Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy
Language English Country Switzerland Media electronic
Document type Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
PubMed
33066233
PubMed Central
PMC7602113
DOI
10.3390/cells9102283
PII: cells9102283
Knihovny.cz E-resources
- Keywords
- 5-ASA, fecal microbiome transplantation, microbiome, ulcerative colitis,
- MeSH
- Principal Component Analysis MeSH
- Administration, Topical MeSH
- Bacteria classification MeSH
- Biodiversity MeSH
- Tissue Donors MeSH
- Discriminant Analysis MeSH
- Adult MeSH
- Feces microbiology MeSH
- Fecal Microbiota Transplantation * MeSH
- Middle Aged MeSH
- Humans MeSH
- Mesalamine administration & dosage pharmacology therapeutic use MeSH
- Aged MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Colitis, Ulcerative drug therapy microbiology therapy MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Mesalamine MeSH
Ulcerative colitis (UC) is an inflammatory bowel disease, and intestinal bacteria are implicated in the pathogenesis of this disorder. The administration of aminosalicylates (5-ASA) is a conventional treatment that targets the mucosa, while fecal microbial transplantation (FMT) is a novel treatment that directly targets the gut microbiota. The aim of this study was to identify changes in fecal bacterial composition after both types of treatments and evaluate clinical responses. Sixteen patients with active left-sided UC underwent enema treatment using 5-ASA (n = 8) or FMT (n = 8) with a stool from a single donor. Fecal microbiota were analyzed by 16S rDNA high-throughput sequencing, and clinical indices were used to assess the efficacy of treatments. 5-ASA therapy resulted in clinical remission in 50% (4/8) of patients, but no correlation with changes in fecal bacteria was observed. In FMT, remission was achieved in 37.5% (3/8) of patients and was associated with a significantly increased relative abundance of the families Lachnospiraceae, Ruminococcaceae, and Clostridiaceae of the phylum Firmicutes, and Bifidobacteriaceae and Coriobacteriaceae of the phylum Actinobacteria. At the genus level, Faecalibacterium, Blautia, Coriobacteria, Collinsela, Slackia, and Bifidobacterium were significantly more frequent in patients who reached clinical remission. However, the increased abundance of beneficial taxa was not a sufficient factor to achieve clinical improvement in all UC patients. Nevertheless, our preliminary results indicate that FMT as non-drug-using method is thought to be a promising treatment for UC patients.
See more in PubMed
Siew N.C., Hai S.Y., Nima H., Underwood F.E., Whitney T., Benchimol E.I., Panaccione R., Ghosh S., Wu J.C.Y., Chan F.K.L., et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 2017;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Tamboli C., Neut C., Desreumaux P., Colombel J. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1–4. doi: 10.1136/gut.53.1.1. PubMed DOI PMC
Harris M.S., Lichtenstein G.R. Review article: Delivery and efficacy of topical 5-aminosalicylic acid (mesalazine) therapy in the treatment of ulcerative colitis. Aliment. Pharmacol. Ther. 2011;33:996–1009. doi: 10.1111/j.1365-2036.2011.04619.x. PubMed DOI
Xu J., Chen N., Wu Z., Song Y., Zhang Y., Wu N., Zhang F., Ren X., Liu Y. 5-Aminosalicylic Acid Alters the Gut Bacterial Microbiota in Patients With Ulcerative Colitis. Front. Microbiol. 2018;9:1–13. doi: 10.3389/fmicb.2018.01274. PubMed DOI PMC
