The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide

. 2023 Apr ; 9 (4) : e15417. [epub] 20230411

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37123951
Odkazy

PubMed 37123951
PubMed Central PMC10130227
DOI 10.1016/j.heliyon.2023.e15417
PII: S2405-8440(23)02624-5
Knihovny.cz E-zdroje

The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.

Zobrazit více v PubMed

Sampson T.R., Mazmanian S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–576. doi: 10.1016/j.chom.2015.04.011. PubMed DOI PMC

Morais L.H., Schreiber 4th H.L., Mazmanian S.K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021;19:241–255. doi: 10.1038/s41579-020-00460-0. PubMed DOI

Cryan J.F., O'Riordan K.J., Sandhu K., Peterson V., Dinan T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–194. doi: 10.1016/S1474-4422(19)30356-4. PubMed DOI

Dinan T.G., Cryan J.F. Gut microbiota: a missing link in psychiatry. World Psychiatr. 2020;19:111–112. doi: 10.1002/wps.20726. PubMed DOI PMC

Maiuolo J., Gliozzi M., Musolino V., Carresi C., Scarano F., Nucera S., Scicchitano M., Oppedisano F., Bosco F., Ruga S., Zito M.C., Macri R., Palma E., Muscoli C., Mollace V. The contribution of gut microbiota-brain Axis in the development of brain disorders. Front. Neurosci. 2021;15 doi: 10.3389/fnins.2021.616883. PubMed DOI PMC

Schächtle M.A., Rosshart S.P. The microbiota-gut-brain Axis in health and disease and its implications for translational research. Front. Cell. Neurosci. 2021;15 doi: 10.3389/fncel.2021.698172. PubMed DOI PMC

Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The brain-gut-microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018;6:133–148. doi: 10.1016/j.jcmgh.2018.04.003. PubMed DOI PMC

Bruce-Keller A.J., Salbaum J.M., Berthoud H.-R. Harnessing gut microbes for mental health: getting from here to there. Biol. Psychiatr. 2018;83:214–223. doi: 10.1016/j.biopsych.2017.08.014. PubMed DOI PMC

Sherwin E., Dinan T.G., Cryan J.F. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 2018;1420:5–25. doi: 10.1111/nyas.13416. PubMed DOI

Kim Y.-K., Shin C. The microbiota-gut-brain Axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Curr. Neuropharmacol. 2018;16:559–573. doi: 10.2174/1570159X15666170915141036. PubMed DOI PMC

Cryan J.F., O'Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., Guzzetta K.E., Jaggar M., Long-Smith C.M., Lyte J.M., Martin J.A., Molinero-Perez A., Moloney G., Morelli E., Morillas E., O'Connor R., Cruz-Pereira J.S., Peterson V.L., Rea K., Ritz N.L., Sherwin E., Spichak S., Teichman E.M., van de Wouw M., Ventura-Silva A.P., Wallace-Fitzsimons S.E., Hyland N., Clarke G., Dinan T.G. The microbiota-gut-brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018. PubMed DOI

Rutsch A., Kantsjö J.B., Ronchi F. The gut-brain Axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.604179. PubMed DOI PMC

Spichak S., Bastiaanssen T.F.S., Berding K., Vlckova K., Clarke G., Dinan T.G., Cryan J.F. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci. Biobehav. Rev. 2021;125:698–761. doi: 10.1016/j.neubiorev.2021.02.044. PubMed DOI

Ratsika A., Cruz Pereira J.S., Lynch C.M.K., Clarke G., Cryan J.F. Microbiota-immune-brain interactions: a lifespan perspective. Curr. Opin. Neurobiol. 2023;78 doi: 10.1016/j.conb.2022.102652. PubMed DOI

Munawar N., Ahsan K., Muhammad K., Ahmad A., Anwar M.A., Shah I., Al Ameri A.K., Al Mughairbi F. Hidden role of gut microbiome dysbiosis in schizophrenia: antipsychotics or psychobiotics as therapeutics? Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22147671. PubMed DOI PMC

Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012;13:701–712. doi: 10.1038/nrn3346. PubMed DOI

Gass P., Wotjak C. Rodent models of psychiatric disorders--practical considerations. Cell Tissue Res. 2013;354:1–7. doi: 10.1007/s00441-013-1706-7. PubMed DOI

Mohr A.E., ’sa Crawford M., Jasbi P., Fessler S., Sweazea K.L. Lipopolysaccharide and the gut microbiota: considering structural variation. FEBS Lett. 2022;596:849–875. doi: 10.1002/1873-3468.14328. PubMed DOI

