Perinatal Hypoxia and Immune System Activation in Schizophrenia Pathogenesis: Critical Considerations During COVID-19 Pandemic

. 2024 Nov 29 ; 73 (S2) : S615-S639.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39589306

Grantová podpora
R01 DK126809 NIDDK NIH HHS - United States
R01 DK130318 NIDDK NIH HHS - United States
R01 HD097808 NICHD NIH HHS - United States

Schizophrenia, a severe psychiatric, neurodevelopmental disorder affecting about 0.29-1 % of the global population, is characterized by hallucinations, delusions, cognitive impairments, disorganized thoughts and speech, leading to significant social withdrawal and emotional blunting. During the 1980s, considerations about diseases that result from complex interactions of genetic background and environmental factors started to appear. One of the critical times of vulnerability is the perinatal period. Concerning schizophrenia, obstetric complications that are associated with hypoxia of the fetus or neonate were identified as a risk. Also, maternal infections during pregnancy were linked to schizophrenia by epidemiological, serologic and genetic studies. Research efforts then led to the development of experimental models testing the impact of perinatal hypoxia or maternal immune activation on neurodevelopmental disorders. These perinatal factors are usually studied separately, but given that the models are now validated, it is feasible to investigate both factors together. Inclusion of additional factors, such as metabolic disturbances or chronic stress, may need to be considered also. Understanding the interplay of perinatal factors in schizophrenia's etiology is crucial for developing targeted prevention and therapeutic strategies.

Zobrazit více v PubMed

Hampl V, Herget J. Perinatal hypoxia increases hypoxic pulmonary vasoconstriction in adult rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis. 1990;142:619–624. doi: 10.1164/ajrccm/142.3.619. PubMed DOI

Vizek M, Dostal M, Soukupova D. Perinatal hypoxia suppresses immune response of adult rats. Physiol Res. 1993;42:201–204. PubMed

Leckman JF, King RA, Gilbert DL, Coffey BJ, Singer HS, St Dure L, Grantz H, et al. Streptococcal upper respiratory tract infections and exacerbations of tic and obsessive-compulsive symptoms: a prospective longitudinal study. J Am Acad Child Adolesc Psychiatry. 2011;50:108–18e3. doi: 10.1016/j.jaac.2010.10.011. PubMed DOI PMC

Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261–280. doi: 10.1176/appi.ajp.2009.09030361. PubMed DOI PMC

Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1988;45:189–192. doi: 10.1001/archpsyc.1988.01800260109013. PubMed DOI

Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–1687. doi: 10.1016/S0140-6736(13)62036-X. PubMed DOI PMC

Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene. 2024;902:148198. doi: 10.1016/j.gene.2024.148198. PubMed DOI

Taylor JL, Debost JPG, Morton SU, Wigdor EM, Heyne HO, Lal D, Howrigan DP, et al. Paternal-age-related de novo mutations and risk for five disorders. Nat Commun. 2019;10:3043. doi: 10.1038/s41467-019-11039-6. PubMed DOI PMC

Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34:1054–63. doi: 10.1093/schbul/sbn096. PubMed DOI PMC

Grover S, Varadharajan N, Venu S. Urbanization and psychosis: an update of recent evidence. Curr Opin Psychiatry. 2024;37:191–201. doi: 10.1097/YCO.0000000000000931. PubMed DOI

Robinson N, Ploner A, Muller-Eberstein R, Lichtenstein P, Kendler KS, Bergen SE. Migration and risk of schizophrenia and bipolar disorder: A Swedish national study. Schizophr Res. 2023;260:160–7. doi: 10.1016/j.schres.2023.08.022. PubMed DOI PMC

Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol. 2018;299:241–51. doi: 10.1016/j.expneurol.2017.07.002. PubMed DOI PMC

Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–9. doi: 10.1126/science.aad0314. PubMed DOI PMC

Parker-Athill E, Luo D, Bailey A, Giunta B, Tian J, Shytle RD, Murphy T, et al. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol. 2009;217:20–7.10. doi: 10.1016/j.jneuroim.2009.08.012. PubMed DOI PMC

Patterson PH. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 2009;204:313–321. doi: 10.1016/j.bbr.2008.12.016. PubMed DOI

Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70:677–685. doi: 10.1001/jamapsychiatry.2013.896. PubMed DOI

Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, Pollak DD. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry. 2014;4:e363. doi: 10.1038/tp.2013.132. PubMed DOI PMC

Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal Models of Maternal Immune Activation in Depression Research. Curr Neuropharmacol. 2016;14:688–704. doi: 10.2174/1570159X14666151215095359. PubMed DOI PMC

Ronovsky M, Berger S, Zambon A, Reisinger SN, Horvath O, Pollak A, Lindtner C, et al. Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav Immun. 2017;63:127–136. doi: 10.1016/j.bbi.2016.10.016. PubMed DOI

Quagliato LA, de Matos U, Nardi AE. Maternal immune activation generates anxiety in offspring: A translational meta-analysis. Transl Psychiatry. 2021;11:245. doi: 10.1038/s41398-021-01361-3. PubMed DOI PMC

Rosenberg JB, Richardt Mollegaard Jepsen J, Mohammadzadeh P, Sevelsted A, Vinding R, Sorensen ME, Horner D, et al. Maternal inflammation during pregnancy is associated with risk of ADHD in children at age 10. Brain Behav Immun. 2024;115:450–457. doi: 10.1016/j.bbi.2023.10.023. PubMed DOI

Jones HF, Han VX, Patel S, Gloss BS, Soler N, Ho A, Sharma S, et al. Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain Behav Immun. 2021;94:308–317. doi: 10.1016/j.bbi.2020.12.035. PubMed DOI

Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–579. doi: 10.1038/s41582-021-00530-8. PubMed DOI

Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, et al. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry. 2018;83:680–691. doi: 10.1016/j.biopsych.2017.09.030. PubMed DOI

Sun Y, Vestergaard M, Christensen J, Nahmias AJ, Olsen J. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics. 2008;121:e1100–7. doi: 10.1542/peds.2007-2316. PubMed DOI

Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Brain Behav Immun. 2015;43:159–171. doi: 10.1016/j.bbi.2014.07.021. PubMed DOI

Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10:643–660. doi: 10.1038/nrneurol.2014.187. PubMed DOI

O’Hara R, Beaudreau SA, Gould CE, Froehlich W, Kraemer HC. Handling clinical comorbidity in randomized clinical trials in psychiatry. J Psychiatr Res. 2017;86:26–33. doi: 10.1016/j.jpsychires.2016.11.006. PubMed DOI

Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–150. doi: 10.1016/S2215-0366(21)00395-3. PubMed DOI PMC

Solmi M, Seitidis G, Mavridis D, Correll CU, Dragioti E, Guimond S, Tuominen L, et al. Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Mol Psychiatry. 2023;28:5319–27. doi: 10.1038/s41380-023-02138-4. PubMed DOI

Kochhar SS, Mishra AK, Chadda RK, Sood M, Bhargava R. Psychosocial correlates of the experience of caregiving among caregivers of patients with schizophrenia. Cureus. 2024;16:e58531. doi: 10.7759/cureus.58531. PubMed DOI PMC

Kretchy IA, Osafo J, Agyemang SA, Appiah B, Nonvignon J. Psychological burden and caregiver-reported non-adherence to psychotropic medications among patients with schizophrenia. Psychiatry Res. 2018;259:289–94. doi: 10.1016/j.psychres.2017.10.034. PubMed DOI

Martin-Carrasco M, Fernandez-Catalina P, Dominguez-Panchon AI, Goncalves-Pereira M, Gonzalez-Fraile E, Munoz-Hermoso P, Ballesteros J, et al. A randomized trial to assess the efficacy of a psychoeducational intervention on caregiver burden in schizophrenia. Eur Psychiatry. 2016;33:9–17. doi: 10.1016/j.eurpsy.2016.01.003. PubMed DOI

Mittendorfer-Rutz E, Rahman S, Tanskanen A, Majak M, Mehtala J, Hoti F, Jedenius E, et al. Burden for parents of patients with schizophrenia-a nationwide comparative study of parents of offspring with rheumatoid arthritis, multiple sclerosis, epilepsy, and healthy controls. Schizophr Bull. 2019;45:794–803. doi: 10.1093/schbul/sby130. PubMed DOI PMC

Tessier A, Roger K, Gregoire A, Desnavailles P, Misdrahi D. Family psychoeducation to improve outcome in caregivers and patients with schizophrenia: a randomized clinical trial. Front Psychiatry. 2023;14:1171661. doi: 10.3389/fpsyt.2023.1171661. PubMed DOI PMC

Lin C, Zhang X, Jin H. The societal cost of schizophrenia: an updated systematic review of cost-of-illness studies. Pharmacoeconomics. 2023;41:139–53. doi: 10.1007/s40273-022-01217-8. PubMed DOI

Jauhar S, Johnstone M, McKenna PJ. Schizophrenia. Lancet. 2022;399:473–86. doi: 10.1016/S0140-6736(21)01730-X. PubMed DOI

Riglin L, Collishaw S, Richards A, Thapar AK, Maughan B, O’Donovan MC, Thapar A. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry. 2017;4:57–62. doi: 10.1016/S2215-0366(16)30406-0. PubMed DOI

Bouet V, Percelay S, Leroux E, Diarra B, Leger M, Delcroix N, Andrieux A, et al. A new 3-hit mouse model of schizophrenia built on genetic, early and late factors. Schizophr Res. 2021;228:519–528. doi: 10.1016/j.schres.2020.11.043. PubMed DOI

Correll CU, Howes OD. Treatment-resistant schizophrenia: definition, predictors, and therapy options. J Clin Psychiatry. 2021:82. doi: 10.4088/JCP.MY20096AH1C. PubMed DOI

Messmer MF, Wilhelm EE, Shoulson I. I-SPY 2 breast cancer trial as a model for innovation in Alzheimer disease therapies. JAMA Neurol. 2017;74:1027–8. doi: 10.1001/jamaneurol.2017.1528. PubMed DOI

Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology. 2023;48:151–67. doi: 10.1038/s41386-022-01426-x. PubMed DOI PMC

Rund BR. The research evidence for schizophrenia as a neurodevelopmental disorder. Scand J Psychol. 2018;59:49–58. doi: 10.1111/sjop.12414. PubMed DOI

Wen J, Antoniades M, Yang Z, Hwang G, Skampardoni I, Wang R, Davatzikos C. Dimensional neuroimaging endophenotypes: neurobiological representations of disease heterogeneity through machine learning. Biol Psychiatry. 2024;96:p564–584. doi: 10.1016/j.biopsych.2024.04.017. PubMed DOI PMC

Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:20–34. doi: 10.1016/j.pnpbp.2011.11.003. PubMed DOI

Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90:285–326. doi: 10.1016/j.pneurobio.2009.10.018. PubMed DOI

Powell SB, Swerdlow NR. The relevance of animal models of social isolation and social motivation for understanding schizophrenia: review and future directions. Schizophr Bull. 2023;49:1112–1126. doi: 10.1093/schbul/sbad098. PubMed DOI PMC

Uliana DL, Diniz C, da Silva LA, Borges-Assis AB, Lisboa SF, Resstel LBM. Contextual fear expression engages a complex set of interactions between ventromedial prefrontal cortex cholinergic, glutamatergic, nitrergic and cannabinergic signaling. Neuropharmacology. 2023;232:109538. doi: 10.1016/j.neuropharm.2023.109538. PubMed DOI

Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122(Pt 4):593–624. doi: 10.1093/brain/122.4.593. PubMed DOI

Harrison PJ. Postmortem studies in schizophrenia. Dialogues Clin Neurosci. 2000;2:349–357. doi: 10.31887/DCNS.2000.2.4/pharrison. PubMed DOI PMC

Glantz LA, Austin MC, Lewis DA. Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry. 2000;48:389–97. doi: 10.1016/S0006-3223(00)00923-9. PubMed DOI

Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73. doi: 10.1001/archpsyc.57.1.65. PubMed DOI

Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23:437–458. doi: 10.1093/schbul/23.3.437. PubMed DOI

Lewis DA, Glantz LA, Pierri JN, Sweet RA. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci. 2003;1003:102–12. doi: 10.1196/annals.1300.007. PubMed DOI

Rajkowska G, Selemon LD, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry. 1998;55:215–24. doi: 10.1001/archpsyc.55.3.215. PubMed DOI

Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45:17–25. doi: 10.1016/S0006-3223(98)00281-9. PubMed DOI

Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11. doi: 10.1016/j.schres.2014.09.041. PubMed DOI PMC

Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, et al. Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res. 1998;82:1–10. doi: 10.1016/S0925-4927(97)00071-1. PubMed DOI

Holt DJ, Bachus SE, Hyde TM, Wittie M, Herman MM, Vangel M, Saper CB, et al. Reduced density of cholinergic interneurons in the ventral striatum in schizophrenia: an in situ hybridization study. Biol Psychiatry. 2005;58:408–16. doi: 10.1016/j.biopsych.2005.04.007. PubMed DOI

Nasrallah HA, McCalley-Whitters M, Bigelow LB, Rauscher FP. A histological study of the corpus callosum in chronic schizophrenia. Psychiatry Res. 1983;8:251–60. doi: 10.1016/0165-1781(83)90013-6. PubMed DOI

Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162:2233–45. doi: 10.1176/appi.ajp.162.12.2233. PubMed DOI

Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev. 2019;98:85–94. doi: 10.1016/j.neubiorev.2018.12.030. PubMed DOI PMC

Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, Pereira A, et al. Accelerated Gray and White Matter Deterioration With Age in Schizophrenia. Am J Psychiatry. 2017;174:286–295. doi: 10.1176/appi.ajp.2016.16050610. PubMed DOI

Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr Bull. 2018;44:168–181. doi: 10.1093/schbul/sbx034. PubMed DOI PMC

Sun D, Phillips L, Velakoulis D, Yung A, McGorry PD, Wood SJ, van Erp TG, et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr Res. 2009;108:85–92. doi: 10.1016/j.schres.2008.11.026. PubMed DOI PMC

Gong Q, Lui S, Sweeney JA. A Selective Review of Cerebral Abnormalities in Patients With First-Episode Schizophrenia Before and After Treatment. Am J Psychiatry. 2016;173:232–43. doi: 10.1176/appi.ajp.2015.15050641. PubMed DOI

Delay J, Deniker P. Neuroleptic effects of chlorpromazine in therapeutics of neuropsychiatry. Int Rec Med Gen Pract Clin. 1955;168:318–326. PubMed

Takesada M, Kakimoto Y, Sano I, Kaneko Z. 3,4-Dimethoxyphenylethylamine and Other Amines in the Urine of Schizophrenic Patients. Nature. 1963;199:203–204. doi: 10.1038/199203a0. PubMed DOI

Meador-Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O, Watson SJ., Jr Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology. 1994;10:239–248. doi: 10.1038/npp.1994.27. PubMed DOI

Meador-Woodruff JH, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ. Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch Gen Psychiatry. 1997;54:1089–1095. doi: 10.1001/archpsyc.1997.01830240045007. PubMed DOI

Clinton SM, Meador-Woodruff JH. Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res. 2004;69:237–253. doi: 10.1016/j.schres.2003.09.017. PubMed DOI

Benjamin KJM, Chen Q, Jaffe AE, Stolz JM, Collado-Torres L, Huuki-Myers LA, Burke EE, et al. Analysis of the caudate nucleus transcriptome in individuals with schizophrenia highlights effects of antipsychotics and new risk genes. Nat Neurosci. 2022;25:1559–1568. doi: 10.1038/s41593-022-01182-7. PubMed DOI PMC

Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J. 1990;4:2737–2744. doi: 10.1096/fasebj.4.10.2197154. PubMed DOI

Dean B, Boer S, Gibbons A, Money T, Scarr E. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry. 2009;22:154–160. doi: 10.1097/YCO.0b013e328323d52e. PubMed DOI

Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, Kreyenbuhl J, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry. 2004;161:1–56. PubMed

Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–1223. doi: 10.1056/NEJMoa051688. PubMed DOI

Stroup TS, Gerhard T, Crystal S, Huang C, Tan Z, Wall MM, Mathai C, et al. Comparative Effectiveness of Adjunctive Psychotropic Medications in Patients With Schizophrenia. JAMA Psychiatry. 2019;76:508–515. doi: 10.1001/jamapsychiatry.2018.4489. PubMed DOI PMC

Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci. 2024;25:611–624. doi: 10.1038/s41583-024-00837-7. PubMed DOI

Wray NR, Gottesman Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front Genet. 2012;3:118. doi: 10.3389/fgene.2012.00118. PubMed DOI PMC

Chen L, Du Y, Hu Y, Li XS, Chen Y, Cheng Y. Whole-exome sequencing of individuals from an isolated population under extreme conditions implicates rare risk variants of schizophrenia. Transl Psychiatry. 2024;14:267. doi: 10.1038/s41398-024-02984-y. PubMed DOI PMC

Schmidt-Kastner R, Guloksuz S, Kietzmann T, van Os J, Rutten BPF. Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Front Psychiatry. 2020;11:393. doi: 10.3389/fpsyt.2020.00393. PubMed DOI PMC

