–883. 10.1016/j.jplph.2012.02.004 PubMed DOI
Obroucheva N. (2014). Hormonal regulation during plant fruit development. Russian J. Dev. Biol. 45 11–21. 10.1134/S1062360414010068 PubMed DOI
Owen S. J., Lafond M. D., Bowen P., Bogdanoff C., Usher K., Abrams S. R. (2009). Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. Am. J. Enol. Viticulture 60 277–284.
Pan W., Liang J., Sui J., Li J., Liu C., Xin Y., et al. (2021). ABA and bud dormancy in perennials: current knowledge and future perspective. Genes 12:1635. 10.3390/genes12101635 PubMed DOI PMC
Pandey S., Nelson D. C., Assmann S. M. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136 136–148. 10.1016/j.cell.2008.12.026 PubMed DOI
Pandita D., Wani S. H. (2021). “Osmosensing and signalling in plants: potential role in crop improvement under climate change,” in Compatible Solutes Engineering for Crop Plants Facing Climate Change, (Berlin: Springer; ), 11–46. 10.1007/978-3-030-80674-3_2 DOI
Parcy F., Valon C., Raynal M., Gaubier-Comella P., Delseny M., Giraudat J. (1994). Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6 1567–1582. 10.1105/tpc.6.11.1567 PubMed DOI PMC
Park S.-Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324 1068–1071. 10.1126/science.1173041 PubMed DOI PMC
Perras M. R., Abrams S. R., Balsevich J. J. (1994). Characterization of an abscisic acid carrier in suspension-cultured barley cells. J. Exp. Bot. 45 1565–1573. 10.1093/jxb/45.11.1565 PubMed DOI
Perruc E., Kinoshita N., Lopez-Molina L. (2007). The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J. 52 927–936. 10.1111/j.1365-313X.2007.03288.x PubMed DOI
Pilati S., Bagagli G., Sonego P., Moretto M., Brazzale D., Castorina G., et al. (2017). Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front. Plant Sci. 8:1093. 10.3389/fpls.2017.01093 PubMed DOI PMC
Ren H., Gao Z., Chen L., Wei K., Liu J., Fan Y., et al. (2007). Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J. Exp. Bot. 58 211–219. 10.1093/jxb/erl117 PubMed DOI
Ren J., Chen P., Dai S. J., Li P., Li Q., Ji K., et al. (2011). Role of abscisic acid and ethylene in sweet cherry fruit maturation: molecular aspects. N. Z. J. Crop Hortic. Sci. 39, 161–174. 10.1080/01140671.2011.563424 DOI
Richardson W. C., Badrakh T., Roundy B. A., Aanderud Z. T., Petersen S. L., Allen P. S., et al. (2019). Influence of an abscisic acid (ABA) seed coating on seed germination rate and timing of bluebunch wheatgrass. Ecol. Evol. 9 7438–7447. 10.1002/ece3.5212 PubMed DOI PMC
Rodrigo M.-J., Alquezar B., Zacarías L. (2006). Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J. Exp. Botany 57 633–643. 10.1093/jxb/erj048 PubMed DOI
Rolle R. S., Chism G. W. (1989). Kinetic comparison of cytokinin nucleosidase activity isolated from normally ripening and mutant tomato varieties. Plant Physiol. 91 148–150. 10.1104/pp.91.1.148 PubMed DOI PMC
Romero P., Lafuente M. T., Rodrigo M. J. (2012). The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J. Exp. Bot. 63 4931–4945. 10.1093/jxb/ers168 PubMed DOI PMC
Ruan Y.-L., Patrick J. W., Bouzayen M., Osorio S., Fernie A. R. (2012). Molecular regulation of seed and fruit set. Trends Plant Sci. 17 656–665. 10.1016/j.tplants.2012.06.005 PubMed DOI
Saddhe A. A., Karle S. B., Aftab T., Kumar K. (2021). With no lysine kinases: the key regulatory networks and phytohormone cross talk in plant growth, development and stress response. Plant Cell Rep. 40 2097–2109. 10.1007/s00299-021-02728-y PubMed DOI
