Perinatal Hypoxia and Immune System Activation in Schizophrenia Pathogenesis: Critical Considerations During COVID-19 Pandemic
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 DK126809
NIDDK NIH HHS - United States
R01 DK130318
NIDDK NIH HHS - United States
R01 HD097808
NICHD NIH HHS - United States
PubMed
39589306
PubMed Central
PMC11627263
DOI
10.33549/physiolres.935501
PII: 935501
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * imunologie epidemiologie MeSH
- hypoxie plodu imunologie komplikace MeSH
- hypoxie komplikace imunologie MeSH
- imunitní systém imunologie MeSH
- infekční komplikace v těhotenství imunologie MeSH
- lidé MeSH
- novorozenec MeSH
- schizofrenie * imunologie epidemiologie etiologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Schizophrenia, a severe psychiatric, neurodevelopmental disorder affecting about 0.29-1 % of the global population, is characterized by hallucinations, delusions, cognitive impairments, disorganized thoughts and speech, leading to significant social withdrawal and emotional blunting. During the 1980s, considerations about diseases that result from complex interactions of genetic background and environmental factors started to appear. One of the critical times of vulnerability is the perinatal period. Concerning schizophrenia, obstetric complications that are associated with hypoxia of the fetus or neonate were identified as a risk. Also, maternal infections during pregnancy were linked to schizophrenia by epidemiological, serologic and genetic studies. Research efforts then led to the development of experimental models testing the impact of perinatal hypoxia or maternal immune activation on neurodevelopmental disorders. These perinatal factors are usually studied separately, but given that the models are now validated, it is feasible to investigate both factors together. Inclusion of additional factors, such as metabolic disturbances or chronic stress, may need to be considered also. Understanding the interplay of perinatal factors in schizophrenia's etiology is crucial for developing targeted prevention and therapeutic strategies.
Zobrazit více v PubMed
Hampl V, Herget J. Perinatal hypoxia increases hypoxic pulmonary vasoconstriction in adult rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis. 1990;142:619–624. doi: 10.1164/ajrccm/142.3.619. PubMed DOI
Vizek M, Dostal M, Soukupova D. Perinatal hypoxia suppresses immune response of adult rats. Physiol Res. 1993;42:201–204. PubMed
Leckman JF, King RA, Gilbert DL, Coffey BJ, Singer HS, St Dure L, Grantz H, et al. Streptococcal upper respiratory tract infections and exacerbations of tic and obsessive-compulsive symptoms: a prospective longitudinal study. J Am Acad Child Adolesc Psychiatry. 2011;50:108–18e3. doi: 10.1016/j.jaac.2010.10.011. PubMed DOI PMC
Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261–280. doi: 10.1176/appi.ajp.2009.09030361. PubMed DOI PMC
Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45:189–192. doi: 10.1001/archpsyc.1988.01800260109013. PubMed DOI
Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–1687. doi: 10.1016/S0140-6736(13)62036-X. PubMed DOI PMC
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene. 2024;902:148198. doi: 10.1016/j.gene.2024.148198. PubMed DOI
Taylor JL, Debost JPG, Morton SU, Wigdor EM, Heyne HO, Lal D, Howrigan DP, et al. Paternal-age-related de novo mutations and risk for five disorders. Nat Commun. 2019;10:3043. doi: 10.1038/s41467-019-11039-6. PubMed DOI PMC
Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34:1054–63. doi: 10.1093/schbul/sbn096. PubMed DOI PMC
Grover S, Varadharajan N, Venu S. Urbanization and psychosis: an update of recent evidence. Curr Opin Psychiatry. 2024;37:191–201. doi: 10.1097/YCO.0000000000000931. PubMed DOI
Robinson N, Ploner A, Muller-Eberstein R, Lichtenstein P, Kendler KS, Bergen SE. Migration and risk of schizophrenia and bipolar disorder: A Swedish national study. Schizophr Res. 2023;260:160–7. doi: 10.1016/j.schres.2023.08.022. PubMed DOI PMC
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol. 2018;299:241–51. doi: 10.1016/j.expneurol.2017.07.002. PubMed DOI PMC
Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9. doi: 10.1126/science.aad0314. PubMed DOI PMC
Parker-Athill E, Luo D, Bailey A, Giunta B, Tian J, Shytle RD, Murphy T, et al. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol. 2009;217:20–7.10. doi: 10.1016/j.jneuroim.2009.08.012. PubMed DOI PMC
Patterson PH. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 2009;204:313–321. doi: 10.1016/j.bbr.2008.12.016. PubMed DOI
Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70:677–685. doi: 10.1001/jamapsychiatry.2013.896. PubMed DOI
Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, Pollak DD. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry. 2014;4:e363. doi: 10.1038/tp.2013.132. PubMed DOI PMC
Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal Models of Maternal Immune Activation in Depression Research. Curr Neuropharmacol. 2016;14:688–704. doi: 10.2174/1570159X14666151215095359. PubMed DOI PMC