Chamera K., Kotarska K., Szuster-Głuszczak M., Trojan E., Skórkowska A., Pomierny B., Krzyżanowska W., Bryniarska N., Basta-Kaim A. The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J. Neuroinflammation. 2020;17:247. doi: 10.1186/s12974-020-01923-0. PubMed DOI PMC

Harvey L., Boksa P. Prenatal and postnatal animal models of immune activation: relevance to a range of neurodevelopmental disorders. Dev. Neurobiol. 2012;72:1335–1348. doi: 10.1002/dneu.22043. PubMed DOI

Wischhof L., Irrsack E., Osorio C., Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2015;57:17–30. doi: 10.1016/j.pnpbp.2014.10.004. PubMed DOI

Nikitina V.A., Zakharova M.V., Trofimov A.N., Schwarz A.P., Beznin G.V., Tsikunov S.G., Zubareva O.E. Neonatal exposure to bacterial lipopolysaccharide affects behavior and expression of ionotropic glutamate receptors in the Hippocampus of adult rats after psychogenic trauma. Biochemistry. 2021;86:761–772. doi: 10.1134/S0006297921060134. PubMed DOI

Skrzypczak-Wiercioch A., Sałat K. Lipopolysaccharide-induced model of neuroinflammation: mechanisms of action, research application and future directions for its use. Molecules. 2022;27 doi: 10.3390/molecules27175481. PubMed DOI PMC

Skelly D.T., Hennessy E., Dansereau M.-A., Cunningham C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1β, [corrected] TNF-α and IL-6 challenges in C57BL/6 mice. PLoS One. 2013;8 doi: 10.1371/journal.pone.0069123. PubMed DOI PMC

Dantzer R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. 2009;29:247–264. doi: 10.1016/j.iac.2009.02.002. PubMed DOI PMC

O'Connor J.C., Lawson M.A., André C., Moreau M., Lestage J., Castanon N., Kelley K.W., Dantzer R. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatr. 2009;14:511–522. doi: 10.1038/sj.mp.4002148. PubMed DOI PMC

Haba R., Shintani N., Onaka Y., Wang H., Takenaga R., Hayata A., Baba A., Hashimoto H. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: possible role of activation of the central amygdala. Behav. Brain Res. 2012;228:423–431. doi: 10.1016/j.bbr.2011.12.027. PubMed DOI

Sulakhiya K., Keshavlal G.P., Bezbaruah B.B., Dwivedi S., Gurjar S.S., Munde N., Jangra A., Lahkar M., Gogoi R. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci. Lett. 2016;611:106–111. doi: 10.1016/j.neulet.2015.11.031. PubMed DOI

Fields C.T., Chassaing B., Castillo-Ruiz A., Osan R., Gewirtz A.T., de Vries G.J. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biol. Sex Differ. 2018;9:7. doi: 10.1186/s13293-018-0166-x. PubMed DOI PMC

Cristino L.M.F., Chaves Filho A.J.M., Custódio C.S., Vasconcelos S.M.M., de Sousa F.C.F., Sanders L.L.O., de Lucena D.F., Macedo D.S. Animal model of neonatal immune challenge by lipopolysaccharide: a study of sex influence in behavioral and immune/neurotrophic alterations in juvenile mice. Neuroimmunomodulation. 2022;29:391–401. doi: 10.1159/000522055. PubMed DOI

Avitsur R., Pollak Y., Yirmiya R. Different receptor mechanisms mediate the effects of endotoxin and interleukin-1 on female sexual behavior. Brain Res. 1997;773:149–161. doi: 10.1016/s0006-8993(97)00927-x. PubMed DOI

Bluthé R.M., Bristow A., Lestage J., Imbs C., Dantzer R. Central injection of interleukin-13 potentiates LPS-induced sickness behavior in rats. Neuroreport. 2001;12:3979–3983. doi: 10.1097/00001756-200112210-00025. PubMed DOI

Taksande B.G., Chopde C.T., Umekar M.J., Kotagale N.R. Agmatine attenuates lipopolysaccharide induced anorexia and sickness behavior in rats. Pharmacol. Biochem. Behav. 2015;132:108–114. doi: 10.1016/j.pbb.2015.02.013. PubMed DOI

Moraes M.M.T., Galvão M.C., Cabral D., Coelho C.P., Queiroz-Hazarbassanov N., Martins M.F.M., Bondan E.F., Bernardi M.M., Kirsten T.B. Propentofylline prevents sickness behavior and depressive-like behavior induced by lipopolysaccharide in rats via neuroinflammatory pathway. PLoS One. 2017;12 doi: 10.1371/journal.pone.0169446. PubMed DOI PMC