Saito S., Okamoto M., Shinoda S., Kushiro T., Koshiba T., Kamiya Y., et al. (2006). A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci. Biotechnol. Biochem. 70 1731–1739. 10.1271/bbb.60077 PubMed DOI
Saladié M., Matas A. J., Isaacson T., Jenks M. A., Goodwin S. M., Niklas K. J., et al. (2007). A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 144 1012–1028. 10.1104/pp.107.097477 PubMed DOI PMC
Sandhu A. K., Gray D. J., Lu J., Gu L. (2011). Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem. 126 982–988. 10.1016/j.foodchem.2010.11.105 DOI
Santiago J., Dupeux F., Round A., Antoni R., Park S.-Y., Jamin M., et al. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462 665–668. 10.1038/nature08591 PubMed DOI
Sauter A., Davies W. J., Hartung W. (2001). The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J. Exp. Bot. 52 1991–1997. 10.1093/jexbot/52.363.1991 PubMed DOI
Sauter A., Dietz K. J., Hartung W. (2002). A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ. 25 223–228. 10.1046/j.1365-3040.2002.00747.x PubMed DOI
Schachtman D. P., Goodger J. Q. (2008). Chemical root to shoot signaling under drought. Trends Plant Sci. 13 281–287. 10.1016/j.tplants.2008.04.003 PubMed DOI
Seo M., Koshiba T. (2002). Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7 41–48. 10.1016/s1360-1385(01)02187-2 PubMed DOI
Serrani J. C., Ruiz-Rivero O., Fos M., García-Martínez J. L. (2008). Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J. 56 922–934. 10.1111/j.1365-313X.2008.03654.x PubMed DOI
Setha S. (2012). Roles of abscisic acid in fruit ripening. Walailak J. Sci. Technol. (WJST) 9 297–308.
Shalom L., Samuels S., Zur N., Shlizerman L., Doron-Faigenboim A., Blumwald E., et al. (2014). Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65 3029–3044. 10.1093/jxb/eru148 PubMed DOI PMC
Shen X., Guo X., Zhao D., Zhang Q., Jiang Y., Wang Y., et al. (2017). Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Plant Physiol. Biochem. 119 275–285. 10.1016/j.plaphy.2017.08.025 PubMed DOI
Shen X., Zhao K., Liu L., Zhang K., Yuan H., Liao X., et al. (2014). A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol. 55 862–880. 10.1093/pcp/pcu013 PubMed DOI
Shen Y.-Y., Wang X.-F., Wu F.-Q., Du S.-Y., Cao Z., Shang Y., et al. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443 823–826. 10.1038/nature05176 PubMed DOI
Signorelli S., Considine M. J. (2018). Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy. Front. Plant Sci. 9:296. 10.3389/fpls.2018.00296 PubMed DOI PMC
Slovik S., Daeter W., Hartung W. (1995). Compartmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere—a biomathematical model. J. Exp. Bot. 46 881–894. 10.1093/jxb/46.8.881 PubMed DOI
Sugimoto H., Kondo S., Tanaka T., Imamura C., Muramoto N., Hattori E., et al. (2014). Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. J. Exp. Bot. 65 5385–5400. 10.1093/jxb/eru297 PubMed DOI PMC
Sun L., Sun Y., Zhang M., Wang L., Ren J., Cui M., et al. (2012). Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol. 158 283–298. 10.1104/pp.111.186866 PubMed DOI PMC
Sun L., Zhang M., Ren J., Qi J., Zhang G., Leng P. (2010). Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol. 10 257–267. 10.1186/1471-2229-10-257 PubMed DOI PMC
Sun Y., Chen P., Duan C., Tao P., Wang Y., Ji K., et al. (2013). Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon (Cucumis melo L.) fruit development and ripening. J. Plant Growth Regulation 32 233–244. 10.1007/s00344-012-9293-9295 DOI
Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017). Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J. Exp. Botany 68 2913–2918. 10.1093/jxb/erx124 PubMed DOI PMC
Symons G. M., Davies C., Shavrukov Y., Dry I. B., Reid J. B., Thomas M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140 150–158. 10.1104/pp.105.070706 PubMed DOI PMC
Tan B. C., Joseph L. M., Deng W. T., Liu L., Li Q. B., Cline K., et al. (2003). Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 35 44–56. 10.1046/j.1365-313X.2003.01786.x PubMed DOI
Thompson A. J., Andrews J., Mulholland B. J., McKee J. M., Hilton H. W., Horridge J. S., et al. (2007). Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol. 143 1905–1917. 10.1104/pp.106.093559 PubMed DOI PMC
Tischer S. V., Wunschel C., Papacek M., Kleigrewe K., Hofmann T., Christmann A., et al. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A. 114 10280–10285. 10.1073/pnas.1706593114 PubMed DOI PMC
Tosetti R., Elmi F., Pradas I., Cools K., Terry L. A. (2020). Continuous exposure to ethylene differentially affects senescence in receptacle and achene tissues in strawberry fruit. Front. Plant Sci. 11:174. 10.3389/fpls.2020.00174 PubMed DOI PMC
Tsay Y.-F., Chiu C.-C., Tsai C.-B., Ho C.-H., Hsu P.-K. (2007). Nitrate transporters and peptide transporters. FEBS Lett. 581 2290–2300. 10.1016/j.febslet.2007.04.047 PubMed DOI
Umezawa T., Sugiyama N., Mizoguchi M., Hayashi S., Myouga F., Yamaguchi-Shinozaki K., et al. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 106 17588–17593. 10.1073/pnas.0907095106 PubMed DOI PMC
Verrier P. J., Bird D., Burla B., Dassa E., Forestier C., Geisler M., et al. (2008). Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci. 13 151–159. 10.1016/j.tplants.2008.02.001 PubMed DOI
Vilaró F., Canela-Xandri A., Canela R. (2006). Quantification of abscisic acid in grapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 386 306–312. 10.1007/s00216-006-0664-2 PubMed DOI
Vivian-Smith A., Koltunow A. M. (1999). Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol. 121 437–452. 10.1104/pp.121.2.437 PubMed DOI PMC
Wang C., Yang A., Yin H., Zhang J. (2008). Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. J. Int. Plant Biol. 50 427–434. 10.1111/j.1774-7909.2008.00638.x PubMed DOI
Wang L., Xu Q., Yu H., Ma H., Li X., Yang J., et al. (2020). Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. Plant Cell 32 2251–2270. 10.1105/tpc.20.00140 PubMed DOI PMC
Wang P., Lu S., Zhang X., Hyden B., Qin L., Liu L., et al. (2021). Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Sci. 304:110739. 10.1016/j.plantsci.2020.110739 PubMed DOI
Wang S., Saito T., Ohkawa K., Ohara H., Suktawee S., Ikeura H., et al. (2018). Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. J. Plant Physiol. 221 85–93. 10.1016/j.jplph.2017.12.007 PubMed DOI
Wang X., Zeng W., Ding Y., Wang Y., Niu L., Yao J.-L., et al. (2019). PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Hortic. Res. 6:19. 10.1038/s41438-018-0094-2 PubMed DOI PMC
Wang Y., Chen P., Sun L., Li Q., Dai S., Sun Y., et al. (2015). Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regulation 75 455–464. 10.1007/s10725-014-0006-x DOI
Wang Y., Guo S., Tian S., Zhang J., Ren Y., Sun H., et al. (2017). Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. PLoS One 12:e0179944. 10.1371/journal.pone.0179944 PubMed DOI PMC
