Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-16-0176
Slovak Research and Development Agency
VEGA1/0015/21
Scientific Grant Agency of the Ministry of Education of the Slovak Republic
CZ.02.1.01/0.0/0.0/16_019/0000785
Operational Programme Research, Development and Education
PubMed
35622766
PubMed Central
PMC9147231
DOI
10.3390/vetsci9050238
PII: vetsci9050238
Knihovny.cz E-zdroje
- Klíčová slova
- DSS-induced colitis, colon cytokines, faecal and caecal microbiota,
- Publikační typ
- časopisecké články MeSH
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Zobrazit více v PubMed
GBD 2017 Inflammatory Bowel Disease Collaborators The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. PubMed DOI PMC
Ogura Y., Bonen D.K., Inohara N., Nicolae D.L., Chen F.F., Ramos R., Britton H., Moran T., Karaliuskas R., Duerr R.H., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–606. doi: 10.1038/35079114. PubMed DOI
Harbord M., Annese V., Vavricka S.R., Allez M., Barreiro-de Acosta M., Boberg K.M., Burisch J., De Vos M., De Vries A.M., Dick A.D., et al. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J. Crohns Colitis. 2016;10:239–254. doi: 10.1093/ecco-jcc/jjv213. PubMed DOI PMC
Elson C.O., Sartor R.B., Tennyson G.S., Riddell R.H. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367. doi: 10.1016/0016-5085(95)90599-5. PubMed DOI
Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702. doi: 10.1016/0016-5085(90)90290-H. PubMed DOI
Melgar S., Karlsson A., Michaëlsson E. Acute colitis induced by dextran sulphate, sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: Correlation between symptoms and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G1328–G1338. doi: 10.1152/ajpgi.00467.2004. PubMed DOI
Mähler M., Bristol I.J., Leiter E.H., Workman A.E., Birkenmeier E.H., Elson C.O., Sundberg J.P. Differential susceptibility of inbred mouse strains to dextran sulphate sodium-induced colitis. Am. J. Physiol. 1998;274:G544–G551. doi: 10.1152/ajpgi.1998.274.3.G544. PubMed DOI
Gaudio E., Taddei G., Vetuschi A., Sferra R., Frieri G., Ricciardi G., Caprilli R. Dextran sulphate sodium (DSS) colitis in rats: Clinical, structural, and ultrastructural aspects. Dig. Dis. Sci. 1999;44:1458–1475. doi: 10.1023/A:1026620322859. PubMed DOI
Kiesler P., Fuss I.J., Strober W. Experimental Models of Inflammatory Bowel Diseases. Cell. Mol. Gastroenterol. Hepatol. 2015;1:154–170. doi: 10.1016/j.jcmgh.2015.01.006. PubMed DOI PMC
Axelsson L.G., Landström E., Goldschmidt T.J., Grönberg A., Bylund-Fellenius A.C. Dextran sulphate sodium (DSS) induced experimental colitis in immunodeficient mice: Effects on CD4 (+) -cell depleted, ethnic and NK-cell depleted SCID mice. Inflamm. Res. 1996;45:181–191. doi: 10.1007/BF02285159. PubMed DOI
Martin J.C., Bériou G., Josien R. Dextran Sulphate Sodium (DSS)-Induced Acute Colitis in the Rat. Methods Mol. Biol. 2016;1371:197–203. doi: 10.1007/978-1-4939-3139-2_12. PubMed DOI
Breider M.A., Eppinger M., Gough A. Intercellular adhesion molecule-1 expression in dextran sodium sulphate-induced colitis in rats. Vet. Pathol. 1997;34:598–604. doi: 10.1177/030098589703400608. PubMed DOI
Yoshida Y., Iwai A., Itoh K., Tanaka M., Kato S., Hokari R., Miyahara T., Koyama H., Miura S., Kobayashi M. Role of inducible nitric oxide synthase in dextran sulphate sodium-induced colitis. Aliment. Pharmacol. Ther. 2000;14:26–32. doi: 10.1046/j.1365-2036.2000.014s1026.x. PubMed DOI