Olaisen M., Spigset O., Flatberg A., Granlund A.V.B., Brede W.R., Albrektsen G., Røyset E.S., Gilde B., Sandvik A.K., Martinsen T.C., et al. Mucosal 5-aminosalicylic acid concentration, drug formulation and mucosal microbiome in patients with quiescent ulcerative colitis. Aliment. Pharmacol. Ther. 2019;49:1301–1313. doi: 10.1111/apt.15227. PubMed DOI PMC
Fuentes S., Rossen N.G., Van Der Spek M.J., Hartman J.H.A., Huuskonen L., Korpela K., Salojärvi J., Aalvink S., De Vos W.M., D’Haens G.R., et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J. 2017;11:1877–1889. doi: 10.1038/ismej.2017.44. PubMed DOI PMC
Yilmaz B., Juillerat P., Øyås O., Ramon C., Bravo F.D., Franc Y., Fournier N., Michetti P., Mueller C., Geuking M., et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat. Med. 2019;25:323–336. doi: 10.1038/s41591-018-0308-z. PubMed DOI
Gough E., Shaikh H., Manges A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent clostridium difficile infection. Clin. Infect. Dis. 2011;53:994–1002. doi: 10.1093/cid/cir632. PubMed DOI
Lee C.H., Belanger J.E., Kassam Z., Smieja M., Higgins D., Broukhanski G., Kim P.T. The outcome and long-term follow-up of 94 patients with recurrent and refractory Clostridium difficile infection using single to multiple fecal microbiota transplantation via retention enema. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:1425–1428. doi: 10.1007/s10096-014-2088-9. PubMed DOI
Shi Y., Dong Y., Huang W., Zhu D., Mao H., Su P. Fecal microbiota transplantation for ulcerative colitis: A systematic review and meta-analysis. PLoS ONE. 2016;11:e0157259. doi: 10.1371/journal.pone.0157259. PubMed DOI PMC
Costello S.P., Hughes P.A., Waters O., Bryant R.V., Vincent A.D., Blatchford P., Katsikeros R., Makanyanga J., Campaniello M.A., Mavrangelos C., et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients with Ulcerative Colitis: A Randomized Clinical Trial. JAMA. 2019;321:156–164. doi: 10.1001/jama.2018.20046. PubMed DOI PMC
Paramsothy S., Kamm M.A., Kaakoush N.O., Walsh A.J., Bogaerde J.V.D., Samuel D., Leong R.W.L., Connor S., Ng W., Paramsothy R., et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomised placebo-controlled trial. Lancet. 2017;389:1218–1228. doi: 10.1016/S0140-6736(17)30182-4. PubMed DOI
Jacob V., Crawford C., Cohen-Mekelburg S., Viladomiu M., Putzel G.G., Schneider Y., Chabouni F., O’Neil S., Bosworth B., Woo V., et al. Single Delivery of High-Diversity Fecal Microbiota Preparation by Colonoscopy Is Safe and Effective in Increasing Microbial Diversity in Active Ulcerative Colitis. Inflamm. Bowel Dis. 2017;23:903–911. doi: 10.1097/MIB.0000000000001132. PubMed DOI PMC
Chen H., Huang H., Xu H., Luo Q., He J., Li Y., Zhou Y., Nie Y., Zhou Y. Fecal microbiota transplantation ameliorates active ulcerative colitis. Exp. Ther. Med. 2020:2650–2660. doi: 10.3892/etm.2020.8512. PubMed DOI PMC
Cui B., Li P., Xu L., Zhao Y., Wang H., Peng Z., Xu H., Xiang J., He Z., Zhang T., et al. Step-up fecal microbiota transplantation strategy: A pilot study for steroid-dependent ulcerative colitis. J. Transl. Med. 2015;13:298. doi: 10.1186/s12967-015-0646-2. PubMed DOI PMC
Kump P.K., Gröchenig H.-P., Lackner S., Trajanoski S., Reicht G., Hoffmann K.M., Deutschmann A., Wenzl H.H., Petritsch W., Krejs G.J., et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm. Bowel Dis. 2013;19:2155–2165. doi: 10.1097/MIB.0b013e31829ea325. PubMed DOI
Damman C.J., Brittnacher M.J., Westerhoff M., Hayden H.S., Radey M., Hager K.R., Marquis S.R., Miller S.I., Zisman T.L. Low level engraftment and improvement following a single colonoscopic administration of fecal microbiota to patients with ulcerative colitis. PLoS ONE. 2015;10:e0133925. doi: 10.1371/journal.pone.0133925. PubMed DOI PMC