Hervoso JL, Amoah K, Dodson J, Choudhury M, Bhattacharya A, Quinones-Valdez G, Pasaniuc B, et al. Splicing-specific transcriptome-wide association uncovers genetic mechanisms for schizophrenia. Am J Hum Genet. 2024;111(8):1573–1587. doi: 10.1016/j.ajhg.2024.06.001. PubMed DOI PMC

Parker N, Cheng W, Hindley GFL, O’Connell KS, Karthikeyan S, Holen B, Shadrin AA, et al. Genetic overlap between global cortical brain structure, c-reactive protein, and white blood cell counts. Biol Psychiatry. 2024;95:62–71. doi: 10.1016/j.biopsych.2023.06.008. PubMed DOI

Gong W, Guo P, Li Y, Liu L, Yan R, Liu S, Wang S, et al. Role of the gut-brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: a genome-wide pleiotropic analysis. JAMA Psychiatry. 2023;80:360–370. doi: 10.1001/jamapsychiatry.2022.4974. PubMed DOI PMC

Handford HA. Brain hypoxia, minimal brain dysfunction, and schizophrenia. Am J Psychiatry. 1975;132:192–194. doi: 10.1176/ajp.132.2.192. PubMed DOI

Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, Gasperoni TL. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry. 2000;157:801–807. doi: 10.1176/appi.ajp.157.5.801. PubMed DOI

Cannon TD, Rosso IM, Bearden CE, Sanchez LE, Hadley T. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol. 1999;11:467–485. doi: 10.1017/S0954579499002163. PubMed DOI

Dalman C, Thomas HV, David AS, Gentz J, Lewis G, Allebeck P. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study. Br J Psychiatry. 2001;179:403–408. doi: 10.1192/bjp.179.5.403. PubMed DOI

Miller SP, Ferriero DM. From selective vulnerability to connectivity: insights from newborn brain imaging. Trends Neurosci. 2009;32:496–505. doi: 10.1016/j.tins.2009.05.010. PubMed DOI PMC

Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull. 1991;17:597–608. doi: 10.1093/schbul/17.4.597. PubMed DOI

Van Erp TG, Saleh PA, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, et al. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry. 2002;159:1514–1520. doi: 10.1176/appi.ajp.159.9.1514. PubMed DOI

Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR. Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry. 2008;13:873–7. doi: 10.1038/sj.mp.4002153. PubMed DOI

Cannon TD, Yolken R, Buka S, Torrey EF Collaborative Study Group on the Perinatal Origins of Severe Psychiatric D. Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry. 2008;64:797–802. doi: 10.1016/j.biopsych.2008.04.012. PubMed DOI PMC

Morikawa T, Manabe T, Ito Y, Yamada S, Yoshimi A, Nagai T, Ozaki N, et al. The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients. Neurochem Int. 2010;56:736–739. doi: 10.1016/j.neuint.2010.03.011. PubMed DOI

Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, et al. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One. 2022;17:e0265738. doi: 10.1371/journal.pone.0265738. PubMed DOI PMC

Barodia SK, Park SK, Ishizuka K, Sawa A, Kamiya A. Half-life of DISC1 protein and its pathological significance under hypoxia stress. Neurosci Res. 2015;97:1–6. doi: 10.1016/j.neures.2015.02.008. PubMed DOI PMC

Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39. doi: 10.1038/nrn920. PubMed DOI

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–40. doi: 10.1016/0896-6273(94)90210-0. PubMed DOI

Armit C, Richardson L, Hill B, Yang Y, Baldock RA. eMouseAtlas informatics: embryo atlas and gene expression database. Mamm Genome. 2015;26:431–40. doi: 10.1007/s00335-015-9596-5. PubMed DOI PMC

Theiler K. The House Mouse: Atlas of Embryonic Development. Springer; Berlin, Heidelberg: 1989. DOI

Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol. 2004;207:3149–54. doi: 10.1242/jeb.01064. PubMed DOI

Nadri C, Belmaker RH, Agam G. Oxygen restriction of neonate rats elevates neuregulin-1alpha isoform levels: possible relationship to schizophrenia. Neurochem Int. 2007;51:447–450. doi: 10.1016/j.neuint.2007.03.013. PubMed DOI

Molnar Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science. 2020:370. doi: 10.1126/science.abb2153. PubMed DOI PMC

El-Khodor BF, Boksa P. Birth insult increases amphetamine-induced behavioral responses in the adult rat. Neuroscience. 1998;87:893–904. doi: 10.1016/S0306-4522(98)00194-8. PubMed DOI

Vaillancourt C, Boksa P. Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia. Neuropsychopharmacology. 2000;23:654–66. doi: 10.1016/S0893-133X(00)00164-0. PubMed DOI

Tejkalova H, Kaiser M, Klaschka J, Stastny F. Does neonatal brain ischemia induce schizophrenia-like behavior in young adult rats? Physiol Res. 2007;56:815–23. doi: 10.33549/physiolres.931056. PubMed DOI

Brake WG, Sullivan RM, Gratton A. Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci. 2000;20:5538–43. doi: 10.1523/JNEUROSCI.20-14-05538.2000. PubMed DOI PMC

El-Khodor BF, Boksa P. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth. Exp Neurol. 1997;145:118–29. doi: 10.1006/exnr.1997.6437. PubMed DOI

Laplante F, Brake WG, Chehab SL, Sullivan RM. Sex differences in the effects of perinatal anoxia on dopamine function in rats. Neurosci Lett. 2012;506:89–93. doi: 10.1016/j.neulet.2011.10.055. PubMed DOI