Osman N., Adawi D., Ahrne S., Jeppsson B., Molin G. Modulation of the effect of dextran sulphate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig. Dis. Sci. 2004;49:320–327. doi: 10.1023/B:DDAS.0000017459.59088.43. PubMed DOI
Mizuta Y., Isomoto H., Takahashi T. Impaired nitrergic innervation in rat colitis induced by dextran sulphate sodium. Gastroenterology. 2000;118:714–723. doi: 10.1016/S0016-5085(00)70141-7. PubMed DOI
Wang F., Zhao H.Y., Zhang S.T., Gong Y.Z., Zhang H.F., Zhang C. Effect of enteral nutrition on dextran sulphate sodium-induced colitis in rats. J. Dig. Dis. 2011;12:453–458. doi: 10.1111/j.1751-2980.2011.00518.x. PubMed DOI
Johansson M.E., Gustafsson J.K., Holmén-Larsson J., Jabbar K.S., Xia L., Xu H., Ghishan F.K., Carvalho F.A., Gewirtz A.T., Sjövall H., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63:281–291. doi: 10.1136/gutjnl-2012-303207. PubMed DOI PMC
Morgan M.E., Zheng B., Koelink P.J., van de Kant H.J., Haazen L.C., van Roest M., Garssen J., Folkerts G., Kraneveld A.D. New perspective on dextran sodium sulphate colitis: Antigen-specific T cell development during intestinal inflammation. PLoS ONE. 2013;8:e69936. doi: 10.1371/journal.pone.0069936. PubMed DOI PMC
Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., And oh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018;11:1–10. doi: 10.1007/s12328-017-0813-5. PubMed DOI
Andrews C.N., Griffiths T.A., Kaufman J., Vergnolle N., Surette M.G., Rioux K.P. Mesalazine (5-aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2011;34:374–383. doi: 10.1111/j.1365-2036.2011.04732.x. PubMed DOI
Wills E.S., Jonkers D.M., Savelkoul P.H., Masclee A.A., Pierik M.J., Penders J. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE. 2014;9:e90981. doi: 10.1371/journal.pone.0090981. PubMed DOI PMC
Adamkova P., Hradicka P., Gancarcikova S., Kassayova M., Ambro L., Bertkova I., Maronek M., Farkasova Iannaccone S., Demeckova V. Single Donor FMT Reverses Microbial/Immune Dysbiosis and Induces Clinical Remission in a Rat Model of Acute Colitis. Pathogens. 2021;10:152. doi: 10.3390/pathogens10020152. PubMed DOI PMC
Stucchi A.F., Shofer S., Leeman S., Materne O., Beer E., McClung J., Shebani K., Moore F., O’Brien M., Becker J.M. NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulphate-induced colitis in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G1298–G1306. doi: 10.1152/ajpgi.2000.279.6.G1298. PubMed DOI
Friedman D.J., Künzli B.M., A-Rahim Y.I., Sevigny J., Berberat P.O., Enjyoji K., Csizmadia E., Friess H., Robson S.C. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc. Natl. Acad. Sci. USA. 2009;106:16788–16793. doi: 10.1073/pnas.0902869106. PubMed DOI PMC
Katakura K., Lee J., Rachmilewitz D., Li G., Eckmann L., Raz E. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Investig. 2005;115:695–702. doi: 10.1172/JCI22996. PubMed DOI PMC
Kupcova Skalnikova H., Vodickova Kepkova K., Vodicka P. Luminex xMAP Assays to Quantify Cytokines in Cancer Patient Serum. Methods Mol. Biol. 2020;2108:65–88. doi: 10.1007/978-1-0716-0247-8_6. PubMed DOI
Bayne L.J., Vonderheide R.H. Multicolor flow cytometric analysis of immune cell subsets in tumor-bearing mice. Cold Spring Harb. Protoc. 2013;2013:955–960. doi: 10.1101/pdb.prot077198. PubMed DOI
Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754. PubMed DOI PMC
Low D., Nguyen D.D., Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des. Dev. Ther. 2013;7:1341–1357. doi: 10.2147/DDDT.S40107. PubMed DOI PMC