Ronovsky M, Berger S, Zambon A, Reisinger SN, Horvath O, Pollak A, Lindtner C, et al. Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav Immun. 2017;63:127–136. doi: 10.1016/j.bbi.2016.10.016. PubMed DOI
Quagliato LA, de Matos U, Nardi AE. Maternal immune activation generates anxiety in offspring: A translational meta-analysis. Transl Psychiatry. 2021;11:245. doi: 10.1038/s41398-021-01361-3. PubMed DOI PMC
Rosenberg JB, Richardt Mollegaard Jepsen J, Mohammadzadeh P, Sevelsted A, Vinding R, Sorensen ME, Horner D, et al. Maternal inflammation during pregnancy is associated with risk of ADHD in children at age 10. Brain Behav Immun. 2024;115:450–457. doi: 10.1016/j.bbi.2023.10.023. PubMed DOI
Jones HF, Han VX, Patel S, Gloss BS, Soler N, Ho A, Sharma S, et al. Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain Behav Immun. 2021;94:308–317. doi: 10.1016/j.bbi.2020.12.035. PubMed DOI
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–579. doi: 10.1038/s41582-021-00530-8. PubMed DOI
Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, et al. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry. 2018;83:680–691. doi: 10.1016/j.biopsych.2017.09.030. PubMed DOI
Sun Y, Vestergaard M, Christensen J, Nahmias AJ, Olsen J. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics. 2008;121:e1100–7. doi: 10.1542/peds.2007-2316. PubMed DOI
Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Brain Behav Immun. 2015;43:159–171. doi: 10.1016/j.bbi.2014.07.021. PubMed DOI
Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10:643–660. doi: 10.1038/nrneurol.2014.187. PubMed DOI
O’Hara R, Beaudreau SA, Gould CE, Froehlich W, Kraemer HC. Handling clinical comorbidity in randomized clinical trials in psychiatry. J Psychiatr Res. 2017;86:26–33. doi: 10.1016/j.jpsychires.2016.11.006. PubMed DOI
Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–150. doi: 10.1016/S2215-0366(21)00395-3. PubMed DOI PMC
Solmi M, Seitidis G, Mavridis D, Correll CU, Dragioti E, Guimond S, Tuominen L, et al. Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Mol Psychiatry. 2023;28:5319–27. doi: 10.1038/s41380-023-02138-4. PubMed DOI
Kochhar SS, Mishra AK, Chadda RK, Sood M, Bhargava R. Psychosocial correlates of the experience of caregiving among caregivers of patients with schizophrenia. Cureus. 2024;16:e58531. doi: 10.7759/cureus.58531. PubMed DOI PMC
Kretchy IA, Osafo J, Agyemang SA, Appiah B, Nonvignon J. Psychological burden and caregiver-reported non-adherence to psychotropic medications among patients with schizophrenia. Psychiatry Res. 2018;259:289–94. doi: 10.1016/j.psychres.2017.10.034. PubMed DOI
Martin-Carrasco M, Fernandez-Catalina P, Dominguez-Panchon AI, Goncalves-Pereira M, Gonzalez-Fraile E, Munoz-Hermoso P, Ballesteros J, et al. A randomized trial to assess the efficacy of a psychoeducational intervention on caregiver burden in schizophrenia. Eur Psychiatry. 2016;33:9–17. doi: 10.1016/j.eurpsy.2016.01.003. PubMed DOI
Mittendorfer-Rutz E, Rahman S, Tanskanen A, Majak M, Mehtala J, Hoti F, Jedenius E, et al. Burden for parents of patients with schizophrenia-a nationwide comparative study of parents of offspring with rheumatoid arthritis, multiple sclerosis, epilepsy, and healthy controls. Schizophr Bull. 2019;45:794–803. doi: 10.1093/schbul/sby130. PubMed DOI PMC
Tessier A, Roger K, Gregoire A, Desnavailles P, Misdrahi D. Family psychoeducation to improve outcome in caregivers and patients with schizophrenia: a randomized clinical trial. Front Psychiatry. 2023;14:1171661. doi: 10.3389/fpsyt.2023.1171661. PubMed DOI PMC
Lin C, Zhang X, Jin H. The societal cost of schizophrenia: an updated systematic review of cost-of-illness studies. Pharmacoeconomics. 2023;41:139–53. doi: 10.1007/s40273-022-01217-8. PubMed DOI
Jauhar S, Johnstone M, McKenna PJ. Schizophrenia. Lancet. 2022;399:473–86. doi: 10.1016/S0140-6736(21)01730-X. PubMed DOI
Riglin L, Collishaw S, Richards A, Thapar AK, Maughan B, O’Donovan MC, Thapar A. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry. 2017;4:57–62. doi: 10.1016/S2215-0366(16)30406-0. PubMed DOI
Bouet V, Percelay S, Leroux E, Diarra B, Leger M, Delcroix N, Andrieux A, et al. A new 3-hit mouse model of schizophrenia built on genetic, early and late factors. Schizophr Res. 2021;228:519–528. doi: 10.1016/j.schres.2020.11.043. PubMed DOI
Correll CU, Howes OD. Treatment-resistant schizophrenia: definition, predictors, and therapy options. J Clin Psychiatry. 2021:82. doi: 10.4088/JCP.MY20096AH1C. PubMed DOI
Messmer MF, Wilhelm EE, Shoulson I. I-SPY 2 breast cancer trial as a model for innovation in Alzheimer disease therapies. JAMA Neurol. 2017;74:1027–8. doi: 10.1001/jamaneurol.2017.1528. PubMed DOI
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology. 2023;48:151–67. doi: 10.1038/s41386-022-01426-x. PubMed DOI PMC
Rund BR. The research evidence for schizophrenia as a neurodevelopmental disorder. Scand J Psychol. 2018;59:49–58. doi: 10.1111/sjop.12414. PubMed DOI
Wen J, Antoniades M, Yang Z, Hwang G, Skampardoni I, Wang R, Davatzikos C. Dimensional neuroimaging endophenotypes: neurobiological representations of disease heterogeneity through machine learning. Biol Psychiatry. 2024;96:p564–584. doi: 10.1016/j.biopsych.2024.04.017. PubMed DOI PMC
Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:20–34. doi: 10.1016/j.pnpbp.2011.11.003. PubMed DOI
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90:285–326. doi: 10.1016/j.pneurobio.2009.10.018. PubMed DOI
Powell SB, Swerdlow NR. The relevance of animal models of social isolation and social motivation for understanding schizophrenia: review and future directions. Schizophr Bull. 2023;49:1112–1126. doi: 10.1093/schbul/sbad098. PubMed DOI PMC
Uliana DL, Diniz C, da Silva LA, Borges-Assis AB, Lisboa SF, Resstel LBM. Contextual fear expression engages a complex set of interactions between ventromedial prefrontal cortex cholinergic, glutamatergic, nitrergic and cannabinergic signaling. Neuropharmacology. 2023;232:109538. doi: 10.1016/j.neuropharm.2023.109538. PubMed DOI
Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122(Pt 4):593–624. doi: 10.1093/brain/122.4.593. PubMed DOI
Harrison PJ. Postmortem studies in schizophrenia. Dialogues Clin Neurosci. 2000;2:349–357. doi: 10.31887/DCNS.2000.2.4/pharrison. PubMed DOI PMC
Glantz LA, Austin MC, Lewis DA. Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry. 2000;48:389–97. doi: 10.1016/S0006-3223(00)00923-9. PubMed DOI
Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73. doi: 10.1001/archpsyc.57.1.65. PubMed DOI
Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–458. doi: 10.1093/schbul/23.3.437. PubMed DOI
Lewis DA, Glantz LA, Pierri JN, Sweet RA. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci. 2003;1003:102–12. doi: 10.1196/annals.1300.007. PubMed DOI
Rajkowska G, Selemon LD, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry. 1998;55:215–24. doi: 10.1001/archpsyc.55.3.215. PubMed DOI
Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45:17–25. doi: 10.1016/S0006-3223(98)00281-9. PubMed DOI
Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11. doi: 10.1016/j.schres.2014.09.041. PubMed DOI PMC
Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, et al. Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res. 1998;82:1–10. doi: 10.1016/S0925-4927(97)00071-1. PubMed DOI
Holt DJ, Bachus SE, Hyde TM, Wittie M, Herman MM, Vangel M, Saper CB, et al. Reduced density of cholinergic interneurons in the ventral striatum in schizophrenia: an in situ hybridization study. Biol Psychiatry. 2005;58:408–16. doi: 10.1016/j.biopsych.2005.04.007. PubMed DOI
Nasrallah HA, McCalley-Whitters M, Bigelow LB, Rauscher FP. A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res. 1983;8:251–60. doi: 10.1016/0165-1781(83)90013-6. PubMed DOI
Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162:2233–45. doi: 10.1176/appi.ajp.162.12.2233. PubMed DOI
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev. 2019;98:85–94. doi: 10.1016/j.neubiorev.2018.12.030. PubMed DOI PMC
Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, Pereira A, et al. Accelerated Gray and White Matter Deterioration With Age in Schizophrenia. Am J Psychiatry. 2017;174:286–295. doi: 10.1176/appi.ajp.2016.16050610. PubMed DOI
Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr Bull. 2018;44:168–181. doi: 10.1093/schbul/sbx034. PubMed DOI PMC
Sun D, Phillips L, Velakoulis D, Yung A, McGorry PD, Wood SJ, van Erp TG, et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr Res. 2009;108:85–92. doi: 10.1016/j.schres.2008.11.026. PubMed DOI PMC
Gong Q, Lui S, Sweeney JA. A Selective Review of Cerebral Abnormalities in Patients With First-Episode Schizophrenia Before and After Treatment. Am J Psychiatry. 2016;173:232–43. doi: 10.1176/appi.ajp.2015.15050641. PubMed DOI
Delay J, Deniker P. Neuroleptic effects of chlorpromazine in therapeutics of neuropsychiatry. Int Rec Med Gen Pract Clin. 1955;168:318–326. PubMed
Takesada M, Kakimoto Y, Sano I, Kaneko Z. 3,4-Dimethoxyphenylethylamine and Other Amines in the Urine of Schizophrenic Patients. Nature. 1963;199:203–204. doi: 10.1038/199203a0. PubMed DOI
Meador-Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O, Watson SJ., Jr Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology. 1994;10:239–248. doi: 10.1038/npp.1994.27. PubMed DOI
Meador-Woodruff JH, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ. Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry. 1997;54:1089–1095. doi: 10.1001/archpsyc.1997.01830240045007. PubMed DOI
Clinton SM, Meador-Woodruff JH. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res. 2004;69:237–253. doi: 10.1016/j.schres.2003.09.017. PubMed DOI
Benjamin KJM, Chen Q, Jaffe AE, Stolz JM, Collado-Torres L, Huuki-Myers LA, Burke EE, et al. Analysis of the caudate nucleus transcriptome in individuals with schizophrenia highlights effects of antipsychotics and new risk genes. Nat Neurosci. 2022;25:1559–1568. doi: 10.1038/s41593-022-01182-7. PubMed DOI PMC
Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J. 1990;4:2737–2744. doi: 10.1096/fasebj.4.10.2197154. PubMed DOI
Dean B, Boer S, Gibbons A, Money T, Scarr E. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry. 2009;22:154–160. doi: 10.1097/YCO.0b013e328323d52e. PubMed DOI
Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, Kreyenbuhl J, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry. 2004;161:1–56. PubMed
Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–1223. doi: 10.1056/NEJMoa051688. PubMed DOI
Stroup TS, Gerhard T, Crystal S, Huang C, Tan Z, Wall MM, Mathai C, et al. Comparative Effectiveness of Adjunctive Psychotropic Medications in Patients With Schizophrenia. JAMA Psychiatry. 2019;76:508–515. doi: 10.1001/jamapsychiatry.2018.4489. PubMed DOI PMC
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci. 2024;25:611–624. doi: 10.1038/s41583-024-00837-7. PubMed DOI
Wray NR, Gottesman Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet. 2012;3:118. doi: 10.3389/fgene.2012.00118. PubMed DOI PMC
Chen L, Du Y, Hu Y, Li XS, Chen Y, Cheng Y. Whole-exome sequencing of individuals from an isolated population under extreme conditions implicates rare risk variants of schizophrenia. Transl Psychiatry. 2024;14:267. doi: 10.1038/s41398-024-02984-y. PubMed DOI PMC
Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Front Psychiatry. 2020;11:393. doi: 10.3389/fpsyt.2020.00393. PubMed DOI PMC
Hervoso JL, Amoah K, Dodson J, Choudhury M, Bhattacharya A, Quinones-Valdez G, Pasaniuc B, et al. Splicing-specific transcriptome-wide association uncovers genetic mechanisms for schizophrenia. Am J Hum Genet. 2024;111(8):1573–1587. doi: 10.1016/j.ajhg.2024.06.001. PubMed DOI PMC
Parker N, Cheng W, Hindley GFL, O’Connell KS, Karthikeyan S, Holen B, Shadrin AA, et al. Genetic overlap between global cortical brain structure, c-reactive protein, and white blood cell counts. Biol Psychiatry. 2024;95:62–71. doi: 10.1016/j.biopsych.2023.06.008. PubMed DOI
Gong W, Guo P, Li Y, Liu L, Yan R, Liu S, Wang S, et al. Role of the gut-brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: a genome-wide pleiotropic analysis. JAMA Psychiatry. 2023;80:360–370. doi: 10.1001/jamapsychiatry.2022.4974. PubMed DOI PMC
Handford HA. Brain hypoxia, minimal brain dysfunction, and schizophrenia. Am J Psychiatry. 1975;132:192–194. doi: 10.1176/ajp.132.2.192. PubMed DOI
Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, Gasperoni TL. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry. 2000;157:801–807. doi: 10.1176/appi.ajp.157.5.801. PubMed DOI
Cannon TD, Rosso IM, Bearden CE, Sanchez LE, Hadley T. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol. 1999;11:467–485. doi: 10.1017/S0954579499002163. PubMed DOI
Dalman C, Thomas HV, David AS, Gentz J, Lewis G, Allebeck P. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study. Br J Psychiatry. 2001;179:403–408. doi: 10.1192/bjp.179.5.403. PubMed DOI
Miller SP, Ferriero DM. From selective vulnerability to connectivity: insights from newborn brain imaging. Trends Neurosci. 2009;32:496–505. doi: 10.1016/j.tins.2009.05.010. PubMed DOI PMC
Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull. 1991;17:597–608. doi: 10.1093/schbul/17.4.597. PubMed DOI
Van Erp TG, Saleh PA, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, et al. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry. 2002;159:1514–1520. doi: 10.1176/appi.ajp.159.9.1514. PubMed DOI
Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR. Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry. 2008;13:873–7. doi: 10.1038/sj.mp.4002153. PubMed DOI
Cannon TD, Yolken R, Buka S, Torrey EF Collaborative Study Group on the Perinatal Origins of Severe Psychiatric D. Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry. 2008;64:797–802. doi: 10.1016/j.biopsych.2008.04.012. PubMed DOI PMC
Morikawa T, Manabe T, Ito Y, Yamada S, Yoshimi A, Nagai T, Ozaki N, et al. The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients. Neurochem Int. 2010;56:736–739. doi: 10.1016/j.neuint.2010.03.011. PubMed DOI
Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, et al. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One. 2022;17:e0265738. doi: 10.1371/journal.pone.0265738. PubMed DOI PMC
Barodia SK, Park SK, Ishizuka K, Sawa A, Kamiya A. Half-life of DISC1 protein and its pathological significance under hypoxia stress. Neurosci Res. 2015;97:1–6. doi: 10.1016/j.neures.2015.02.008. PubMed DOI PMC
Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39. doi: 10.1038/nrn920. PubMed DOI
Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–40. doi: 10.1016/0896-6273(94)90210-0. PubMed DOI
Armit C, Richardson L, Hill B, Yang Y, Baldock RA. eMouseAtlas informatics: embryo atlas and gene expression database. Mamm Genome. 2015;26:431–40. doi: 10.1007/s00335-015-9596-5. PubMed DOI PMC
Theiler K. The House Mouse: Atlas of Embryonic Development. Springer; Berlin, Heidelberg: 1989. DOI
Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol. 2004;207:3149–54. doi: 10.1242/jeb.01064. PubMed DOI
Nadri C, Belmaker RH, Agam G. Oxygen restriction of neonate rats elevates neuregulin-1alpha isoform levels: possible relationship to schizophrenia. Neurochem Int. 2007;51:447–450. doi: 10.1016/j.neuint.2007.03.013. PubMed DOI
Molnar Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020:370. doi: 10.1126/science.abb2153. PubMed DOI PMC
El-Khodor BF, Boksa P. Birth insult increases amphetamine-induced behavioral responses in the adult rat. Neuroscience. 1998;87:893–904. doi: 10.1016/S0306-4522(98)00194-8. PubMed DOI