Rossen N.G., Fuentes S., Van Der Spek M.J., Tijssen J.G., Hartman J.H.A., Duflou A., Löwenberg M., Brink G.R.V.D., Mathus-Vliegen E.M.H., De Vos W.M., et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology. 2015;149:110–118. doi: 10.1053/j.gastro.2015.03.045. PubMed DOI
Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J.M., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC
Angelberger S., Reinisch W., Makristathis A., Lichtenberger C., Dejaco C., Papay P., Novacek G., Trauner M., Loy A., Berry D. Temporal Bacterial Community Dynamics Vary Among Ulcerative Colitis Patients After Fecal Microbiota Transplantation. Am. J. Gastroenterol. 2013;108:1–11. doi: 10.1038/ajg.2013.257. PubMed DOI
Lee J.G., Han D.S., Jo S.V., Reum Lee A., Park C.H., Eun C.S., Lee Y. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS ONE. 2019;14:e0216165. doi: 10.1371/journal.pone.0216165. PubMed DOI PMC
Borody T., George L., Andrews P., Brandl S., Noonan S., Cole P., Hyland L., Mrogan A., Maysey J., Moore-Jones D. Bowel-flora alteration: A potential cure for inflammatory bowel disease and irritable bowel syndrome? Med. J. Aust. 1989;150:604. doi: 10.5694/j.1326-5377.1989.tb136704.x. PubMed DOI
Yu Z., Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques. 2004;36:808–812. doi: 10.2144/04365ST04. PubMed DOI
Fliegerova K., Tapio I., Bonin A., Mrazek J., Callegari M.L., Bani P., Bayat A., Vilkki J., Kopečný J., Shingfield K.J., et al. Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe. 2014;29:80–84. doi: 10.1016/j.anaerobe.2013.09.015. PubMed DOI
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Vázquez-Baeza Y., Pirrung M., Gonzalez A., Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2013;2:16. doi: 10.1186/2047-217X-2-16. PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC
Cottone M., Renna S., Modesto I., Orlando A. Is 5-ASA Still the Treatment of Choice for Ulcerative Colitis? Current Drug Targets. 2011;12:1396–1405. doi: 10.2174/138945011796818126. PubMed DOI
Wang Y., Parker C., Feagan B., MacDonald J. Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis.pdf. Cochrane Database Syst. Rev. 2016:CD000544. PubMed PMC
Safdi M., DeMicco M., Sninsky C., Banks P., Wruble L., Deren J., Koval G., Nicols T., Targan S., Taylor D., et al. A double-blind comparison of oral versus rectal mesalazine versus combinational therapy in the treatment of distal ulcerative colitis. Immunol. Microbiol. Inflammat. Dis. 1995;108:A909
Kane S., Huo D., Aikens J., Hanauer S. Medication nonadherence and the outcomes of patients with quiescent ulcerative colitis. Am. J. Med. 2003;114:39–43. doi: 10.1016/S0002-9343(02)01383-9. PubMed DOI
Andrews C.N., Griffiths T.A., Kaufman J., Vergnolle N., Surette M.G., Rioux K.P. Mesalazine (5-aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2011;34:374–383. doi: 10.1111/j.1365-2036.2011.04732.x. PubMed DOI
Moon C., Baldridge M.T., Wallace M.A., Burnham C.-A.D., Virgin H.W., Stappenbeck T.S. Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation. Nature. 2015;521:90–93. doi: 10.1038/nature14139. PubMed DOI PMC
Kaakoush N.O. Sutterella Species, IgA-degrading Bacteria in Ulcerative Colitis. Trends Microbiol. 2020;28:1–3. doi: 10.1016/j.tim.2020.02.018. PubMed DOI
Moayyedi P., Surette M.G., Kim P.T., Libertucci J., Wolfe M., Onischi C., Armstrong D., Marshall J.K., Kassam Z., Reinisch W., et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015;149:102–109. doi: 10.1053/j.gastro.2015.04.001. PubMed DOI