Munyaka P.M., Rabbi M.F., Khafipour E., Ghia J.E. Acute dextran sulphate sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice. J. Basic Microbiol. 2016;56:986–998. doi: 10.1002/jobm.201500726. PubMed DOI
Cooper H.S., Murthy S.N., Shah R.S., Sedergran D.J. Clinicopathologic study of dextran sulphate, sodium experimental murine colitis. Lab. Investig. 1993;69:238–249. PubMed
Kim J.J., Shajib M.S., Manocha M.M., Khan W.I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 2012;60:e3678. doi: 10.3791/3678. PubMed DOI PMC
Wéra O., Lancellotti P., Oury C. The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J. Clin. Med. 2016;5:118. doi: 10.3390/jcm5120118. PubMed DOI PMC
Daniluk J., Daniluk U., Reszec J., Rusak M., Dabrowska M., Dabrowski A. The protective effect of cigarette smoke on the course of dextran sulphate sodium-induced colitis are accompanied by lymphocyte subpopulation changes in the blood and colon. Int. J. Colorectal Dis. 2017;32:1551–1559. doi: 10.1007/s00384-017-2882-9. PubMed DOI PMC
Liu D.Y., Zhao H.M., Zhao N., Lu C., Lu A.P. Effect of Bawei Xilei powder on CD3, CD4, CD8 T-lymphocytes of rats with ulcerative colitis. Zhongguo Zhong Yao Za Zhi. 2008;33:1301–1304. PubMed
Neil G.A., Summers R.W., Cheyne B.A., Carpenter C., Huang W.L., Waldschmidt T.J. Analysis of T-lymphocyte subpopulations in inflammatory bowel diseases by three-color flow cytometry. Dig. Dis. Sci. 1994;39:1900–1908. doi: 10.1007/BF02088123. PubMed DOI
Ray K. Deciphering the role of CD8 + T cells in IBD: From single-cell analysis of biomarkers. Nat. Rev. Gastroenterol. Hepatol. 2020;17:595. doi: 10.1038/s41575-020-00362-9. PubMed DOI
Nancey S., Holvöet S., Graber I., Joubert G., Philippe D., Martin S., Nicolas J.F., Desreumaux P., Flourié B., Kaiserlian D. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. Gastroenterology. 2006;131:485–496. doi: 10.1053/j.gastro.2006.05.018. PubMed DOI
Nikolaus S., Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology. 2007;133:1670–1689. doi: 10.1053/j.gastro.2007.09.001. PubMed DOI
Thayer W.R., Charland C., Field C.E. The subpopulations of circulating white blood cells in inflammatory bowel disease. Gastroenterology. 1976;71:379–384. doi: 10.1016/S0016-5085(76)80439-8. PubMed DOI
Zhou G.X., Liu Z.J. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J. Dig. Dis. 2017;18:495–503. doi: 10.1111/1751-2980.12540. PubMed DOI
Fournier B.M., Parkos C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–366. doi: 10.1038/mi.2012.24. PubMed DOI
Tang C., Kakuta S., Shimizu K., Kadoki M., Kamiya T., Shimazu T., Kubo S., Saijo S., Ishigame H., Nakae S., et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing T. Nat. Immunol. 2018;19:755–765. doi: 10.1038/s41590-018-0134-y. PubMed DOI
Uhlig H.H., Powrie F. Dendritic cells and the intestinal bacterial flora: A role for localized mucosal immune responses. J. Clin. Investig. 2003;112:648–651. doi: 10.1172/JCI19545. PubMed DOI PMC
Neurath M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014;14:329–342. doi: 10.1038/nri3661. PubMed DOI
Shea-Donohue T., Thomas K., Cody M.J., Zhao A., Detolla L.J., Kopydlowski K.M., Fukata M., Lira S.A., Vogel S.N. Mice deficient in the CXCR2 ligand, CXCL1 (KC/GRO-alpha), exhibit increased susceptibility to dextran sodium sulphate (DSS) -induced colitis. Innate Immun. 2008;14:117–124. doi: 10.1177/1753425908088724. PubMed DOI PMC