Wang Y., Wang Y., Ji K., Dai S., Hu Y., Sun L., et al. (2013). The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiol. Biochem. 64 70–79. 10.1016/j.plaphy.2012.12.015 PubMed DOI
Weiner J. J., Peterson F. C., Volkman B. F., Cutler S. R. (2010). Structural and functional insights into core ABA signaling. Curr. Opin. Plant Biol. 13 495–502. 10.1016/j.pbi.2010.09.007 PubMed DOI PMC
Weng L., Zhao F., Li R., Xiao H. (2015). Cross-talk modulation between ABA and ethylene by transcription factor SlZFP2 during fruit development and ripening in tomato. Plant Signal. Behav. 10:e1107691. 10.1080/15592324.2015.1107691 PubMed DOI PMC
Wheeler S., Loveys B., Ford C., Davies C. (2009). The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Australian J. Grape Wine Res. 15 195–204. 10.1111/j.1755-0238.2008.00045.x DOI
Wilkinson S., Davies W. J. (1997). Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113 559–573. 10.1104/pp.113.2.559 PubMed DOI PMC
Wilkinson S., Davies W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25 195–210. 10.1046/j.0016-8025.2001.00824.x PubMed DOI
Wilkinson S., Bacon M. A., Davies W. J. (2007). Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J. Exp. Bot. 58 1705–1716. 10.1093/jxb/erm021 PubMed DOI
Windsor M. L., Milborrow B., McFarlane I. J. (1992). The uptake of (+)-S-and (-)-R-abscisic acid by suspension culture cells of hopbush (Dodonaea viscosa). Plant Physiol. 100 54–62. 10.1104/pp.100.1.54 PubMed DOI PMC
Wright S. (1969). An increase in the “inhibitor-β” content of detached wheat leaves following a period of wilting. Planta 86 10–20. 10.1007/BF00385299 PubMed DOI
Wu F.-Q., Xin Q., Cao Z., Liu Z.-Q., Du S.-Y., Mei C., et al. (2009). The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol. 150 1940–1954. 10.1104/pp.109.140731 PubMed DOI PMC
Xie Y.-G., Ma Y.-Y., Bi P.-P., Wei W., Liu J., Hu Y., et al. (2020). Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol. Biochem. 146 374–383. 10.1016/j.plaphy.2019.11.004 PubMed DOI
Xiong T., Tan Q., Li S., Mazars C., Galaud J. P., Zhu X. (2021). Interactions between calcium and ABA signaling pathways in the regulation of fruit ripening. J. Plant Physiol. 256:153309. 10.1016/j.jplph.2020.153309 PubMed DOI
Yamaki S., Asakura T. (1991). Stimulation of the uptake of sorbitol into vacuoles from apple fruit flesh by abscisic add and into protoplasts by indoleacetic acid. Plant Cell Physiol. 32 315–318. 10.1093/oxfordjournals.pcp.a078082 DOI
Yan A., Chen Z. (2017). The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep. 36 689–703. 10.1007/s00299-016-2082-z PubMed DOI
Yang F., Feng X. (2015). Abscisic acid biosynthesis and catabolism and their regulation roles in fruit ripening. Phyton Int. J. Exp. Botany 84 444–453. 10.32604/phyton.2015.84.444 DOI
Yang Q., Niu Q., Li J., Zheng X., Ma Y., Bai S., et al. (2018). PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in ‘Suli’pear (Pyrus pyrifolia White Pear Group). Plant Physiol. Biochem. 127 355–365. 10.1016/j.plaphy.2018.04.002 PubMed DOI
Yang Q., Niu Q., Tang Y., Ma Y., Yan X., Li J., et al. (2019). PpyGAST1 is potentially involved in bud dormancy release by integrating the GA biosynthesis and ABA signaling in ‘Suli’pear (Pyrus pyrifolia White Pear Group). Environ. Exp. Bot. 162 302–312. 10.1016/j.envexpbot.2019.03.008 DOI