Mendes-Lima T., Kirsten T.B., Rodrigues P.S., Sampaio A.C.S., Felício L.F., Rocha P.R.D.A., Reis-Silva T.M., Bondan E.F., Martins M.F.M., Queiroz-Hazarbassanov N., Bernardi M.M. Prenatal LPS induces sickness behaviour and decreases maternal and predatory behaviours after an LPS challenge. Int. J. Neurosci. 2020;130:804–816. doi: 10.1080/00207454.2019.1706505. PubMed DOI

Mansouri M., Sotoudeh M.M., Shamshirian A., Beheshti F., Hosseini M., Sadeghnia H.R. Beneficial effects of selenium against the behavioral consequences of lipopolysaccharide administration in rats. Learn. Motiv. 2021;74 doi: 10.1016/j.lmot.2021.101713. DOI

Saavedra L.M., Hernández-Velázquez M.G., Madrigal S., Ochoa-Zarzosa A., Torner L. Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology. 2021;126 doi: 10.1016/j.psyneuen.2021.105164. PubMed DOI

Babaei F., Mirzababaei M., Mohammadi G., Dargahi L., Nassiri-Asl M. Saccharomyces boulardii attenuates lipopolysaccharide-induced anxiety-like behaviors in rats. Neurosci. Lett. 2022;778 doi: 10.1016/j.neulet.2022.136600. PubMed DOI

Mora S., Martín-González E., Prados-Pardo Á., Flores P., Moreno M. Increased compulsivity in adulthood after early adolescence immune activation: preclinical evidence. Int. J. Environ. Res. Publ. Health. 2021;18 doi: 10.3390/ijerph18094684. PubMed DOI PMC

Zhu F., Zhang L., Ding Y.-Q., Zhao J., Zheng Y. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: implication for a new schizophrenia animal model. Brain Behav. Immun. 2014;38:166–174. doi: 10.1016/j.bbi.2014.01.017. PubMed DOI

Babri S., Doosti M.-H., Salari A.-A. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring. Brain Behav. Immun. 2014;37:164–176. doi: 10.1016/j.bbi.2013.12.003. PubMed DOI

Foley K.A., MacFabe D.F., Kavaliers M., Ossenkopp K.-P. Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: relevance to autism spectrum disorders. Behav. Brain Res. 2015;278:244–256. doi: 10.1016/j.bbr.2014.09.032. PubMed DOI

Basta-Kaim A., Budziszewska B., Leśkiewicz M., Fijał K., Regulska M., Kubera M., Wędzony K., Lasoń W. Hyperactivity of the hypothalamus-pituitary-adrenal axis in lipopolysaccharide-induced neurodevelopmental model of schizophrenia in rats: effects of antipsychotic drugs. Eur. J. Pharmacol. 2011;650:586–595. doi: 10.1016/j.ejphar.2010.09.083. PubMed DOI

Romero E., Guaza C., Castellano B., Borrell J. Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol. Psychiatr. 2010;15:372–383. doi: 10.1038/mp.2008.44. PubMed DOI

Borrell J., Vela J.M., Arévalo-Martin A., Molina-Holgado E., Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology. 2002;26:204–215. doi: 10.1016/S0893-133X(01)00360-8. PubMed DOI

Kumari V., Soni W., Sharma T. Schizophrenia Research, Elsevier Science Bv Po Box 211, 1000 Ae Amsterdam, Netherlands. 1999. Clozapine normalises information processing deficits in schizophrenia; p. 175.

Weike A.I., Bauer U., Hamm A.O. Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol. Psychiatr. 2000;47:61–70. doi: 10.1016/s0006-3223(99)00229-2. PubMed DOI

Swerdlow N.R., Light G.A., Thomas M.L., Sprock J., Calkins M.E., Green M.F., Greenwood T.A., Gur R.E., Gur R.C., Lazzeroni L.C., Nuechterlein K.H., Radant A.D., Seidman L.J., Siever L.J., Silverman J.M., Stone W.S., Sugar C.A., Tsuang D.W., Tsuang M.T., Turetsky B.I., Braff D.L. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: internal replication and extension. Schizophr. Res. 2018;198:6–15. doi: 10.1016/j.schres.2017.05.013. PubMed DOI PMC

Bilbo S.D., Levkoff L.H., Mahoney J.H., Watkins L.R., Rudy J.W., Maier S.F. Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav. Neurosci. 2005;119:293–301. doi: 10.1037/0735-7044.119.1.293. PubMed DOI

Guerrin C.G.J., Doorduin J., Sommer I.E., de Vries E.F.J. The dual hit hypothesis of schizophrenia: evidence from animal models. Neurosci. Biobehav. Rev. 2021;131:1150–1168. doi: 10.1016/j.neubiorev.2021.10.025. PubMed DOI