Laan M., Cui Z.H., Hoshino H., Lötvall J., Sjöstrand M., Gruenert D.C., Skoogh B.E., Lindén A. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol. 1999;162:2347–2352. PubMed
Ferretti S., Bonneau O., Dubois G.R., Jones C.E., Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol. 2003;170:2106–2112. doi: 10.4049/jimmunol.170.4.2106. PubMed DOI
Soehnlein O., Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 2010;10:427–439. doi: 10.1038/nri2779. PubMed DOI
Cherfane C.E., Gessel L., Cirillo D., Zimmerman M.B., Polyak S. Monocytosis and a Low Lymphocyte to Monocyte Ratio Are Effective Biomarkers of Ulcerative Colitis Disease Activity. Inflamm. Bowel. Dis. 2015;21:1769–1775. doi: 10.1097/MIB.0000000000000427. PubMed DOI PMC
Banks C., Bateman A., Payne R., Johnson P., Sheron N. Chemokine expression in IBD. The mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J. Pathol. 2003;199:28–35. doi: 10.1002/path.1245. PubMed DOI
McCormack G., Moriarty D., O’Donoghue D.P., McCormick P.A., Sheahan K., Baird A.W. Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm. Res. 2001;50:491–495. doi: 10.1007/PL00000223. PubMed DOI
Puleston J., Cooper M., Murch S., Bid K., Makh S., Ashwood P., Bingham A.H., Green H., Moss P., Dhillon A., et al. A distinct subset of chemokines dominates the mucosal chemokine response in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2005;21:109–120. doi: 10.1111/j.1365-2036.2004.02262.x. PubMed DOI
Sun F.F., Lai P.S., Yue G., Yin K., Nagele R.G., Tong D.M., Krzesicki R.F., Chin J.E., Wong P.Y. Pattern of cytokine and adhesion molecule mRNA in hapten-induced relapsing colon inflammation in the rat. Inflammation. 2001;25:33–45. doi: 10.1023/A:1007023611478. PubMed DOI
Luther S.A., Cyster J.G. Chemokines as regulators of T cell differentiation. Nat. Immunol. 2001;2:102–107. doi: 10.1038/84205. PubMed DOI
Ka M.B., Daumas A., Textoris J., Mege J.L. Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases. Front Immunol. 2014;5:500. doi: 10.3389/fimmu.2014.00500. PubMed DOI PMC
Ahrens R., Waddell A., Seidu L., Blanchard C., Carey R., Forbes E., Lampinen M., Wilson T., Cohen E., Stringer K., et al. Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. J. Immunol. 2008;181:7390–7399. doi: 10.4049/jimmunol.181.10.7390. PubMed DOI PMC
Kamada N., Hisamatsu T., Okamoto S., Chinen H., Kobayashi T., Sato T., Sakuraba A., Kitazume M.T., Sugita A., Koganei K., et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Investig. 2008;118:2269–2280. doi: 10.1172/JCI34610. PubMed DOI PMC
Lissner D., Schumann M., Batra A., Kredel L.I., Kühl A.A., Erben U., May C., Schulzke J.D., Siegmund B. Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD. Inflamm. Bowel Dis. 2015;21:1297–1305. doi: 10.1097/MIB.0000000000000384. PubMed DOI PMC
Barman S., Kayama H., Okuzaki D., Ogino T., Osawa H., Matsuno H., Mizushima T., Mori M., Nishimura J., Takeda K. Identification of a human intestinal myeloid cell subset that regulates gut homeostasis. Int. Immunol. 2016;28:533–545. doi: 10.1093/intimm/dxw034. PubMed DOI
Friedrich M., Pohin M., Powrie F. Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity. 2019;50:992–1006. doi: 10.1016/j.immuni.2019.03.017. PubMed DOI
Ajuebor M.N., Hogaboam C.M., Kunkel S.L., Proudfoot A.E., Wallace J.L. The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat. J. Immunol. 2001;166:552–558. doi: 10.4049/jimmunol.166.1.552. PubMed DOI