Vaillancourt C, Boksa P. Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia. Neuropsychopharmacology. 2000;23:654–66. doi: 10.1016/S0893-133X(00)00164-0. PubMed DOI
Tejkalova H, Kaiser M, Klaschka J, Stastny F. Does neonatal brain ischemia induce schizophrenia-like behavior in young adult rats? Physiol Res. 2007;56:815–23. doi: 10.33549/physiolres.931056. PubMed DOI
Brake WG, Sullivan RM, Gratton A. Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci. 2000;20:5538–43. doi: 10.1523/JNEUROSCI.20-14-05538.2000. PubMed DOI PMC
El-Khodor BF, Boksa P. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth. Exp Neurol. 1997;145:118–29. doi: 10.1006/exnr.1997.6437. PubMed DOI
Laplante F, Brake WG, Chehab SL, Sullivan RM. Sex differences in the effects of perinatal anoxia on dopamine function in rats. Neurosci Lett. 2012;506:89–93. doi: 10.1016/j.neulet.2011.10.055. PubMed DOI
Papazisis G, Kallaras K, Kaiki-Astara A, Pourzitaki C, Tzachanis D, Dagklis T, Kouvelas D. Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int J Neuropsychopharmacol. 2008;11:321–329. doi: 10.1017/S1461145707008012. PubMed DOI
Brown AS, Schaefer CA, Wyatt RJ, Goetz R, Begg MD, Gorman JM, Susser ES. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull. 2000;26:287–295. doi: 10.1093/oxfordjournals.schbul.a033453. PubMed DOI
Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012;139:161–168. doi: 10.1016/j.schres.2012.05.023. PubMed DOI PMC
He H, Yu Y, Liew Z, Gissler M, Laszlo KD, Valdimarsdottir UA, Zhang J, et al. Association of maternal autoimmune diseases with risk of mental disorders in offspring in Denmark. JAMA Netw Open. 2022;5:e227503. doi: 10.1001/jamanetworkopen.2022.7503. PubMed DOI PMC
Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry. 2001;58:1032–7. doi: 10.1001/archpsyc.58.11.1032. PubMed DOI
Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61:774–780. doi: 10.1001/archpsyc.61.8.774. PubMed DOI
Xiao J, Buka SL, Cannon TD, Suzuki Y, Viscidi RP, Torrey EF, Yolken RH. Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect. 2009;11:1011–1018. doi: 10.1016/j.micinf.2009.07.007. PubMed DOI
Lee YH, Cherkerzian S, Seidman LJ, Papandonatos GD, Savitz DA, Tsuang MT, Goldstein JM, et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: Variation by severity of infection and offspring sex. Am J Psychiatry. 2020;177:66–75. doi: 10.1176/appi.ajp.2019.18101206. PubMed DOI PMC
Buchsbaum MS. The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull. 1990;16:379–389. doi: 10.1093/schbul/16.3.379. PubMed DOI
Soares JC, Innis RB. Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry. 1999;46:600–615. doi: 10.1016/S0006-3223(99)00015-3. PubMed DOI
Supprian T, Ulmar G, Bauer M, Schuler M, Puschel K, Retz-Junginger P, Schmitt HP, et al. Cerebellar vermis area in schizophrenic patients - a post-mortem study. Schizophr Res. 2000;42:19–28. doi: 10.1016/S0920-9964(99)00103-6. PubMed DOI
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort T, Booij J, de Haan L, Selten JP, et al. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol. 2023;68:57–77. doi: 10.1016/j.euroneuro.2022.12.008. PubMed DOI
van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075. doi: 10.1038/tp.2017.4. PubMed DOI PMC
Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: An updated conceptual review. Autism Res. 2022;15:384–412. doi: 10.1002/aur.2659. PubMed DOI PMC
Fatemi SH, Earle J, Kanodia R, Kist D, Emamian ES, Patterson PH, Shi L, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol. 2002;22:25–33. doi: 10.1023/A:1015337611258. PubMed DOI PMC
Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302. doi: 10.1523/JNEUROSCI.23-01-00297.2003. PubMed DOI PMC
Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702. doi: 10.1523/JNEUROSCI.2178-07.2007. PubMed DOI PMC
Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, et al. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun. 2022;99:91–105. doi: 10.1016/j.bbi.2021.09.009. PubMed DOI
Hsiao EY, Patterson PH. Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol. 2012;72:1317–1326. doi: 10.1002/dneu.22045. PubMed DOI
Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, Longman RS, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 2017;549:528–32. doi: 10.1038/nature23910. PubMed DOI PMC
Reed MD, Yim YS, Wimmer RD, Kim H, Ryu C, Welch GM, Andina M, et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature. 2020;577:249–53. doi: 10.1038/s41586-019-1843-6. PubMed DOI PMC
Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science. 2013;339:1095–1099. doi: 10.1126/science.1228261. PubMed DOI
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63. doi: 10.1016/j.cell.2013.11.024. PubMed DOI PMC
Perez-Morales M, Bello-Medina PC, Gonzalez-Franco DA, Diaz-Cintra S, Garcia-Mena J, Pacheco-Lopez G, Neuro-Psycho-Biota C. Steering the Microbiota-Gut-Brain Axis by Antibiotics to Model Neuro-Immune-Endocrine Disorders. Neuroimmunomodulation. 2024;31:89–101. doi: 10.1159/000538927. PubMed DOI
Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89. doi: 10.1016/j.gtc.2016.09.007. PubMed DOI