Yang X., Song J., Du L., Forney C., Campbell-Palmer L., Fillmore S., et al. (2016). Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chem. 194 325–336. 10.1016/j.foodchem.2015.08.018 PubMed DOI
Yeung E., van Veen H., Vashisht D., Paiva A. L. S., Hummel M., Rankenberg T., et al. (2018). A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A. 115 E6085–E6094. 10.1073/pnas.1803841115 PubMed DOI PMC
Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. (2006). The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281 5310–5318. 10.1074/jbc.M509820200 PubMed DOI
Yoshida T., Christmann A., Yamaguchi-Shinozaki K., Grill E., Fernie A. R. (2019). Revisiting the basal role of ABA-roles outside of stress. Trends Plant Sci. 24 625–635. 10.1016/j.tplants.2019.04.008 PubMed DOI
Zaharah S. S., Singh Z., Symons G. M., Reid J. B. (2012). Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J. Plant Growth Regulation 31 363–372. 10.1007/s00344-011-9245-9245 DOI
Zaharah S. S., Singh Z., Symons G. M., Reid J. B. (2013). Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biol. Technol. 75 37–44. 10.1016/j.postharvbio.2012.07.009 DOI
Zeng W., Tan B., Deng L., Wang Y., Aslam M. M., Wang X., et al. (2020). Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Sci. Horticulturae 270:109402. 10.1016/j.scienta.2020.109402 DOI
Zhang G., Yang J., Zhao X., Li Q., Wu Y., Li F., et al. (2021). Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. Plant Sci. 309:110913. 10.1016/j.plantsci.2021.110913 PubMed DOI
Zhang H., Zhu H., Pan Y., Yu Y., Luan S., Li L. (2014). A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol. Plant 7 1522–1532. 10.1093/mp/ssu063 PubMed DOI
Zhang M., Leng P., Zhang G., Li X. (2009a). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J. Plant Physiol. 166 1241–1252. 10.1016/j.jplph.2009.01.013 PubMed DOI
Zhang M., Yuan B., Leng P. (2009b). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60 1579–1588. 10.1093/jxb/erp026 PubMed DOI PMC
Zhang S., Hou B., Chai L., Yang A., Yu X., Shen Y. (2017). Sigma factor FaSigE positively regulates strawberry fruit ripening by ABA. Plant Growth Regulation 83 417–427. 10.1007/s10725-017-0308-x DOI
Zhao L. H., Zhou X. E., Wu Z. S., Yi W., Xu Y., Li S., et al. (2013). Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23 436–439. 10.1038/cr.2013.19 PubMed DOI PMC
Zhao M., Yang S., Liu X., Wu K. (2015). Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front. Plant Sci. 6:159. 10.3389/fpls.2015.00159 PubMed DOI PMC
Zheng C., Acheampong A. K., Shi Z., Mugzech A., Halaly-Basha T., Shaya F., et al. (2018). Abscisic acid catabolism enhances dormancy release of grapevine buds. Plant Cell Environ. 41 2490–2503. 10.1111/pce.13371 PubMed DOI
Zheng C., Halaly T., Acheampong A. K., Takebayashi Y., Jikumaru Y., Kamiya Y., et al. (2015). Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. J. Exp. Bot. 66 1527–1542. 10.1093/jxb/eru519 PubMed DOI PMC
Zhu G., Ye N., Zhang J. (2009). Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol. 50 644–651. 10.1093/pcp/pcp022 PubMed DOI
Zhu P., Cai Y., Yu J., Zhao A., Liang Y., Liu C., et al. (2017). Characterization and expression of abscisic acid signal transduction genes during mulberry fruit ripening. Acta Physiol. Plant. 39 1–12. 10.1007/s11738-017-2442-2445 DOI
Zifkin M., Jin A., Ozga J. A., Zaharia L. I., Schernthaner J. P., Gesell A., et al. (2012). Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 158 200–224. 10.1104/pp.111.180950 PubMed DOI PMC