Bilbo S.D., Yirmiya R., Amat J., Paul E.D., Watkins L.R., Maier S.F. Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats. Psychoneuroendocrinology. 2008;33:261–269. doi: 10.1016/j.psyneuen.2007.11.008. PubMed DOI PMC

Sarkar T., Patro N., Patro I.K. Perinatal exposure to synergistic multiple stressors leads to cellular and behavioral deficits mimicking Schizophrenia-like pathology. Biol. Open. 2022;11 doi: 10.1242/bio.058870. PubMed DOI PMC

Giovanoli S., Engler H., Engler A., Richetto J., Feldon J., Riva M.A., Schedlowski M., Meyer U. Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl. Psychiatry. 2016;6 doi: 10.1038/tp.2016.38. PubMed DOI PMC

Walker A.K., Nakamura T., Byrne R.J., Naicker S., Tynan R.J., Hunter M., Hodgson D.M. Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis. Psychoneuroendocrinology. 2009;34:1515–1525. doi: 10.1016/j.psyneuen.2009.05.010. PubMed DOI

Sylvia K.E., Deyoe J.E., Demas G.E. Early-life sickness may predispose Siberian hamsters to behavioral changes following alterations of the gut microbiome in adulthood. Brain Behav. Immun. 2018;73:571–583. doi: 10.1016/j.bbi.2018.07.001. PubMed DOI PMC

Cryan J.F., O'Mahony S.M. The microbiome-gut-brain axis: from bowel to behavior. Neuro Gastroenterol. Motil. 2011;23:187–192. doi: 10.1111/j.1365-2982.2010.01664.x. PubMed DOI

Ruiz V.E., Battaglia T., Kurtz Z.D., Bijnens L., Ou A., Engstrand I., Zheng X., Iizumi T., Mullins B.J., Müller C.L., Cadwell K., Bonneau R., Perez-Perez G.I., Blaser M.J. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat. Commun. 2017;8:518. doi: 10.1038/s41467-017-00531-6. PubMed DOI PMC

Leclercq S., Mian F.M., Stanisz A.M., Bindels L.B., Cambier E., Ben-Amram H., Koren O., Forsythe P., Bienenstock J. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 2017;8 doi: 10.1038/ncomms15062. PubMed DOI PMC

Cox L.M., Yamanishi S., Sohn J., Alekseyenko A.V., Leung J.M., Cho I., Kim S.G., Li H., Gao Z., Mahana D., Zárate Rodriguez J.G., Rogers A.B., Robine N., ’ng Loke P., Blaser M.J. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–721. doi: 10.1016/j.cell.2014.05.052. PubMed DOI PMC

Lach G., Fülling C., Bastiaanssen T.F.S., Fouhy F., Donovan A.N.O., Ventura-Silva A.P., Stanton C., Dinan T.G., Cryan J.F. Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period. Transl. Psychiatry. 2020;10:382. doi: 10.1038/s41398-020-01073-0. PubMed DOI PMC

Fröhlich E.E., Farzi A., Mayerhofer R., Reichmann F., Jačan A., Wagner B., Zinser E., Bordag N., Magnes C., Fröhlich E., Kashofer K., Gorkiewicz G., Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 2016;56:140–155. doi: 10.1016/j.bbi.2016.02.020. PubMed DOI PMC

Hoban A.E., Moloney R.D., Golubeva A.V., McVey Neufeld K.A., O'Sullivan O., Patterson E., Stanton C., Dinan T.G., Clarke G., Cryan J.F. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience. 2016;339:463–477. doi: 10.1016/j.neuroscience.2016.10.003. PubMed DOI

Reikvam D.H., Erofeev A., Sandvik A., Grcic V., Jahnsen F.L., Gaustad P., McCoy K.D., Macpherson A.J., Meza-Zepeda L.A., Johansen F.-E. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One. 2011;6 doi: 10.1371/journal.pone.0017996. PubMed DOI PMC

Bryant C.E., Spring D.R., Gangloff M., Gay N.J. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 2010;8:8–14. doi: 10.1038/nrmicro2266. PubMed DOI

Andrews C., McLean M.H., Durum S.K. Cytokine tuning of intestinal epithelial function. Front. Immunol. 2018;9:1270. doi: 10.3389/fimmu.2018.01270. PubMed DOI PMC

Mendes V., Galvão I., Vieira A.T. Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J. Interferon Cytokine Res. 2019;39:393–409. doi: 10.1089/jir.2019.0011. PubMed DOI

Al Bander Z., Nitert M.D., Mousa A., Naderpoor N. The gut microbiota and inflammation: an overview. Int. J. Environ. Res. Publ. Health. 2020;17 doi: 10.3390/ijerph17207618. PubMed DOI PMC