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003. PubMed DOI
Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002. PubMed DOI
Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317. doi: 10.1126/sciadv.aau8317. PubMed DOI PMC
Li S, Song J, Ke P, Kong L, Lei B, Zhou J, Huang Y, et al. The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep. 2021;11:9743. doi: 10.1038/s41598-021-89166-8. PubMed DOI PMC
Kim HN, Joo EJ, Lee CW, Ahn KS, Kim HL, Park DI, Park SK. Reversion of gut microbiota during the recovery phase in patients with asymptomatic or mild COVID-19: Longitudinal Study. Microorganisms. 2021;9:1237. doi: 10.3390/microorganisms9061237. PubMed DOI PMC
Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR, Hoen AG. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018;6:109. doi: 10.1186/s40168-018-0490-8. PubMed DOI PMC
Isaevska E, Popovic M, Pizzi C, Fiano V, Rusconi F, Merletti F, Richiardi L, et al. Maternal antibiotic use and vaginal infections in the third trimester of pregnancy and the risk of obesity in preschool children. Pediatr Obes. 2020;15:e12632. doi: 10.1111/ijpo.12632. PubMed DOI PMC
Hassib L, de Oliveira CL, Rouvier GA, Kanashiro A, Guimaraes FS, Ferreira FR. Maternal microbiome disturbance induces deficits in the offspring’s behaviors: a systematic review and meta-analysis. Gut Microbes. 2023;15:2226282. doi: 10.1080/19490976.2023.2226282. PubMed DOI PMC
Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047. PubMed DOI PMC
MacDowell KS, Munarriz-Cuezva E, Meana JJ, Leza JC, Ortega JE. Paliperidone reversion of maternal immune activation-induced changes on brain serotonin and kynurenine pathways. Front Pharmacol. 2021;12:682602. doi: 10.3389/fphar.2021.682602. PubMed DOI PMC
Champagne-Jorgensen K, Mian MF, Kay S, Hanani H, Ziv O, McVey Neufeld KA, Koren O, et al. Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota. Brain Behav Immun. 2020;84:154–63. doi: 10.1016/j.bbi.2019.11.020. PubMed DOI
Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun. 2017;8:15062. doi: 10.1038/ncomms15062. PubMed DOI PMC
Tejkalova H, Jakob L, Kvasnova S, Klaschka J, Sechovcova H, Mrazek J, Palenicek T, et al. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon. 2023;9:e15417. doi: 10.1016/j.heliyon.2023.e15417. PubMed DOI PMC
Lebovitz Y, Kowalski EA, Wang X, Kelly C, Lee M, McDonald V, Ward R, et al. Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis. Brain Behav Immun. 2019;81:617–629. doi: 10.1016/j.bbi.2019.07.025. PubMed DOI
Villar J, Soto Conti CP, Gunier RB, Ariff S, Craik R, Cavoretto PI, Rauch S, et al. Pregnancy outcomes and vaccine effectiveness during the period of omicron as the variant of concern, INTERCOVID-2022: a multinational, observational study. Lancet. 2023;401:447–57. doi: 10.1016/S0140-6736(22)02467-9. PubMed DOI PMC
Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, Taylor HS, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021;224:35–53e3. doi: 10.1016/j.ajog.2020.07.049. PubMed DOI PMC
Kim EH, Kim YI, Jang SG, Im M, Jeong K, Choi YK, Han HJ. Antiviral effects of human placenta hydrolysate (Laennec((R))) against SARS-CoV-2 in vitro and in the ferret model. J Microbiol. 2021;59:1056–62. doi: 10.1007/s12275-021-1367-2. PubMed DOI PMC
McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Jr, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun. 2023;112:188–205. doi: 10.1016/j.bbi.2023.06.015. PubMed DOI PMC
Patberg ET, Adams T, Rekawek P, Vahanian SA, Akerman M, Hernandez A, Rapkiewicz AV, et al. Coronavirus disease 2019 infection and placental histopathology in women delivering at term. Am J Obstet Gynecol. 2021;224:382e1–e18. doi: 10.1016/j.ajog.2020.10.020. PubMed DOI PMC
Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental pathology in COVID-19. Am J Clin Pathol. 2020;154:23–32. doi: 10.1093/ajcp/aqaa089. PubMed DOI PMC
Edlow AG, Castro VM, Shook LL, Kaimal AJ, Perlis RH. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 During Pregnancy. JAMA Netw Open. 2022;5:e2215787. doi: 10.1001/jamanetworkopen.2022.15787. PubMed DOI PMC
Edlow AG, Castro VM, Shook LL, Haneuse S, Kaimal AJ, Perlis RH. Sex-specific neurodevelopmental outcomes in offspring of mothers with SARS-CoV-2 in pregnancy: an electronic health records cohort. medRxiv. 2022 doi: 10.1101/2022.11.18.22282448. PubMed DOI PMC
Fernandez-Abascal B, Suarez-Pinilla P, Cobo-Corrales C, Crespo-Facorro B, Suarez-Pinilla M. In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episode of psychosis. Neurosci Biobehav Rev. 2021;125:535–68. doi: 10.1016/j.neubiorev.2021.01.005. PubMed DOI
Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med. 2015;45:1343–61. doi: 10.1017/S0033291714003110. PubMed DOI
Allswede DM, Buka SL, Yolken RH, Torrey EF, Cannon TD. Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr Res. 2016;172:41–5. doi: 10.1016/j.schres.2016.02.022. PubMed DOI
Swanepoel T, Moller M, Harvey BH. N-acetyl cysteine reverses bio-behavioural changes induced by prenatal inflammation, adolescent methamphetamine exposure and combined challenges. Psychopharmacology (Berl) 2018;235:351–368. doi: 10.1007/s00213-017-4776-5. PubMed DOI