Kump P., Wurm P., Gröchenig H.P., Wenzl H., Petritsch W., Halwachs B., Wagner M., Stadlbauer V., Eherer A., Hoffmann K.M., et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment. Pharmacol. Ther. 2018;47:67–77. doi: 10.1111/apt.14387. PubMed DOI PMC
Narula N., Kassam Z., Yuan Y., Colombel J.F., Ponsioen C., Reinisch W., Moayyedi P. Systematic Review and Meta-analysis: Fecal Microbiota Transplantation for Treatment of Active Ulcerative Colitis. Inflammat. Bowel Dis. 2017;23:1702–1709. doi: 10.1097/MIB.0000000000001228. PubMed DOI
Cao Y., Zhang B., Wu Y., Wang Q., Wang J., Shen F. The value of fecal microbiota transplantation in the treatment of ulcerative colitis patients: A systematic review and meta-analysis. Gastroenterol. Res. Pr. 2018;2018 doi: 10.1155/2018/5480961. PubMed DOI PMC
Tian Y., Zhou Y., Huang S., Li J., Zhao K., Li X., Wen X., Li X.A. Fecal microbiota transplantation for ulcerative colitis: A prospective clinical study. BMC Gastroenterol. 2019;19:116. doi: 10.1186/s12876-019-1010-4. PubMed DOI PMC
Doherty M.K., Ding T., Koumpouras C., Telesco S.E., Monast C., Das A., Brodmerkel C., Schloss P.D. Fecal microbiota signatures are associated with response to ustekinumab therapy among crohn’s disease patients. mBio. 2018;9:1–13. doi: 10.1128/mBio.02120-17. PubMed DOI PMC
Kim Y.S., Unno T., Kim B., Park M. Sex Differences in Gut Microbiota. World J. Mens Health. 2020;38:48–60. doi: 10.5534/wjmh.190009. PubMed DOI PMC
Dominianni C., Sinha R., Goedert J.J., Pei Z., Yang L., Hayes R.B., Ahn J. Sex, Body Mass Index, and Dietary Fiber Intake Influence The Human Gut Microbiome. PLoS ONE. 2015;10:e0124599. doi: 10.1371/journal.pone.0124599. PubMed DOI PMC
Ding T., Schloss P.D. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–360. doi: 10.1038/nature13178. PubMed DOI PMC
Fransen F., van Beek A.A., Borghuis T., Meijer B., Hugenholtz F., Jongh C.V.D.G.-D., Savelkoul H.F., de Jonge M.I., Faas M.M., Boekschoten M.V., et al. The impact of gut microbiota on gender-specific differences in immunity. Front. Immunol. 2017;8:754. doi: 10.3389/fimmu.2017.00754. PubMed DOI PMC
Wilson B.C., Vatanen T., Cutfield W.S., O’Sullivan J.M. The super-donor phenomenon in fecal microbiota transplantation. Front. Cell. Infect. Microbiol. 2019;9:1–11. doi: 10.3389/fcimb.2019.00002. PubMed DOI PMC
Odamaki T., Kato K., Sugahara H., Hashikura N., Takahashi S., Xiao J.Z., Abe F., Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016;16:90. doi: 10.1186/s12866-016-0708-5. PubMed DOI PMC
Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W. Bergey’s Manual of Systematic Bacteriology. Springer; New York, NY, USA: 2009.
Frank D.N., Amand A.L.S., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Appl. Environ. Microbiol. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104. PubMed DOI PMC
Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., Angelis M. De The controversial role of human gut lachnospiraceae. Microorganisms. 2020;8:573. doi: 10.3390/microorganisms8040573. PubMed DOI PMC
Vital M., Karch A., Pieper D.H. Colonic Butyrate-Producing Communities in Humans: An Overview Using Omics Data. mSystems. 2017;2:e00130-17. doi: 10.1128/mSystems.00130-17. PubMed DOI PMC
Hold G.L., Schwiertz A., Aminov R.I., Blaut M., Flint H.J. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol. 2003;69:4320–4324. doi: 10.1128/AEM.69.7.4320-4324.2003. PubMed DOI PMC
Chen G.L., Zhang Y., Wang W.Y., Ji X.L., Meng F., Xu P.S., Yang N.M., Ye F.Q., Bo X.C. Partners of patients with ulcerative colitis exhibit a biologically relevant dysbiosis in fecal microbial metacommunities. World J. Gastroenterol. 2017;23:4624–4631. doi: 10.3748/wjg.v23.i25.4624. PubMed DOI PMC