Papazisis G, Kallaras K, Kaiki-Astara A, Pourzitaki C, Tzachanis D, Dagklis T, Kouvelas D. Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int J Neuropsychopharmacol. 2008;11:321–329. doi: 10.1017/S1461145707008012. PubMed DOI

Brown AS, Schaefer CA, Wyatt RJ, Goetz R, Begg MD, Gorman JM, Susser ES. Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull. 2000;26:287–295. doi: 10.1093/oxfordjournals.schbul.a033453. PubMed DOI

Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophr Res. 2012;139:161–168. doi: 10.1016/j.schres.2012.05.023. PubMed DOI PMC

He H, Yu Y, Liew Z, Gissler M, Laszlo KD, Valdimarsdottir UA, Zhang J, et al. Association of maternal autoimmune diseases with risk of mental disorders in offspring in Denmark. JAMA Netw Open. 2022;5:e227503. doi: 10.1001/jamanetworkopen.2022.7503. PubMed DOI PMC

Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry. 2001;58:1032–7. doi: 10.1001/archpsyc.58.11.1032. PubMed DOI

Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61:774–780. doi: 10.1001/archpsyc.61.8.774. PubMed DOI

Xiao J, Buka SL, Cannon TD, Suzuki Y, Viscidi RP, Torrey EF, Yolken RH. Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect. 2009;11:1011–1018. doi: 10.1016/j.micinf.2009.07.007. PubMed DOI

Lee YH, Cherkerzian S, Seidman LJ, Papandonatos GD, Savitz DA, Tsuang MT, Goldstein JM, et al. Maternal bacterial infection during pregnancy and offspring risk of psychotic disorders: Variation by severity of infection and offspring sex. Am J Psychiatry. 2020;177:66–75. doi: 10.1176/appi.ajp.2019.18101206. PubMed DOI PMC

Buchsbaum MS. The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull. 1990;16:379–389. doi: 10.1093/schbul/16.3.379. PubMed DOI

Soares JC, Innis RB. Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry. 1999;46:600–615. doi: 10.1016/S0006-3223(99)00015-3. PubMed DOI

Supprian T, Ulmar G, Bauer M, Schuler M, Puschel K, Retz-Junginger P, Schmitt HP, et al. Cerebellar vermis area in schizophrenic patients - a post-mortem study. Schizophr Res. 2000;42:19–28. doi: 10.1016/S0920-9964(99)00103-6. PubMed DOI

van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort T, Booij J, de Haan L, Selten JP, et al. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol. 2023;68:57–77. doi: 10.1016/j.euroneuro.2022.12.008. PubMed DOI

van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075. doi: 10.1038/tp.2017.4. PubMed DOI PMC

Jutla A, Foss-Feig J, Veenstra-VanderWeele J. Autism spectrum disorder and schizophrenia: An updated conceptual review. Autism Res. 2022;15:384–412. doi: 10.1002/aur.2659. PubMed DOI PMC

Fatemi SH, Earle J, Kanodia R, Kist D, Emamian ES, Patterson PH, Shi L, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol. 2002;22:25–33. doi: 10.1023/A:1015337611258. PubMed DOI PMC

Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302. doi: 10.1523/JNEUROSCI.23-01-00297.2003. PubMed DOI PMC

Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702. doi: 10.1523/JNEUROSCI.2178-07.2007. PubMed DOI PMC

Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, et al. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun. 2022;99:91–105. doi: 10.1016/j.bbi.2021.09.009. PubMed DOI

Hsiao EY, Patterson PH. Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol. 2012;72:1317–1326. doi: 10.1002/dneu.22045. PubMed DOI

Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, Longman RS, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 2017;549:528–32. doi: 10.1038/nature23910. PubMed DOI PMC

Reed MD, Yim YS, Wimmer RD, Kim H, Ryu C, Welch GM, Andina M, et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature. 2020;577:249–53. doi: 10.1038/s41586-019-1843-6. PubMed DOI PMC

Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science. 2013;339:1095–1099. doi: 10.1126/science.1228261. PubMed DOI

Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63. doi: 10.1016/j.cell.2013.11.024. PubMed DOI PMC

Perez-Morales M, Bello-Medina PC, Gonzalez-Franco DA, Diaz-Cintra S, Garcia-Mena J, Pacheco-Lopez G, Neuro-Psycho-Biota C. Steering the Microbiota-Gut-Brain Axis by Antibiotics to Model Neuro-Immune-Endocrine Disorders. Neuroimmunomodulation. 2024;31:89–101. doi: 10.1159/000538927. PubMed DOI

Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89. doi: 10.1016/j.gtc.2016.09.007. PubMed DOI

Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003. PubMed DOI

Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002. PubMed DOI

Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317. doi: 10.1126/sciadv.aau8317. PubMed DOI PMC

Li S, Song J, Ke P, Kong L, Lei B, Zhou J, Huang Y, et al. The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep. 2021;11:9743. doi: 10.1038/s41598-021-89166-8. PubMed DOI PMC

Kim HN, Joo EJ, Lee CW, Ahn KS, Kim HL, Park DI, Park SK. Reversion of gut microbiota during the recovery phase in patients with asymptomatic or mild COVID-19: Longitudinal Study. Microorganisms. 2021;9:1237. doi: 10.3390/microorganisms9061237. PubMed DOI PMC

Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR, Hoen AG. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018;6:109. doi: 10.1186/s40168-018-0490-8. PubMed DOI PMC

Isaevska E, Popovic M, Pizzi C, Fiano V, Rusconi F, Merletti F, Richiardi L, et al. Maternal antibiotic use and vaginal infections in the third trimester of pregnancy and the risk of obesity in preschool children. Pediatr Obes. 2020;15:e12632. doi: 10.1111/ijpo.12632. PubMed DOI PMC