Thordstein M, Bagenholm R, Thiringer K, Kjellmer I. Scavengers of free oxygen radicals in combination with magnesium ameliorate perinatal hypoxic-ischemic brain damage in the rat. Pediatr Res. 1993;34:23–26. doi: 10.1203/00006450-199307000-00006. PubMed DOI
Palma-Gudiel H, Eixarch E, Crispi F, Moran S, Zannas AS, Fananas L. Prenatal adverse environment is associated with epigenetic age deceleration at birth and hypomethylation at the hypoxia-responsive EP300 gene. Clin Epigenetics. 2019;11:73. doi: 10.1186/s13148-019-0674-5. PubMed DOI PMC
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci. 2022;16:1037105. doi: 10.3389/fncel.2022.1037105. PubMed DOI PMC
Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics. 2015;10:1143–1155. doi: 10.1080/15592294.2015.1114202. PubMed DOI PMC
Xu Y, Tian Y, Wang Y, Xu L, Song G, Wu Q, Wang W, et al. Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. Mol Biol Rep. 2021;48:5473–84. doi: 10.1007/s11033-021-06557-w. PubMed DOI
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35:549–562. doi: 10.1093/schbul/sbp006. PubMed DOI PMC
Palmqvist S, Tideman P, Mattsson-Carlgren N, Schindler SE, Smith R, Ossenkoppele R, Calling S, et al. Blood biomarkers to detect alzheimer disease in primary care and secondary care. JAMA. 2024 doi: 10.1001/jama.2024.13855. PubMed DOI PMC
Wolff AR, Cheyne KR, Bilkey DK. Behavioural deficits associated with maternal immune activation in the rat model of schizophrenia. Behav Brain Res. 2011;225:382–387. doi: 10.1016/j.bbr.2011.07.033. PubMed DOI
Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res. 2015;168:411–420. doi: 10.1016/j.schres.2015.07.006. PubMed DOI PMC
Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, Chung S, et al. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One. 2009;4:e6354. doi: 10.1371/journal.pone.0006354. PubMed DOI PMC
Coleman MT, Rund DA. Nonobstetric conditions causing hypoxia during pregnancy: asthma and epilepsy. Am J Obstet Gynecol. 1997;177:1–7. doi: 10.1016/S0002-9378(97)70429-0. PubMed DOI
Cousins L. Fetal oxygenation, assessment of fetal well-being, and obstetric management of the pregnant patient with asthma. J Allergy Clin Immunol. 1999;103:S343–9. doi: 10.1016/S0091-6749(99)70260-5. PubMed DOI
Chen YH, Keller J, Wang IT, Lin CC, Lin HC. Pneumonia and pregnancy outcomes: a nationwide population-based study. Am J Obstet Gynecol. 2012;207:288 e1–7. doi: 10.1016/j.ajog.2012.08.023. PubMed DOI PMC
Krampl E. Pregnancy at high altitude. Ultrasound Obstet Gynecol. 2002;19:535–539. doi: 10.1046/j.1469-0705.2002.00738.x. PubMed DOI
Woodman AG, Care AS, Mansour Y, Cherak SJ, Panahi S, Gragasin FS, Bourque SL. Modest and Severe Maternal Iron Deficiency in Pregnancy are Associated with Fetal Anaemia and Organ-Specific Hypoxia in Rats. Sci Rep. 2017;7:46573. doi: 10.1038/srep46573. PubMed DOI PMC
Tong W, Giussani DA. Preeclampsia link to gestational hypoxia. J Dev Orig Health Dis. 2019;10:322–333. doi: 10.1017/S204017441900014X. PubMed DOI PMC
Habek D, Habek JC, Ivanisevic M, Djelmis J. Fetal tobacco syndrome and perinatal outcome. Fetal Diagn Ther. 2002;17:367–71. doi: 10.1159/000065387. PubMed DOI
Socol ML, Manning FA, Murata Y, Druzin ML. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol. 1982;142:214–8. doi: 10.1016/S0002-9378(16)32339-0. PubMed DOI
Saha PS, Mayhan WG. Prenatal exposure to alcohol: mechanisms of cerebral vascular damage and lifelong consequences. Adv Drug Alcohol Res. 2022;2:10818. doi: 10.3389/adar.2022.10818. PubMed DOI PMC
Bosco C, Diaz E. Placental hypoxia and foetal development versus alcohol exposure in pregnancy. Alcohol Alcohol. 2012;47:109–117. doi: 10.1093/alcalc/agr166. PubMed DOI
Teramo K, Klemetti M, Tikkanen M, Nuutila M. [Maternal diabetes and fetal hypoxia] Duodecim. 2013;129:228–234. PubMed
Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323. doi: 10.1155/2010/401323. PubMed DOI PMC
Wray S, Alruwaili M, Prendergast C. Hypoxia and reproductive health: Hypoxia and labour. Reproduction. 2021;161:F67–F80. doi: 10.1530/REP-20-0327. PubMed DOI
Acharya A, Swain B, Pradhan S, Jena PK, Mohakud NK, Swain A, Mohanty N. Clinico-Biochemical Correlation in Birth Asphyxia and Its Effects on Outcome. Cureus. 2020;12:e11407. doi: 10.7759/cureus.11407. PubMed DOI PMC
Peebles DM, Spencer JA, Edwards AD, Wyatt JS, Reynolds EO, Cope M, Delpy DT. Relation between frequency of uterine contractions and human fetal cerebral oxygen saturation studied during labour by near infrared spectroscopy. Br J Obstet Gynaecol. 1994;101:44–48. doi: 10.1111/j.1471-0528.1994.tb13008.x. PubMed DOI
Boushra M, Stone A, Rathbun KM. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2023. 2024. Umbilical Cord Prolapse. PubMed
Peesay M. Nuchal cord and its implications. Matern Health Neonatol Perinatol. 2017;3:28. doi: 10.1186/s40748-017-0068-7. PubMed DOI PMC
Gaikwad V, Yalla S, Salvi P. True Knot of the Umbilical Cord and Associated Adverse Perinatal Outcomes: A Case Series. Cureus. 2023;15:e35377. doi: 10.7759/cureus.35377. PubMed DOI PMC