Plöger S., Stumpff F., Penner G.B., Schulzke J.D., Gäbel G., Martens H., Shen Z., Günzel D., Aschenbach J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012;1258:52–59. doi: 10.1111/j.1749-6632.2012.06553.x. PubMed DOI
Miquel S., Martín R., Rossi O., Bermúdez-Humarán L.G., Chatel J.M., Sokol H., Thomas M., Wells J.M., Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013;16:255–261. doi: 10.1016/j.mib.2013.06.003. PubMed DOI
Laursen M.F., Laursen R.P., Larnkjær A., Mølgaard C., Michaelsen K.F., Frøkiær H., Bahl M.I., Licht T.R. Faecalibacterium Gut Colonization Is Accelerated by Presence of Older Siblings. mSphere. 2017;2:e00448-17. doi: 10.1128/mSphere.00448-17. PubMed DOI PMC
Björkqvist O., Repsilber D., Seifert M., Brislawn C., Jansson J., Engstrand L., Rangel I., Halfvarson J. Alterations in the relative abundance of Faecalibacterium prausnitzii correlate with changes in fecal calprotectin in patients with ileal Crohn’s disease: A longitudinal study. Scand. J. Gastroenterol. 2019;54:577–585. doi: 10.1080/00365521.2019.1599417. PubMed DOI
O’Callaghan A., Sinderen D. van Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016;7:925. doi: 10.3389/fmicb.2016.00925. PubMed DOI PMC
Venturi A., Gionchetti P., Rizzello F., Johansson R., Zucconi E., Brigidi P., Matteuzzi D., Campieri M. Impact on the composition of the faecal flora by a new probiotic preparation: Preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment. Pharmacol. Ther. 1999;13:1103–1108. doi: 10.1046/j.1365-2036.1999.00560.x. PubMed DOI
Alam M.T., Amos G.C.A., Murphy A.R.J., Murch S., Wellington E.M.H., Arasaradnam R.P. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens. 2020;12:1–8. doi: 10.1186/s13099-019-0341-6. PubMed DOI PMC
Lee T., Clavel T., Smirnov K., Schmidt A., Lagkouvardos I., Walker A., Lucio M., Michalke B., Schmitt-Kopplin P., Fedorak R., et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66:863–871. doi: 10.1136/gutjnl-2015-309940. PubMed DOI PMC
Cho G.S., Ritzmann F., Eckstein M., Huch M., Briviba K., Behsnilian D., Neve H., Franz C.M.A.P. Quantification of Slackia and Eggerthella spp. In human feces and adhesion of representatives strains to Caco-2 cells. Front. Microbiol. 2016;7:658. doi: 10.3389/fmicb.2016.00658. PubMed DOI PMC
Setchell K.D.R., Brown N.M., Lydeking-Olsen E. The Clinical Importance of the Metabolite Equol—A Clue to the Effectiveness of Soy and Its Isoflavones. J. Nutr. 2002;132:3577–3584. doi: 10.1093/jn/132.12.3577. PubMed DOI
Sjöberg F., Barkman C., Nookaew I., Östman S., Adlerberth I., Saalman R., Wold A.E. Low-complexity microbiota in the duodenum of children with newly diagnosed ulcerative colitis. PLoS ONE. 2017;12:e0186178. doi: 10.1371/journal.pone.0186178. PubMed DOI PMC
Seishima J., Iida N., Kitamura K., Yutani M., Wang Z., Seki A., Yamashita T., Sakai Y., Honda M., Yamashita T., et al. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biology. 2019;20:252. doi: 10.1186/s13059-019-1879-9. PubMed DOI PMC
Kassinen A., Krogius-Kurikka L., Mäkivuokko H., Rinttilä T., Paulin L., Corander J., Malinen E., Apajalahti J., Palva A. The Fecal Microbiota of Irritable Bowel Syndrome Patients Differs Significantly From That of Healthy Subjects. Gastroenterology. 2007;133:24–33. doi: 10.1053/j.gastro.2007.04.005. PubMed DOI