Hassib L, de Oliveira CL, Rouvier GA, Kanashiro A, Guimaraes FS, Ferreira FR. Maternal microbiome disturbance induces deficits in the offspring’s behaviors: a systematic review and meta-analysis. Gut Microbes. 2023;15:2226282. doi: 10.1080/19490976.2023.2226282. PubMed DOI PMC

Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047. PubMed DOI PMC

MacDowell KS, Munarriz-Cuezva E, Meana JJ, Leza JC, Ortega JE. Paliperidone reversion of maternal immune activation-induced changes on brain serotonin and kynurenine pathways. Front Pharmacol. 2021;12:682602. doi: 10.3389/fphar.2021.682602. PubMed DOI PMC

Champagne-Jorgensen K, Mian MF, Kay S, Hanani H, Ziv O, McVey Neufeld KA, Koren O, et al. Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota. Brain Behav Immun. 2020;84:154–63. doi: 10.1016/j.bbi.2019.11.020. PubMed DOI

Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun. 2017;8:15062. doi: 10.1038/ncomms15062. PubMed DOI PMC

Tejkalova H, Jakob L, Kvasnova S, Klaschka J, Sechovcova H, Mrazek J, Palenicek T, et al. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon. 2023;9:e15417. doi: 10.1016/j.heliyon.2023.e15417. PubMed DOI PMC

Lebovitz Y, Kowalski EA, Wang X, Kelly C, Lee M, McDonald V, Ward R, et al. Lactobacillus rescues postnatal neurobehavioral and microglial dysfunction in a model of maternal microbiome dysbiosis. Brain Behav Immun. 2019;81:617–629. doi: 10.1016/j.bbi.2019.07.025. PubMed DOI

Villar J, Soto Conti CP, Gunier RB, Ariff S, Craik R, Cavoretto PI, Rauch S, et al. Pregnancy outcomes and vaccine effectiveness during the period of omicron as the variant of concern, INTERCOVID-2022: a multinational, observational study. Lancet. 2023;401:447–57. doi: 10.1016/S0140-6736(22)02467-9. PubMed DOI PMC

Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, Taylor HS, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021;224:35–53e3. doi: 10.1016/j.ajog.2020.07.049. PubMed DOI PMC

Kim EH, Kim YI, Jang SG, Im M, Jeong K, Choi YK, Han HJ. Antiviral effects of human placenta hydrolysate (Laennec((R))) against SARS-CoV-2 in vitro and in the ferret model. J Microbiol. 2021;59:1056–62. doi: 10.1007/s12275-021-1367-2. PubMed DOI PMC

McMahon CL, Castro J, Silvas J, Muniz Perez A, Estrada M, Carrion R, Jr, Hsieh J. Fetal brain vulnerability to SARS-CoV-2 infection. Brain Behav Immun. 2023;112:188–205. doi: 10.1016/j.bbi.2023.06.015. PubMed DOI PMC

Patberg ET, Adams T, Rekawek P, Vahanian SA, Akerman M, Hernandez A, Rapkiewicz AV, et al. Coronavirus disease 2019 infection and placental histopathology in women delivering at term. Am J Obstet Gynecol. 2021;224:382e1–e18. doi: 10.1016/j.ajog.2020.10.020. PubMed DOI PMC

Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental pathology in COVID-19. Am J Clin Pathol. 2020;154:23–32. doi: 10.1093/ajcp/aqaa089. PubMed DOI PMC

Edlow AG, Castro VM, Shook LL, Kaimal AJ, Perlis RH. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 During Pregnancy. JAMA Netw Open. 2022;5:e2215787. doi: 10.1001/jamanetworkopen.2022.15787. PubMed DOI PMC

Edlow AG, Castro VM, Shook LL, Haneuse S, Kaimal AJ, Perlis RH. Sex-specific neurodevelopmental outcomes in offspring of mothers with SARS-CoV-2 in pregnancy: an electronic health records cohort. medRxiv. 2022 doi: 10.1101/2022.11.18.22282448. PubMed DOI PMC

Fernandez-Abascal B, Suarez-Pinilla P, Cobo-Corrales C, Crespo-Facorro B, Suarez-Pinilla M. In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episode of psychosis. Neurosci Biobehav Rev. 2021;125:535–68. doi: 10.1016/j.neubiorev.2021.01.005. PubMed DOI

Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med. 2015;45:1343–61. doi: 10.1017/S0033291714003110. PubMed DOI

Allswede DM, Buka SL, Yolken RH, Torrey EF, Cannon TD. Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr Res. 2016;172:41–5. doi: 10.1016/j.schres.2016.02.022. PubMed DOI

Swanepoel T, Moller M, Harvey BH. N-acetyl cysteine reverses bio-behavioural changes induced by prenatal inflammation, adolescent methamphetamine exposure and combined challenges. Psychopharmacology (Berl) 2018;235:351–368. doi: 10.1007/s00213-017-4776-5. PubMed DOI

Thordstein M, Bagenholm R, Thiringer K, Kjellmer I. Scavengers of free oxygen radicals in combination with magnesium ameliorate perinatal hypoxic-ischemic brain damage in the rat. Pediatr Res. 1993;34:23–26. doi: 10.1203/00006450-199307000-00006. PubMed DOI

Palma-Gudiel H, Eixarch E, Crispi F, Moran S, Zannas AS, Fananas L. Prenatal adverse environment is associated with epigenetic age deceleration at birth and hypomethylation at the hypoxia-responsive EP300 gene. Clin Epigenetics. 2019;11:73. doi: 10.1186/s13148-019-0674-5. PubMed DOI PMC

Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci. 2022;16:1037105. doi: 10.3389/fncel.2022.1037105. PubMed DOI PMC

Labouesse MA, Dong E, Grayson DR, Guidotti A, Meyer U. Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex. Epigenetics. 2015;10:1143–1155. doi: 10.1080/15592294.2015.1114202. PubMed DOI PMC