Ansari N., Abdulla J., Zayyani N., Brahmi U., Taha S., Satir A.A. Comparison of RANTES expression in Crohn's disease and ulcerative colitis: An aid in the differential diagnosis? J. Clin. Pathol. 2006;59:1066–1072. doi: 10.1136/jcp.2005.034983. PubMed DOI PMC
Schrödl W., Büchler R., Wendler S., Reinhold P., Muckova P., Reindl J., Rhode H. Acute phase proteins as promising biomarkers: Perspectives and limitations of human and veterinary medicine. Proteom. Clin. Appl. 2016;10:1077–1092. doi: 10.1002/prca.201600028. PubMed DOI
Diaz Padilla N., Bleeker W.K., Lubbers Y., Rigter G.M., Van Mierlo G.J., Daha M.R., Hack C.E. Rat C-reactive protein activates the autologous complement system. Immunology. 2003;109:564–571. doi: 10.1046/j.1365-2567.2003.01681.x. PubMed DOI PMC
Żyła E., Dziendzikowska K., Kamola D., Wilczak J., Sapierzyński R., Harasym J., Gromadzka-Ostrowska J. Anti-Inflammatory Activity of Oat Beta-Glucans in a Crohn’s Disease Model: Time- and Molar Mass-Dependent Effects. Int. J. Mol. Sci. 2021;22:4485. doi: 10.3390/ijms22094485. PubMed DOI PMC
Kirdak T., Uysal E., Sezgin E., Cecen G.S., Cavun S. Inflammatory response markers in rats undergoing abdominal surgical procedures. Ann. Gastroenterol. 2020;33:528–535. doi: 10.20524/aog.2020.0511. PubMed DOI PMC
Costa C.A., Tanimoto A., Quaglio A.E., Almeida L.D., Severi J.A., Di Stasi L.C. Anti-inflammatory effects of Brazilian ginseng (Pfaffia paniculata) on TNBS-induced intestinal inflammation: Experimental evidence. Int. Immunopharmacol. 2015;28:459–469. doi: 10.1016/j.intimp.2015.07.002. PubMed DOI
Mitaka C. Clinical laboratory differentiation of infected versus non-infectious systemic inflammatory response syndrome. Clin. Chim. Acta. 2005;351:17–29. doi: 10.1016/j.cccn.2004.08.018. PubMed DOI
Ridker P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–369. doi: 10.1161/01.CIR.0000053730.47739.3C. PubMed DOI
Mürüvvet A., Pınar A.U. Acute Phase Protein Levels in Rats with Experimentally Induced Infectious and Noninfectious Inflammation. J. Dairy Vet. Sci. 2017;4:555642. doi: 10.19080/JDVS.2017.04.555642. DOI
Vavricka S.R., Schoepfer A., Scharl M., Lakatos P.L., Navarini A., Rogler G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015;21:1982–1992. doi: 10.1097/MIB.0000000000000392. PubMed DOI PMC
Kim S.H., Lee W., Kwon D., Lee S., Son S.W., Seo M.S., Kim K.S., Lee Y.H., Kim S., Jung Y.S. Metabolomic Analysis of the Liver of a Dextran Sodium Sulphate-Induced Acute Colitis Mouse Model: Implications of the Gut-Liver Connection. Cells. 2020;9:341. doi: 10.3390/cells9020341. PubMed DOI PMC
Mehta R.L., Kellum J.A., Shah S.V., Molitoris B.A., Ronco C., Warnock D.G., Levin A., Network A.K.I. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care. 2007;11:R31. doi: 10.1186/cc5713. PubMed DOI PMC
Silvestri N.J., Wolfe G.I. Asymptomatic/pause-symptomatic creatine kinase elevations (hyperckemia) Muscle Nerve. 2013;47:805–815. doi: 10.1002/mus.23755. PubMed DOI
Herrlinger K.R., Noftz M.K., Fellermann K., Schmidt K., Steinhoff J., Stange E.F. Minimal renal dysfunction in inflammatory bowel disease is related to disease activity but not to 5-ASA use. Aliment. Pharmacol. Ther. 2001;15:363–369. doi: 10.1046/j.1365-2036.2001.00940.x. PubMed DOI
Ranganathan P., Jayakumar C., Santhakumar M., Ramesh G. Netrin-1 regulates colon-kidney crosstalk through suppression of IL-6 function in a mouse model of DSS-colitis. Am. J. Physiol. Ren. Physiol. 2013;304:F1187–F1197. doi: 10.1152/ajprenal.00702.2012. PubMed DOI PMC