Matsuda Y, Ogawa M, Konno J, Mitani M, Matsui H. Prediction of fetal acidemia in placental abruption. BMC Pregnancy Childbirth. 2013;13:156. doi: 10.1186/1471-2393-13-156. PubMed DOI PMC
Jenabi E, Bashirian S, Khoshravesh S. The association between of placenta previa and congenital abnormalities: a systematic review and network meta-analysis. BMC Pediatr. 2023;23:606. doi: 10.1186/s12887-023-04433-z. PubMed DOI PMC
Johnson N, van Oudgaarden E, Montague I, McNamara H. The effect of oxytocin-induced hyperstimulation on fetal oxygen. Br J Obstet Gynaecol. 1994;101:805–7. doi: 10.1111/j.1471-0528.1994.tb11951.x. PubMed DOI
Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, Te Pas A, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120:3–23. doi: 10.1159/000528914. PubMed DOI PMC
Monfredini C, Cavallin F, Villani PE, Paterlini G, Allais B, Trevisanuto D. Meconium Aspiration Syndrome: A Narrative Review. Children (Basel) 2021;8:230. doi: 10.3390/children8030230. PubMed DOI PMC
Ottolenghi S, Milano G, Cas MD, Findley TO, Paroni R, Corno AF. Can Erythropoietin Reduce Hypoxemic Neurological Damages in Neonates With Congenital Heart Defects? Front Pharmacol. 2021;12:770590. doi: 10.3389/fphar.2021.770590. PubMed DOI PMC
Yadav P, Yadav SK. Progress in Diagnosis and Treatment of Neonatal Sepsis: A Review Article. JNMA J Nepal Med Assoc. 2022;60:318–24. doi: 10.31729/jnma.7324. https://doi.org/10.31729/jnma.7324 . PubMed DOI PMC
Nandula PS, Shah SD. StatPearls, editor. Persistent Pulmonary Hypertension of the Newborn. Treasure Island (FL): 2024. PubMed
Soderborg TK, Carpenter CM, Janssen RC, Weir TL, Robertson CE, Ir D, Young BE, et al. Gestational Diabetes Is Uniquely Associated With Altered Early Seeding of the Infant Gut Microbiota. Front Endocrinol (Lausanne) 2020;11:603021. doi: 10.3389/fendo.2020.603021. PubMed DOI PMC
Lemas DJ, Klimentidis YC, Aslibekyan S, Wiener HW, O’Brien DM, Hopkins SE, Stanhope KL, et al. Polymorphisms in stearoyl coa desaturase and sterol regulatory element binding protein interact with N-3 polyunsaturated fatty acid intake to modify associations with anthropometric variables and metabolic phenotypes in Yup’ik people. Mol Nutr Food Res. 2016;60:2642–53. doi: 10.1002/mnfr.201600170. PubMed DOI PMC
Mepham J, Nelles-McGee T, Andrews K, Gonzalez A. Exploring the effect of prenatal maternal stress on the microbiomes of mothers and infants: A systematic review. Dev Psychobiol. 2023;65:e22424. doi: 10.1002/dev.22424. PubMed DOI
Naspolini NF, Meyer A, Moreira JC, Sun H, Froes-Asmus CIR, Dominguez-Bello MG. Environmental pollutant exposure associated with altered early-life gut microbiome: Results from a birth cohort study. Environ Res. 2022;205:112545. doi: 10.1016/j.envres.2021.112545. PubMed DOI
Banerjee S, Suter MA, Aagaard KM. Interactions between Environmental Exposures and the Microbiome: Implications for Fetal Programming. Curr Opin Endocr Metab Res. 2020;13:39–48. doi: 10.1016/j.coemr.2020.09.003. PubMed DOI PMC
Zordao OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKO, Santos A, Norberto S, et al. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023;14:1069243. doi: 10.3389/fendo.2023.1069243. PubMed DOI PMC
McLean C, Jun S, Kozyrskyj A. Impact of maternal smoking on the infant gut microbiota and its association with child overweight: a scoping review. World J Pediatr. 2019;15:341–9. doi: 10.1007/s12519-019-00278-8. PubMed DOI
Peng Y, Tun HM, Ng SC, Wai HK, Zhang X, Parks J, Field CJ, et al. Maternal smoking during pregnancy increases the risk of gut microbiome-associated childhood overweight and obesity. Gut Microbes. 2024;16:2323234. doi: 10.1080/19490976.2024.2323234. PubMed DOI PMC
Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine. 2024;68:102428. doi: 10.1016/j.eclinm.2024.102428. PubMed DOI PMC
Morreale C, Giaroni C, Baj A, Folgori L, Barcellini L, Dhami A, Agosti M, et al. Effects of Perinatal Antibiotic Exposure and Neonatal Gut Microbiota. Antibiotics (Basel) 2023;12:258. doi: 10.3390/antibiotics12020258. PubMed DOI PMC
Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep. 2022;11:537–562. doi: 10.1007/s13668-022-00429-w. PubMed DOI PMC
Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr. 2011;94:2000S–5S. doi: 10.3945/ajcn.110.001172. PubMed DOI
Yang J, Hou L, Wang J, Xiao L, Zhang J, Yin N, Yao S, et al. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut. 2022;71:2451–2462. doi: 10.1136/gutjnl-2021-326482. PubMed DOI PMC
Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr. 2022;65:439–447. doi: 10.3345/cep.2021.00955. PubMed DOI PMC
Reyman M, van Houten MA, van Baarle D, Bosch A, Man WH, Chu M, Arp K, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:4997. doi: 10.1038/s41467-019-13014-7. PubMed DOI PMC
Palmeira O, Matos LRB, Naslavsky MS, Bueno HMS, Soler JP, Setubal JC, Zatz M. Longitudinal 16S rRNA gut microbiota data of infant triplets show partial susceptibility to host genetics. iScience. 2022;25:103861. doi: 10.1016/j.isci.2022.103861. PubMed DOI PMC
Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939. doi: 10.1038/ncomms11939. PubMed DOI PMC
Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54:134–42. doi: 10.1038/s41588-021-00991-z. PubMed DOI PMC