Xu Y, Tian Y, Wang Y, Xu L, Song G, Wu Q, Wang W, et al. Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. Mol Biol Rep. 2021;48:5473–84. doi: 10.1007/s11033-021-06557-w. PubMed DOI

Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35:549–562. doi: 10.1093/schbul/sbp006. PubMed DOI PMC

Palmqvist S, Tideman P, Mattsson-Carlgren N, Schindler SE, Smith R, Ossenkoppele R, Calling S, et al. Blood biomarkers to detect alzheimer disease in primary care and secondary care. JAMA. 2024 doi: 10.1001/jama.2024.13855. PubMed DOI PMC

Wolff AR, Cheyne KR, Bilkey DK. Behavioural deficits associated with maternal immune activation in the rat model of schizophrenia. Behav Brain Res. 2011;225:382–387. doi: 10.1016/j.bbr.2011.07.033. PubMed DOI

Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res. 2015;168:411–420. doi: 10.1016/j.schres.2015.07.006. PubMed DOI PMC

Li Q, Cheung C, Wei R, Hui ES, Feldon J, Meyer U, Chung S, et al. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model. PLoS One. 2009;4:e6354. doi: 10.1371/journal.pone.0006354. PubMed DOI PMC

Coleman MT, Rund DA. Nonobstetric conditions causing hypoxia during pregnancy: asthma and epilepsy. Am J Obstet Gynecol. 1997;177:1–7. doi: 10.1016/S0002-9378(97)70429-0. PubMed DOI

Cousins L. Fetal oxygenation, assessment of fetal well-being, and obstetric management of the pregnant patient with asthma. J Allergy Clin Immunol. 1999;103:S343–9. doi: 10.1016/S0091-6749(99)70260-5. PubMed DOI

Chen YH, Keller J, Wang IT, Lin CC, Lin HC. Pneumonia and pregnancy outcomes: a nationwide population-based study. Am J Obstet Gynecol. 2012;207:288 e1–7. doi: 10.1016/j.ajog.2012.08.023. PubMed DOI PMC

Krampl E. Pregnancy at high altitude. Ultrasound Obstet Gynecol. 2002;19:535–539. doi: 10.1046/j.1469-0705.2002.00738.x. PubMed DOI

Woodman AG, Care AS, Mansour Y, Cherak SJ, Panahi S, Gragasin FS, Bourque SL. Modest and Severe Maternal Iron Deficiency in Pregnancy are Associated with Fetal Anaemia and Organ-Specific Hypoxia in Rats. Sci Rep. 2017;7:46573. doi: 10.1038/srep46573. PubMed DOI PMC

Tong W, Giussani DA. Preeclampsia link to gestational hypoxia. J Dev Orig Health Dis. 2019;10:322–333. doi: 10.1017/S204017441900014X. PubMed DOI PMC

Habek D, Habek JC, Ivanisevic M, Djelmis J. Fetal tobacco syndrome and perinatal outcome. Fetal Diagn Ther. 2002;17:367–71. doi: 10.1159/000065387. PubMed DOI

Socol ML, Manning FA, Murata Y, Druzin ML. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol. 1982;142:214–8. doi: 10.1016/S0002-9378(16)32339-0. PubMed DOI

Saha PS, Mayhan WG. Prenatal exposure to alcohol: mechanisms of cerebral vascular damage and lifelong consequences. Adv Drug Alcohol Res. 2022;2:10818. doi: 10.3389/adar.2022.10818. PubMed DOI PMC

Bosco C, Diaz E. Placental hypoxia and foetal development versus alcohol exposure in pregnancy. Alcohol Alcohol. 2012;47:109–117. doi: 10.1093/alcalc/agr166. PubMed DOI

Teramo K, Klemetti M, Tikkanen M, Nuutila M. [Maternal diabetes and fetal hypoxia] Duodecim. 2013;129:228–234. PubMed

Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323. doi: 10.1155/2010/401323. PubMed DOI PMC

Wray S, Alruwaili M, Prendergast C. Hypoxia and reproductive health: Hypoxia and labour. Reproduction. 2021;161:F67–F80. doi: 10.1530/REP-20-0327. PubMed DOI

Acharya A, Swain B, Pradhan S, Jena PK, Mohakud NK, Swain A, Mohanty N. Clinico-Biochemical Correlation in Birth Asphyxia and Its Effects on Outcome. Cureus. 2020;12:e11407. doi: 10.7759/cureus.11407. PubMed DOI PMC

Peebles DM, Spencer JA, Edwards AD, Wyatt JS, Reynolds EO, Cope M, Delpy DT. Relation between frequency of uterine contractions and human fetal cerebral oxygen saturation studied during labour by near infrared spectroscopy. Br J Obstet Gynaecol. 1994;101:44–48. doi: 10.1111/j.1471-0528.1994.tb13008.x. PubMed DOI

Boushra M, Stone A, Rathbun KM. StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2023. 2024. Umbilical Cord Prolapse. PubMed

Peesay M. Nuchal cord and its implications. Matern Health Neonatol Perinatol. 2017;3:28. doi: 10.1186/s40748-017-0068-7. PubMed DOI PMC

Gaikwad V, Yalla S, Salvi P. True Knot of the Umbilical Cord and Associated Adverse Perinatal Outcomes: A Case Series. Cureus. 2023;15:e35377. doi: 10.7759/cureus.35377. PubMed DOI PMC

Matsuda Y, Ogawa M, Konno J, Mitani M, Matsui H. Prediction of fetal acidemia in placental abruption. BMC Pregnancy Childbirth. 2013;13:156. doi: 10.1186/1471-2393-13-156. PubMed DOI PMC

Jenabi E, Bashirian S, Khoshravesh S. The association between of placenta previa and congenital abnormalities: a systematic review and network meta-analysis. BMC Pediatr. 2023;23:606. doi: 10.1186/s12887-023-04433-z. PubMed DOI PMC