Xia J., Gu L., Guo Y., Feng H., Chen S., Jurat J., Fu W., Zhang D. Gut microbiota mediates the preventive effects of dietary capsaicin against depression-like behavior induced by lipopolysaccharide in mice. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.627608. PubMed DOI PMC

Huang N., Hua D., Zhan G., Li S., Zhu B., Jiang R., Yang L., Bi J., Xu H., Hashimoto K., Luo A., Yang C. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacol. Biochem. Behav. 2019;176:93–100. doi: 10.1016/j.pbb.2018.12.001. PubMed DOI

Song S., Liu J., Zhang F., Hong J.-S. Norepinephrine depleting toxin DSP-4 and LPS alter gut microbiota and induce neurotoxicity in α-synuclein mutant mice. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-72202-4. PubMed DOI PMC

Kentner A.C., Khan U., MacRae M., Dowd S.E., Yan S. The effect of antibiotics on social aversion following early life inflammation. Physiol. Behav. 2018;194:311–318. doi: 10.1016/j.physbeh.2018.06.006. PubMed DOI

Białoń M., Wąsik A. Advantages and limitations of animal schizophrenia models. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms23115968. PubMed DOI PMC

Franklin C.L., Ericsson A.C. Microbiota and reproducibility of rodent models. Lab. Anim. 2017;46:114–122. doi: 10.1038/laban.1222. PubMed DOI PMC

Bayer T.A., Falkai P., Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis. J. Psychiatr. Res. 1999;33:543–548. doi: 10.1016/s0022-3956(99)00039-4. PubMed DOI

Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U. S. A. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106. PubMed DOI PMC

Diaz Heijtz R., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., Hibberd M.L., Forssberg H., Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 2011;108:3047–3052. doi: 10.1073/pnas.1010529108. PubMed DOI PMC

Kelly J.R., Minuto C., Cryan J.F., Clarke G., Dinan T.G. Cross talk: the microbiota and neurodevelopmental disorders. Front. Neurosci. 2017;11:490. doi: 10.3389/fnins.2017.00490. PubMed DOI PMC

Dinan T.G., Cryan J.F. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–192. doi: 10.1038/npp.2016.103. PubMed DOI PMC

Dickerson F., Severance E., Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 2017;62:46–52. doi: 10.1016/j.bbi.2016.12.010. PubMed DOI PMC

Kanji S., Fonseka T.M., Marshe V.S., Sriretnakumar V., Hahn M.K., Müller D.J. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur. Arch. Psychiatr. Clin. Neurosci. 2018;268:3–15. doi: 10.1007/s00406-017-0820-z. PubMed DOI

Deng H., He L., Wang C., Zhang T., Guo H., Zhang H., Song Y., Chen B. Altered gut microbiota and its metabolites correlate with plasma cytokines in schizophrenia inpatients with aggression. BMC Psychiatr. 2022;22:629. doi: 10.1186/s12888-022-04255-w. PubMed DOI PMC

Powell C.M., Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol. Psychiatr. 2006;59:1198–1207. doi: 10.1016/j.biopsych.2006.05.008. PubMed DOI PMC

Wang P., Tu K., Cao P., Yang Y., Zhang H., Qiu X.-T., Zhang M.-M., Wu X.-J., Yang H., Chen T. Antibiotics-induced intestinal dysbacteriosis caused behavioral alternations and neuronal activation in different brain regions in mice. Mol. Brain. 2021;14:49. doi: 10.1186/s13041-021-00759-w. PubMed DOI PMC

Freeman C.D., Klutman N.E., Lamp K.C. Metronidazole. A therapeutic review and update. Drugs. 1997;54:679–708. doi: 10.2165/00003495-199754050-00003. PubMed DOI

Wang F., Zhou H., Olademehin O.P., Kim S.J., Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega. 2018;3:37–45. doi: 10.1021/acsomega.7b01483. PubMed DOI PMC

El-Sayed Ahmed M.A.E.-G., Zhong L.-L., Shen C., Yang Y., Doi Y., Tian G.-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019) Emerg. Microb. Infect. 2020;9:868–885. doi: 10.1080/22221751.2020.1754133. PubMed DOI PMC

Khan A., Powell S.B. Sensorimotor gating deficits in “two-hit” models of schizophrenia risk factors. Schizophr. Res. 2018;198:68–83. doi: 10.1016/j.schres.2017.10.009. PubMed DOI PMC

Richter K., Wolf G., Engelmann M. Social recognition memory requires two stages of protein synthesis in mice, Learn. MEM (Miner. Electrolyte Metab.) 2005;12:407–413. doi: 10.1101/lm.97505. PubMed DOI PMC

Donát P. Measuring behaviour: the tools and the strategies. Neurosci. Biobehav. Rev. 1991;15:447–454. doi: 10.1016/s0149-7634(05)80130-7. PubMed DOI