Mahmoodpoor F., Rahbar Saadat Y., Barzegari A., Ardalan M., Zununi Vahed S. The impact of gut microbiota on kidney function and pathogenesis. Biomed. Pharmacother. 2017;93:412–419. doi: 10.1016/j.biopha.2017.06.066. PubMed DOI
Collins C.M., D’Orazio S.E. Bacterial ureas: Structure, regulation of expression and role in pathogenesis. Mol. Microbiol. 1993;9:907–913. doi: 10.1111/j.1365-2958.1993.tb01220.x. PubMed DOI
Suzuki K., Benno Y., Mitsuoka T., Takebe S., Kobashi K., Hase J. Areas-producing species of intestinal anaerobes and their activities. Appl. Environ. Microbiol. 1979;37:379–382. doi: 10.1128/aem.37.3.379-382.1979. PubMed DOI PMC
Wozny M.A., Bryant M.P., Holdeman L.V., Moore W.E. Urease assay and ureas-producing species of anaerobes in the bovine rumen and human feces. Appl. Environ. Microbiol. 1977;33:1097–1104. doi: 10.1128/aem.33.5.1097-1104.1977. PubMed DOI PMC
Kim S.M., Song I.H. The clinical impact of gut microbiota in chronic kidney disease. Korean J. Intern. Med. 2020;35:1305–1316. doi: 10.3904/kjim.2020.411. PubMed DOI PMC
Heikius B., Niemelä S., Lehtola J., Karttunen T.J. Elevated pancreatic enzymes in inflammatory bowel disease are associated with extensive disease. Am. J. Gastroenterol. 1999;94:1062–1069. doi: 10.1111/j.1572-0241.1999.01015.x. PubMed DOI
Ramos L.R., Sachar D.B., DiMaio C.J., Colombel J.F., Torres J. Inflammatory Bowel Disease and Pancreatitis: A Review. J. Crohns Colitis. 2016;10:95–104. doi: 10.1093/ecco-jcc/jjv153. PubMed DOI
Fousekis F.S., Theopistos V.I., Katsanos K.H., Christodoulou D.K. Pancreatic Involvement in Inflammatory Bowel Disease: A Review. J. Clin. Med. Res. 2018;10:743–751. doi: 10.14740/jocmr3561w. PubMed DOI PMC
Bokemeyer B. Asymptomatic elevation of serum lipase and amylase in conjunction with Crohn’s disease and ulcerative colitis. Z. Gastroenterol. 2002;40:5–10. doi: 10.1055/s-2002-19636. PubMed DOI
Barthet M., Lesavre N., Desplats S., Panuel M., Gasmi M., Bernard J.P., Dagorn J.C., Grimaud J.C. Frequency and characteristics of pancreatitis in patients with inflammatory bowel disease. Pancreatology. 2006;6:464–471. doi: 10.1159/000094564. PubMed DOI
Martinelli M., Strisciuglio C., Illiceto M.T., Cardile S., Guariso G., Vignola S., Aloi M., D’Altilia M.R., Alvisi P., Salvatore S., et al. Natural history of pancreatic involvement in paediatric inflammatory bowel disease. Dig. Liver Dis. 2015;47:384–389. doi: 10.1016/j.dld.2015.01.155. PubMed DOI
Ray P., Van Arsdall M.R. Elevated Lipase during Initial Presentation of Ulcerative Colitis in a Pediatric Patient: Do We Check for It. Case Rep. Gastroenterol. 2016;10:568–573. doi: 10.1159/000450699. PubMed DOI PMC
Bilski J., Mazur-Bialy A., Wojcik D., Zahradnik-Bilska J., Brzozowski B., Magierowski M., Mach T., Magierowska K., Brzozowski T. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediat. Inflamm. 2017;2017:9074601. doi: 10.1155/2017/9074601. PubMed DOI PMC
Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434. doi: 10.1038/nature06005. PubMed DOI
Malo M.S., Alam S.N., Mostafa G., Zeller S.J., Johnson P.V., Mohammad N., Chen K.T., Moss A.K., Ramasamy S., Faruqui A., et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut. 2010;59:1476–1484. doi: 10.1136/gut.2010.211706. PubMed DOI