Johnson N, van Oudgaarden E, Montague I, McNamara H. The effect of oxytocin-induced hyperstimulation on fetal oxygen. Br J Obstet Gynaecol. 1994;101:805–7. doi: 10.1111/j.1471-0528.1994.tb11951.x. PubMed DOI

Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, Te Pas A, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120:3–23. doi: 10.1159/000528914. PubMed DOI PMC

Monfredini C, Cavallin F, Villani PE, Paterlini G, Allais B, Trevisanuto D. Meconium Aspiration Syndrome: A Narrative Review. Children (Basel) 2021;8:230. doi: 10.3390/children8030230. PubMed DOI PMC

Ottolenghi S, Milano G, Cas MD, Findley TO, Paroni R, Corno AF. Can Erythropoietin Reduce Hypoxemic Neurological Damages in Neonates With Congenital Heart Defects? Front Pharmacol. 2021;12:770590. doi: 10.3389/fphar.2021.770590. PubMed DOI PMC

Yadav P, Yadav SK. Progress in Diagnosis and Treatment of Neonatal Sepsis: A Review Article. JNMA J Nepal Med Assoc. 2022;60:318–24. doi: 10.31729/jnma.7324. https://doi.org/10.31729/jnma.7324 . PubMed DOI PMC

Nandula PS, Shah SD. StatPearls, editor. Persistent Pulmonary Hypertension of the Newborn. Treasure Island (FL): 2024. PubMed

Soderborg TK, Carpenter CM, Janssen RC, Weir TL, Robertson CE, Ir D, Young BE, et al. Gestational Diabetes Is Uniquely Associated With Altered Early Seeding of the Infant Gut Microbiota. Front Endocrinol (Lausanne) 2020;11:603021. doi: 10.3389/fendo.2020.603021. PubMed DOI PMC

Lemas DJ, Klimentidis YC, Aslibekyan S, Wiener HW, O’Brien DM, Hopkins SE, Stanhope KL, et al. Polymorphisms in stearoyl coa desaturase and sterol regulatory element binding protein interact with N-3 polyunsaturated fatty acid intake to modify associations with anthropometric variables and metabolic phenotypes in Yup’ik people. Mol Nutr Food Res. 2016;60:2642–53. doi: 10.1002/mnfr.201600170. PubMed DOI PMC

Mepham J, Nelles-McGee T, Andrews K, Gonzalez A. Exploring the effect of prenatal maternal stress on the microbiomes of mothers and infants: A systematic review. Dev Psychobiol. 2023;65:e22424. doi: 10.1002/dev.22424. PubMed DOI

Naspolini NF, Meyer A, Moreira JC, Sun H, Froes-Asmus CIR, Dominguez-Bello MG. Environmental pollutant exposure associated with altered early-life gut microbiome: Results from a birth cohort study. Environ Res. 2022;205:112545. doi: 10.1016/j.envres.2021.112545. PubMed DOI

Banerjee S, Suter MA, Aagaard KM. Interactions between Environmental Exposures and the Microbiome: Implications for Fetal Programming. Curr Opin Endocr Metab Res. 2020;13:39–48. doi: 10.1016/j.coemr.2020.09.003. PubMed DOI PMC

Zordao OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKO, Santos A, Norberto S, et al. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023;14:1069243. doi: 10.3389/fendo.2023.1069243. PubMed DOI PMC

McLean C, Jun S, Kozyrskyj A. Impact of maternal smoking on the infant gut microbiota and its association with child overweight: a scoping review. World J Pediatr. 2019;15:341–9. doi: 10.1007/s12519-019-00278-8. PubMed DOI

Peng Y, Tun HM, Ng SC, Wai HK, Zhang X, Parks J, Field CJ, et al. Maternal smoking during pregnancy increases the risk of gut microbiome-associated childhood overweight and obesity. Gut Microbes. 2024;16:2323234. doi: 10.1080/19490976.2024.2323234. PubMed DOI PMC

Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine. 2024;68:102428. doi: 10.1016/j.eclinm.2024.102428. PubMed DOI PMC

Morreale C, Giaroni C, Baj A, Folgori L, Barcellini L, Dhami A, Agosti M, et al. Effects of Perinatal Antibiotic Exposure and Neonatal Gut Microbiota. Antibiotics (Basel) 2023;12:258. doi: 10.3390/antibiotics12020258. PubMed DOI PMC

Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep. 2022;11:537–562. doi: 10.1007/s13668-022-00429-w. PubMed DOI PMC

Sanz Y. Gut microbiota and probiotics in maternal and infant health. Am J Clin Nutr. 2011;94:2000S–5S. doi: 10.3945/ajcn.110.001172. PubMed DOI

Yang J, Hou L, Wang J, Xiao L, Zhang J, Yin N, Yao S, et al. Unfavourable intrauterine environment contributes to abnormal gut microbiome and metabolome in twins. Gut. 2022;71:2451–2462. doi: 10.1136/gutjnl-2021-326482. PubMed DOI PMC

Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr. 2022;65:439–447. doi: 10.3345/cep.2021.00955. PubMed DOI PMC

Reyman M, van Houten MA, van Baarle D, Bosch A, Man WH, Chu M, Arp K, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:4997. doi: 10.1038/s41467-019-13014-7. PubMed DOI PMC

Palmeira O, Matos LRB, Naslavsky MS, Bueno HMS, Soler JP, Setubal JC, Zatz M. Longitudinal 16S rRNA gut microbiota data of infant triplets show partial susceptibility to host genetics. iScience. 2022;25:103861. doi: 10.1016/j.isci.2022.103861. PubMed DOI PMC

Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939. doi: 10.1038/ncomms11939. PubMed DOI PMC

Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54:134–42. doi: 10.1038/s41588-021-00991-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...