Tejkalová H., Kaiser M., Klaschka J., Stastný F. Does neonatal brain ischemia induce schizophrenia-like behavior in young adult rats? Physiol. Res. 2007;56:815–823. doi: 10.33549/physiolres.931056. PubMed DOI

Fliegerova K., Tapio I., Bonin A., Mrazek J., Callegari M.L., Bani P., Bayat A., Vilkki J., Kopečný J., Shingfield K.J., Boyer F., Coissac E., Taberlet P., Wallace R.J. Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe. 2014;29:80–84. doi: 10.1016/j.anaerobe.2013.09.015. PubMed DOI

Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodríguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L., Kaehler B.D., Kang K.B., Keefe C.R., Keim P., Kelley S.T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.-X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S., 2nd, Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., van der Hooft J.J.J., Vargas F., Vázquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K.C., Williamson C.H.D., Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

Schierová D., Březina J., Mrázek J., Fliegerová K.O., Kvasnová S., Bajer L., Drastich P. Gut microbiome changes in patients with active left-sided ulcerative colitis after fecal microbiome transplantation and topical 5-aminosalicylic acid therapy. Cells. 2020;9 doi: 10.3390/cells9102283. PubMed DOI PMC

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4 doi: 10.7717/peerj.2584. PubMed DOI PMC

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60. PubMed DOI PMC

Fortier M.-E., Luheshi G.N., Boksa P. Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav. Brain Res. 2007;181:270–277. doi: 10.1016/j.bbr.2007.04.016. PubMed DOI

Sylvia K.E., Demas G.E. Acute intraperitoneal lipopolysaccharide influences the immune system in the absence of gut dysbiosis. Phys. Rep. 2018;6 doi: 10.14814/phy2.13639. PubMed DOI PMC

Pyndt Jørgensen B., Krych L., Pedersen T.B., Plath N., Redrobe J.P., Hansen A.K., Nielsen D.S., Pedersen C.S., Larsen C., Sørensen D.B. Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia. Physiol. Behav. 2015;141:32–39. doi: 10.1016/j.physbeh.2014.12.042. PubMed DOI

Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI

Bluthé R.M., Dantzer R., Kelley K.W. Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res. 1992;573:318–320. doi: 10.1016/0006-8993(92)90779-9. PubMed DOI

Yirmiya R. Endotoxin produces a depressive-like episode in rats. Brain Res. 1996;711:163–174. doi: 10.1016/0006-8993(95)01415-2. PubMed DOI

Zhong Y., Zhang X., Hu X., Li Y. Effects of repeated lipopolysaccharide treatment on growth performance, immune organ index, and blood parameters of sprague-dawley rats. J Vet Res. 2018;62:341–346. doi: 10.2478/jvetres-2018-0048. PubMed DOI PMC

Wang X., Zhu L., Hu J., Guo R., Ye S., Liu F., Wang D., Zhao Y., Hu A., Wang X., Guo K., Lin L. FGF21 attenuated LPS-induced depressive-like behavior via inhibiting the inflammatory pathway. Front. Pharmacol. 2020;11:154. doi: 10.3389/fphar.2020.00154. PubMed DOI PMC

Pires J.M., Foresti M.L., Silva C.S., Rêgo D.B., Calió M.L., Mosini A.C., Nakamura T.K.E., Leslie A.T.F., Mello L.E. Lipopolysaccharide-induced systemic inflammation in the neonatal period increases microglial density and oxidative stress in the cerebellum of adult rats. Front. Cell. Neurosci. 2020;14:142. doi: 10.3389/fncel.2020.00142. PubMed DOI PMC

Foster C.G., Landowski L.M., Sutherland B.A., Howells D.W. Differences in fatigue-like behavior in the lipopolysaccharide and poly I:C inflammatory animal models. Physiol. Behav. 2021;232 doi: 10.1016/j.physbeh.2021.113347. PubMed DOI

On Wah D.T., Kavaliers M., Bishnoi I.R., Ossenkopp K.-P. Lipopolysaccharide (LPS) induced sickness in early adolescence alters the behavioral effects of the short-chain fatty acid, propionic acid, in late adolescence and adulthood: examining anxiety and startle reactivity. Behav. Brain Res. 2019;360:312–322. doi: 10.1016/j.bbr.2018.12.003. PubMed DOI

Tishkina A., Stepanichev M., Kudryashova I., Freiman S., Onufriev M., Lazareva N., Gulyaeva N. Neonatal proinflammatory challenge in male Wistar rats: effects on behavior, synaptic plasticity, and adrenocortical stress response. Behav. Brain Res. 2016;304:1–10. doi: 10.1016/j.bbr.2016.02.001. PubMed DOI