Imhann F., Vila A.V., Bonder M.J., Fu J., Gevers D., Visschedijk M.C., Spekhorst L.M., Alberts R., Franke L., van Dullemen H.M., et al. The Interplay of Host Genetics and the Gut Microbiota Underlying the Onset and Clinical Presentation of Inflammatory Bowel Disease. Gut. 2018;67:108–119. doi: 10.1136/gutjnl-2016-312135. PubMed DOI PMC
Lambeth S.M., Carson T., Lowe J., Ramaraj T., Leff J.W., Luo L., Bell C.J., Shah V. Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. J. Diabetes Obes. 2015;2:1–7. doi: 10.15436/2376-0949.15.031. PubMed DOI PMC
Gomez-Arango L.F., Barrett H.L., Wilkinson S.A., Callaway L.K., McIntyre H.D., Morrison M., Dekker Nitert M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes. 2018;9:189–201. doi: 10.1080/19490976.2017.1406584. PubMed DOI PMC
Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43. doi: 10.1186/s13073-016-0299-7. PubMed DOI PMC
Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI
Waters J.L., Ley R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17:83. doi: 10.1186/s12915-019-0699-4. PubMed DOI PMC
Biagi E., Franceschi C., Rampelli S., Severgnini M., Ostan R., Turroni S., Consolandi C., Quercia S., Scurti M., Monti D., et al. Gut Microbiota and Extreme Longevity. Curr. Biol. 2016;26:1480–1485. doi: 10.1016/j.cub.2016.04.016. PubMed DOI
Ferrer M., Ruiz A., Lanza F., Haange S.B., Oberbach A., Till H., Bargiela R., Campoy C., Segura M.T., Richter M., et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ. Microbiol. 2013;15:211–226. doi: 10.1111/j.1462-2920.2012.02845.x. PubMed DOI
Goodrich J.K., Waters J.L., Poole A.C., Sutter J.L., Koren O., Blekhman R., Beaumont M., Van Treuren W., Knight R., Bell J.T., et al. Human genetics shape the gut microbiome. PubMed Commons. Cell. 2014;159:789–799. doi: 10.1016/j.cell.2014.09.053. PubMed DOI PMC
Alemán J.O., Bokulich N.A., Swann J.R., Walker J.M., Rosa J.C., Battaglia T., Costabile A., Pechlivanis A., Liang Y., Breslow J.L., et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J. Transl. Med. 2018;16:244. doi: 10.1186/s12967-018-1619-z. PubMed DOI PMC
Pérez-Brocal V., García-López R., Nos P., Beltrán B., Moret I., Moya A. Metagenomic analysis of Crohn’s disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflammatory Bowel Diseases. 2015;21:2515–2532. doi: 10.1097/MIB.0000000000000549. PubMed DOI
Pascal V., Pozuelo M., Borruel N., Casellas F., Campos D., Santiago A., Martinez X., Varela E., Sarrabayrouse G., Machiels K., et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–822. doi: 10.1136/gutjnl-2016-313235. PubMed DOI PMC
Wright E.K., Kamm M.A., Wagner J., Teo S.M., De Cruz P., Hamilton A.L., Ritchie K.J., Inouye M., Kirkwood C.D. Microbial Factors Associated with Postoperative Crohn’s Disease Recurrence. J. Crohn’s Colitis. 2017;11:191–203. doi: 10.1093/ecco-jcc/jjw136. PubMed DOI
Papa E., Docktor M., Smillie C., Weber S., Preheim S.P., Gevers D., Giannoukos G., Ciulla D., Tabbaa D., Ingram J., et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012;7:e39242. doi: 10.1371/journal.pone.0039242. PubMed DOI PMC
Rajilić-Stojanović M., Shanahan F., Guarner F., Vos W.M. De Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflammatory Bowel Diseases. 2013;19:481–488. doi: 10.1097/MIB.0b013e31827fec6d. PubMed DOI
Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053. PubMed DOI PMC
Mancabelli L., Milani C., Lugli G.A., Turroni F., Cocconi D., van Sinderen D., Ventura M. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol. Ecol. 2017;93:1–10. doi: 10.1093/femsec/fix153. PubMed DOI
Chang C.J., Lin T.L., Tsai Y.L., Wu T.R., Lai W.F., Lu C.C., Lai H.C. Next generation probiotics in disease amelioration. J. Food Drug Anal. 2019;27:615–622. doi: 10.1016/j.jfda.2018.12.011. PubMed DOI PMC
Konikoff T., Gophna U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016;24:523–524. doi: 10.1016/j.tim.2016.02.015. PubMed DOI
Gophna U., Konikoff T., Nielsen H.B. Oscillospira and related bacteria–from metagenomics species to metabolic features. Environ. Microbiol. 2017;19:835–841. doi: 10.1111/1462-2920.13658. PubMed DOI
Walters W.A., Xu Z., Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–4233. doi: 10.1016/j.febslet.2014.09.039. PubMed DOI PMC
Heeney D.D., Gareau M.G., Marco M.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 2018;49:140–147. doi: 10.1016/j.copbio.2017.08.004. PubMed DOI PMC
Liu H.N., Wu H., Chen Y.Z., Chen Y.J., Shen X.Z., Liu T.T. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Dig. Liver Dis. 2017;49:331–337. doi: 10.1016/j.dld.2017.01.142. PubMed DOI
Zhuang X., Xiong L., Li L., Li M., Chen M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017;32:28–38. doi: 10.1111/jgh.13471. PubMed DOI
Wang W., Chen L., Zhou R., Wang X., Song L., Huang S., Wang G., Xia B. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 2014;52:398–406. doi: 10.1128/JCM.01500-13. PubMed DOI PMC
Oliva S., Di Nardo G., Ferrari F., Mallardo S., Rossi P., Patrizi G., Cucchiara S., Stronati L. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharmacol. Ther. 2012;35:327–334. doi: 10.1111/j.1365-2036.2011.04939.x. PubMed DOI
Ford A.C., Quigley E.M.M., Lacy B.E., Lembo A.J., Saito Y.A., Schiller L.R., Soffer E.E., Spiegel B.M.R., Moayyedi P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta-analysis. Am. J. Gastroenterol. 2014;109:1547–1562. doi: 10.1038/ajg.2014.202. PubMed DOI
Ganji-Arjenaki M., Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J. Cell. Physiol. 2018;233:2091–2103. doi: 10.1002/jcp.25911. PubMed DOI
Göker M., Gronow S., Zeytun A., Nolan M., Lucas S., Lapidus A., Hammon N., Deshpande S., Cheng J.F., Pitluck S., et al. Complete genome sequence of odoribacter splanchnicus type strain (1651/6 T) Stand. Genom. Sci. 2011;4:200–209. doi: 10.4056/sigs.1714269. PubMed DOI PMC
Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V., A Reyes J., A Shah S., Leleiko N., Snapper S.B., et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. doi: 10.1186/gb-2012-13-9-r79. PubMed DOI PMC
Lewis J.D., Chen E.Z., Baldassano R.N., Otley A.R., Anne M., Lee D., Bittinger K., Bailey A., Friedman E.S., Albenberg L., et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe. 2015;18:489–500. doi: 10.1016/j.chom.2015.09.008. PubMed DOI PMC
Wang Y., Gao X., Ghozlane A., Hu H., Li X., Xiao Y., Li D., Yu G., Zhang T. Characteristics of faecal microbiota in paediatric Crohn’s disease and their dynamic changes during infliximab therapy. J. Crohn’s Colitis. 2018;12:337–346. doi: 10.1093/ecco-jcc/jjx153. PubMed DOI
Morotomi M., Nagai F., Sakon H., Tanaka R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2009;59:1895–1900. doi: 10.1099/ijs.0.008169-0. PubMed DOI
Connors J., Dawe N., Limbergen J. Van The role of succinate in the regulation of intestinal inflammation. Nutrients. 2019;11:25. doi: 10.3390/nu11010025. PubMed DOI PMC
Ooi M., Nishiumi S., Yoshie T., Shiomi Y., Kohashi M., Fukunaga K., Nakamura S., Matsumoto T., Hatano N., Shinohara M., et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflam. Res. 2011;60:831–840. doi: 10.1007/s00011-011-0340-7. PubMed DOI
Fernández-Veledo S., Vendrell J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases? Rev. Endocr. Metab. Dis. 2019;20:439–447. doi: 10.1007/s11154-019-09513-z. PubMed DOI PMC