Molnár K., Vannay A., Szebeni B., Bánki N.F., Sziksz E., Cseh A., Győrffy H., Lakatos P.L., Papp M., Arató A., et al. Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease. World J. Gastroenterol. 2012;18:3254–3259. doi: 10.3748/wjg.v18.i25.3254. PubMed DOI PMC
Niepel D., Klag T., Malek N.P., Wehkamp J. Practical guidance for the management of iron deficiency in patients with inflammatory bowel disease. Therap. Adv. Gastroenterol. 2018;11:1756284818769074. doi: 10.1177/1756284818769074. PubMed DOI PMC
González Alayón C., Pedrajas Crespo C., Marín Pedrosa S., Benítez J.M., Iglesias Flores E., Salgueiro Rodríguez I., Medina Medina R., García-Sánchez V. Prevalence of iron deficiency without anaemia in inflammatory bowel disease and impact on health-related quality of life. Gastroenterol. Hepatol. 2018;41:22–29. doi: 10.1016/j.gastrohep.2017.07.011. PubMed DOI
Seyoum Y., Baye K., Humblot C. Iron homeostasis in host and gut bacteri—A complex interrelationship. Gut Microbes. 2021;13:1–19. doi: 10.1080/19490976.2021.1874855. PubMed DOI PMC
Dostal A., Fehlbaum S., Chassard C., Zimmermann M.B., Lacroix C. Low iron availability in continuous in vitro colonic fermentations induces strong dispose of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol. Ecol. 2013;83:161–175. doi: 10.1111/j.1574-6941.2012.01461.x. PubMed DOI PMC
Ni J., Wu G.D., Albenberg L., Tomov V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017;14:573–584. doi: 10.1038/nrgastro.2017.88. PubMed DOI PMC
Knox N.C., Forbes J.D., Van Domselaar G., Bernstein C.N. The Gut Microbiome as a Target for IBD Treatment: Are We There Yet? Curr. Treat Opt. Gastroenterol. 2019;17:115–126. doi: 10.1007/s11938-019-00221-w. PubMed DOI
Buttó L.F., Haller D. Dysbiosis in intestinal inflammation: Cause or consequence. Int. J. Med. Microbiol. 2016;306:302–309. doi: 10.1016/j.ijmm.2016.02.010. PubMed DOI
Gong D., Gong X., Wang L., Yu X., Dong Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol. Res. Pract. 2016;2016:6951091. doi: 10.1155/2016/6951091. PubMed DOI PMC
Zakerska-Banaszak O., Tomczak H., Gabryel M., Baturo A., Wolko L., Michalak M., Malinska N., Mankowska-Wierzbicka D., Eder P., Dobrowolska A., et al. Dysbiosis of gut microbiota in Polish patients with ulcerative colitis: A pilot study. Sci. Rep. 2021;11:2166. doi: 10.1038/s41598-021-81628-3. PubMed DOI PMC
Sheehan D., Moran C., Shanahan F. The microbiota in inflammatory bowel disease. J. Gastroenterol. 2015;50:495–507. doi: 10.1007/s00535-015-1064-1. PubMed DOI
Sha S., Xu B., Wang X., Zhang Y., Wang H., Kong X., Zhu H., Wu K. The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn. Microbiol. Infect. Dis. 2013;75:245–251. doi: 10.1016/j.diagmicrobio.2012.11.022. PubMed DOI
Papa E., Docktor M., Smillie C., Weber S., Preheim S.P., Gevers D., Giannoukos G., Ciulla D., Tabbaa D., Ingram J., et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012;7:e39242. doi: 10.1371/journal.pone.0039242. PubMed DOI PMC
Ling Z., Jin C., Xie T., Cheng Y., Li L., Wu N. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Sci. Rep. 2016;6:30673. doi: 10.1038/srep30673. PubMed DOI PMC
Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102. PubMed DOI PMC
Schierová D., Březina J., Mrázek J., Fliegerová K.O., Kvasnová S., Bajer L., Drastich P. Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells. 2020;9:2283. doi: 10.3390/cells9102283. PubMed DOI PMC
Noor S.O., Ridgway K., Scovell L., Kemsley E.K., Lund E.K., Jamieson C., Johnson I.T., Narbad A. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 2010;10:134. doi: 10.1186/1471-230X-10-134. PubMed DOI PMC
Conte M.P., Schippa S., Zamboni I., Penta M., Chiarini F., Seganti L., Osborn J., Falconieri P., Borrelli O., Cucchiara S. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–1767. doi: 10.1136/gut.2005.078824. PubMed DOI PMC
Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci USA. 2010;107:12204–12209. doi: 10.1073/pnas.0909122107. PubMed DOI PMC
Hansen J.J., Huang Y., Peterson D.A., Goeser L., Fan T.J., Chang E.B., Sartor R.B. The colitis-associated transcriptional profile of commercial Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen. PLoS ONE. 2012;7:e42645. doi: 10.1371/journal.pone.0042645. PubMed DOI PMC
Bloom S.M., Bijanki V.N., Nava G.M., Sun L., Malvin N.P., Donermeyer D.L., Dunne W.M., Allen P.M., Stappenbeck T.S. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011;9:390–403. doi: 10.1016/j.chom.2011.04.009. PubMed DOI PMC
Shin N.R., Lee J.C., Lee H.Y., Kim M.S., Whon T.W., Lee M.S., Bae J.W. An increase in the Akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–735. doi: 10.1136/gutjnl-2012-303839. PubMed DOI
Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110. PubMed DOI PMC
Lepage P., Häsler R., Spehlmann M.E., Rehman A., Zvirbliene A., Begun A., Ott S., Kupcinskas L., Doré J., Raedler A., et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141:227–236. doi: 10.1053/j.gastro.2011.04.011. PubMed DOI
Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms. 2020;8:573. doi: 10.3390/microorganisms8040573. PubMed DOI PMC
Schwiertz A., Jacobi M., Frick J.S., Richter M., Rusch K., Köhler H. Microbiota in pediatric inflammatory bowel disease. J. Pediatr. 2010;157:240–244, e241. doi: 10.1016/j.jpeds.2010.02.046. PubMed DOI
Nagao-Kitamoto H., Shreiner A.B., Gillilland M.G., Kitamoto S., Ishii C., Hirayama A., Kuffa P., El-Zaatari M., Grasberger H., Seekatz A.M., et al. Functional Characterization of Inflammatory Bowel Disease-Associated Gut Dysbiosis in Gnotobiotic Mice. Cell Mol. Gastroenterol. Hepatol. 2016;2:468–481. doi: 10.1016/j.jcmgh.2016.02.003. PubMed DOI PMC
Yang H., Mirsepasi-Lauridsen H.C., Struve C., Allaire J.M., Sivignon A., Vogl W., Bosman E.S., Ma C., Fotovati A., Reid G.S., et al. Ulcerative Colitis-associated. Gut Microbes. 2020;12:1847976. doi: 10.1080/19490976.2020.1847976. PubMed DOI PMC
Keighley M.R., Arabi Y., Dimock F., Burdon D.W., Allan R.N., Alexander-Williams J. Influence of inflammatory bowel disease on intestinal microflora. Gut. 1978;19:1099–1104. doi: 10.1136/gut.19.12.1099. PubMed DOI PMC
Gu S., Chen D., Zhang J.N., Lv X., Wang K., Duan L.P., Nie Y., Wu X.L. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE. 2013;8:e74957. doi: 10.1371/journal.pone.0074957. PubMed DOI PMC
Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016;14:20–32. doi: 10.1038/nrmicro3552. PubMed DOI PMC
Tannock G.W. The bowel microbiota and inflammatory bowel diseases. Int. J. Inflam. 2010;2010:954051. doi: 10.4061/2010/954051. PubMed DOI PMC
Louis P., Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009;294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x. PubMed DOI
Song C.S., Park D.I., Yoon M.Y., Seok H.S., Park J.H., Kim H.J., Cho Y.K., Sohn C.I., Jeon W.K., Kim B.I. Association between red cell distribution width and disease activity in patients with inflammatory bowel disease. Dig. Dis. Sci. 2012;57:1033–1038. doi: 10.1007/s10620-011-1978-2. PubMed DOI