Batinić B., Santrač A., Divović B., Timić T., Stanković T., Obradović A.L., Joksimović S., Savić M.M. Lipopolysaccharide exposure during late embryogenesis results in diminished locomotor activity and amphetamine response in females and spatial cognition impairment in males in adult, but not adolescent rat offspring. Behav. Brain Res. 2016;299:72–80. doi: 10.1016/j.bbr.2015.11.025. PubMed DOI

Harvey L., Boksa P. Do prenatal immune activation and maternal iron deficiency interact to affect neurodevelopment and early behavior in rat offspring? Brain Behav. Immun. 2014;35:144–154. doi: 10.1016/j.bbi.2013.09.009. PubMed DOI

Kirsten T.B., Taricano M., Flório J.C., Palermo-Neto J., Bernardi M.M. Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav. Brain Res. 2010;211:77–82. doi: 10.1016/j.bbr.2010.03.009. PubMed DOI

Yirmiya R., Rosen H., Donchin O., Ovadia H. Behavioral effects of lipopolysaccharide in rats: involvement of endogenous opioids. Brain Res. 1994;648:80–86. doi: 10.1016/0006-8993(94)91908-9. PubMed DOI

Gophna U., Konikoff T., Nielsen H.B. Oscillospira and related bacteria - from metagenomic species to metabolic features. Environ. Microbiol. 2017;19:835–841. doi: 10.1111/1462-2920.13658. PubMed DOI

Bourassa M.W., Alim I., Bultman S.J., Ratan R.R. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 2016;625:56–63. doi: 10.1016/j.neulet.2016.02.009. PubMed DOI PMC

Canani R.B., Costanzo M.D., Leone L., Pedata M., Meli R., Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011;17:1519–1528. doi: 10.3748/wjg.v17.i12.1519. PubMed DOI PMC

Konikoff T., Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–524. doi: 10.1016/j.tim.2016.02.015. PubMed DOI

Walters W.A., Xu Z., Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–4233. doi: 10.1016/j.febslet.2014.09.039. PubMed DOI PMC

Pérez-Brocal V., García-López R., Nos P., Beltrán B., Moret I., Moya A. Metagenomic analysis of crohn's disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm. Bowel Dis. 2015;21:2515–2532. doi: 10.1097/MIB.0000000000000549. PubMed DOI

Dunphy-Doherty F., O'Mahony S.M., Peterson V.L., O'Sullivan O., Crispie F., Cotter P.D., Wigmore P., King M.V., Cryan J.F., Fone K.C.F. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behav. Immun. 2018;68:261–273. doi: 10.1016/j.bbi.2017.10.024. PubMed DOI

Gnauck A., Lentle R.G., Kruger M.C. The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int. Rev. Immunol. 2016;35:189–218. doi: 10.3109/08830185.2015.1087518. PubMed DOI

Leigh S.-J., Kaakoush N.O., Westbrook R.F., Morris M.J. Minocycline-induced microbiome alterations predict cafeteria diet-induced spatial recognition memory impairments in rats. Transl. Psychiatry. 2020;10:92. doi: 10.1038/s41398-020-0774-1. PubMed DOI PMC

Liu X., Zheng H., Lu R., Huang H., Zhu H., Yin C., Mo Y., Wu J., Liu X., Deng M., Li D., Cheng B., Wu F., Liang Y., Guo H., Song H., Su Z. Intervening effects of total alkaloids of corydalis saxicola bunting on rats with antibiotic-induced gut microbiota dysbiosis based on 16S rRNA gene sequencing and untargeted metabolomics analyses. Front. Microbiol. 2019;10:1151. doi: 10.3389/fmicb.2019.01151. PubMed DOI PMC

Behr C., Ramírez-Hincapié S., Cameron H.J., Strauss V., Walk T., Herold M., Beekmann K., Rietjens I.M.C.M., van Ravenzwaay B. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces. Toxicol. Lett. 2018;296:139–151. doi: 10.1016/j.toxlet.2018.08.002. PubMed DOI

Desbonnet L., Clarke G., Traplin A., O'Sullivan O., Crispie F., Moloney R.D., Cotter P.D., Dinan T.G., Cryan J.F. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 2015;48:165–173. doi: 10.1016/j.bbi.2015.04.004. PubMed DOI

Čoklo M., Maslov D.R., Kraljević Pavelić S. Modulation of gut microbiota in healthy rats after exposure to nutritional supplements. Gut Microb. 2020;12:1–28. doi: 10.1080/19490976.2020.1779002. PubMed DOI PMC

Nagpal R., Wang S., Solberg Woods L.C., Seshie O., Chung S.T., Shively C.A., Register T.C., Craft S., McClain D.A., Yadav H. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front. Microbiol. 2018;9:2897. doi: 10.3389/fmicb.2018.02897. PubMed DOI PMC

Li D., Chen H., Mao B., Yang Q., Zhao J., Gu Z., Zhang H., Chen Y.Q., Chen W. Microbial biogeography and core microbiota of the rat digestive tract. Sci. Rep. 2017;8 doi: 10.1038/srep45840. PubMed DOI PMC

Rizzatti G., Lopetuso L.R., Gibiino G., Binda C., Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Res. Int. 2017;2017 doi: 10.1155/2017/9351507. PubMed DOI PMC

Maes M., Coucke F., Leunis J.-C. Normalization of the increased translocation of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a remission of chronic fatigue syndrome. Neuroendocrinol. Lett. 2007;28:739–744. http://nel.altamira.sk/userfiles/articlesnew/NEL280607A13.pdf accessed February 22, 2023. PubMed

Hamilton A.L., Kamm M.A., Ng S.C., Morrison M. Proteus spp. as putative gastrointestinal pathogens. Clin. Microbiol. Rev. 2018;31 doi: 10.1128/CMR.00085-17. PubMed DOI PMC

Zhang M., Lv Y., Hou S., Liu Y., Wang Y., Wan X. Differential mucosal microbiome profiles across stages of human colorectal cancer. Life. 2021;11 doi: 10.3390/life11080831. PubMed DOI PMC

Molitoris E., Wexler H.M., Finegold S.M. Sources and antimicrobial susceptibilities of Campylobacter gracilis and Sutterella wadsworthensis. Clin. Infect. Dis. 1997;25(Suppl 2):S264. doi: 10.1086/516234. PubMed DOI

Gophna U., Sommerfeld K., Gophna S., Doolittle W.F., Veldhuyzen van Zanten S.J.O. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol. 2006;44:4136–4141. doi: 10.1128/JCM.01004-06. PubMed DOI PMC

Lavelle A., Lennon G., O'Sullivan O., Docherty N., Balfe A., Maguire A., Mulcahy H.E., Doherty G., O'Donoghue D., Hyland J., Ross R.P., Coffey J.C., Sheahan K., Cotter P.D., Shanahan F., Winter D.C., O'Connell P.R. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut. 2015;64:1553–1561. doi: 10.1136/gutjnl-2014-307873. PubMed DOI PMC

Kaakoush N.O. Sutterella species, IgA-degrading bacteria in ulcerative colitis. Trends Microbiol. 2020;28:519–522. doi: 10.1016/j.tim.2020.02.018. PubMed DOI

Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012;3 doi: 10.1128/mBio.00261-11. PubMed DOI PMC

Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism. 2013;4:42. doi: 10.1186/2040-2392-4-42. PubMed DOI PMC

Zhang M., Ma W., Zhang J., He Y., Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-32219-2. PubMed DOI PMC

Biddle A., Stewart L., Blanchard J., Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627–640. doi: 10.3390/d5030627. DOI

Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D., Verdu E.F., Collins S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609. doi: 10.1053/j.gastro.2011.04.052. 609.e1–3. PubMed DOI

Guida F., Turco F., Iannotta M., De Gregorio D., Palumbo I., Sarnelli G., Furiano A., Napolitano F., Boccella S., Luongo L., Mazzitelli M., Usiello A., De Filippis F., Iannotti F.A., Piscitelli F., Ercolini D., de Novellis V., Di Marzo V., Cuomo R., Maione S. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 2018;67:230–245. doi: 10.1016/j.bbi.2017.09.001. PubMed DOI

Simpson J., Ryan C., Curley A., Mulcaire J., Kelly J.P. Sex differences in baseline and drug-induced behavioural responses in classical behavioural tests. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2012;37:227–236. doi: 10.1016/j.pnpbp.2012.02.004. PubMed DOI

Scholl J.L., Afzal A., Fox L.C., Watt M.J., Forster G.L. Sex differences in anxiety-like behaviors in rats. Physiol. Behav. 2019;211 doi: 10.1016/j.physbeh.2019.112670. PubMed DOI

Blanchard D.C., Shepherd J.K., De Padua Carobrez A., Blanchard R.J. Sex effects in defensive behavior: baseline differences and drug interactions. Neurosci. Biobehav. Rev. 1991;15:461–468. doi: 10.1016/s0149-7634(05)80132-0. PubMed DOI

Cuskelly A., Hoedt E.C., Harms L., Talley N.J., Tadros M.A., Keely S., Hodgson D.M. Neonatal immune challenge influences the microbiota and behaviour in a sexually dimorphic manner. Brain Behav. Immun. 2022;103:232–242. doi: 10.1016/j.bbi.2022.04.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace