European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update
Language English Country Switzerland Media print-electronic
Document type Practice Guideline, Research Support, Non-U.S. Gov't, Journal Article
PubMed
36863329
PubMed Central
PMC10064400
DOI
10.1159/000528914
PII: 000528914
Knihovny.cz E-resources
- Keywords
- Antenatal corticosteroids, Continuous positive airway pressure, Evidence-based practice, Mechanical ventilation, Non-invasive respiratory support, Nutrition, Oxygen supplementation, Patent ductus arteriosus, Preterm infant, Respiratory distress syndrome, Surfactant therapy, Thermoregulation,
- MeSH
- Anti-Bacterial Agents MeSH
- Child MeSH
- Cognition MeSH
- Infant MeSH
- Consensus MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Respiratory Distress Syndrome * MeSH
- Respiratory Distress Syndrome, Newborn * therapy MeSH
- Pregnancy MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Practice Guideline MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
Respiratory distress syndrome (RDS) care pathways evolve slowly as new evidence emerges. We report the sixth version of "European Guidelines for the Management of RDS" by a panel of experienced European neonatologists and an expert perinatal obstetrician based on available literature up to end of 2022. Optimising outcome for babies with RDS includes prediction of risk of preterm delivery, appropriate maternal transfer to a perinatal centre, and appropriate and timely use of antenatal steroids. Evidence-based lung-protective management includes initiation of non-invasive respiratory support from birth, judicious use of oxygen, early surfactant administration, caffeine therapy, and avoidance of intubation and mechanical ventilation where possible. Methods of ongoing non-invasive respiratory support have been further refined and may help reduce chronic lung disease. As technology for delivering mechanical ventilation improves, the risk of causing lung injury should decrease, although minimising time spent on mechanical ventilation by targeted use of postnatal corticosteroids remains essential. The general care of infants with RDS is also reviewed, including emphasis on appropriate cardiovascular support and judicious use of antibiotics as being important determinants of best outcome. We would like to dedicate this guideline to the memory of Professor Henry Halliday who died on November 12, 2022.These updated guidelines contain evidence from recent Cochrane reviews and medical literature since 2019. Strength of evidence supporting recommendations has been evaluated using the GRADE system. There are changes to some of the previous recommendations as well as some changes to the strength of evidence supporting recommendations that have not changed. This guideline has been endorsed by the European Society for Paediatric Research (ESPR) and the Union of European Neonatal and Perinatal Societies (UENPS).
Department of Child Health Queen's University Belfast and Royal Maternity Hospital Belfast UK
Department of Neonatology Rigshospitalet and University of Copenhagen Copenhagen Denmark
Department of Obstetrics and Gynecology University Medical Centre Utrecht The Netherlands
Department of Pediatrics Marmara University Medical Faculty Istanbul Turkey
Department of Pediatrics University Children's Hospital Wuerzburg Germany
Leiden University Medical Centre Leiden The Netherlands
See more in PubMed
Bell EF, Hintz SR, Hansen NI, Bann CM, Wyckoff MH, DeMauro SB, et al. Eunice kennedy shriver national institute of child health and human development neonatal research network. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018. JAMA. 2022 Jan 18;327((3)):248–263. PubMed PMC
Watkins PL, Dagle JM, Bell EF, Colaizy TT. Outcomes at 18 to 22 months of corrected age for infants born at 22 to 25 weeks of gestation in a center practicing active management. J Pediatr. 2020 Feb;217:52–58. e1. PubMed
Haumont D, Modi N, Saugstad OD, Antetere R, NguyenBa C, Turner M, et al. Evaluating preterm care across Europe using the eNewborn European Network database. Pediatr Res. 2020 Sep;88((3)):484–495. PubMed
Sweet D, Bevilacqua G, Carnielli V, Greisen G, Plavka R, Saugstad OD, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med. 2007;35((3)):175–186. PubMed
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants: 2010 update. Neonatology. 2010 Jun;97((4)):402–417. PubMed
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants: 2013 update. Neonatology. 2013;103((4)):353–368. PubMed
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of respiratory distress syndrome: 2016 update. Neonatology. 2017;111((2)):107–125. PubMed
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome: 2019 update. Neonatology. 2019;115((4)):432–450. PubMed PMC
Guyatt GH, Oxman AD, Kunz R, Falck-Ytter Y, Vist GE, Liberati A, et al. Going from evidence to recommendations. BMJ. 2008 May 10;336((7652)):1049–1051. PubMed PMC
Diguisto C, Foix L'Helias L, Morgan AS, Ancel PY, Kayem G, Kaminski M, et al. Neonatal outcomes in extremely preterm newborns admitted to intensive care after No active antenatal management: a population-based cohort study. J Pediatr. 2018 Dec;203:150–155. PubMed
Duley L, Meher S, Hunter KE, Seidler AL, Askie LM. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2019 Oct 30;2019((10)):CD004659. PubMed PMC
EPPPIC Group Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021;397((10280)):1183–1194. PubMed
Norman JE. Progesterone and preterm birth. Int J Gynaecol Obstet. 2020 Jul;150((1)):24–30. PubMed PMC
Alfirevic Z, Stampalija T, Medley N. Cervical stitch (cerclage) for preventing preterm birth in singleton pregnancy. Cochrane Database Syst Rev. 2017 Jun 6;6((6)):CD008991. PubMed PMC
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018 Nov 15;11((11)):CD003402. PubMed PMC
Melchor JC, Khalil A, Wing D, Schleussner E, Surbek D. Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phIGFBP-1 tests: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018 Oct;52((4)):442–451. PubMed
Marlow N, Bennett C, Draper ES, Hennessy EM, Morgan AS, Costeloe KL. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed. 2014;99((3)):F181–8. PubMed PMC
Kenyon S, Boulvain M, Neilson JP. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev. 2013 Dec 2;((12)):CD001058. PubMed PMC
Wolf HT, Huusom LD, Henriksen TB, Hegaard HK, Brok J, Pinborg A. Magnesium sulphate for fetal neuroprotection at imminent risk for preterm delivery: a systematic review with meta-analysis and trial sequential analysis. BJOG. 2020 Sep;127((10)):1180–1188. PubMed
Haas DM, Caldwell DM, Kirkpatrick P, McIntosh JJ, Welton NJ. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ. 2012 Oct 9;345:e6226. PubMed PMC
Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017 Mar 21;3((3)):CD004454. PubMed PMC
Ehret DEY, Edwards EM, Greenberg LT, Bernstein IM, Buzas JS, Soll RF, et al. Association of antenatal steroid exposure with survival among infants receiving postnatal life support at 22 to 25 Weeks' gestation. JAMA Netw Open. 2018 Oct 5;1((6)):e183235. PubMed PMC
Cahill AG, Kaimal AJ, Kuller JA, Turrentine MA. ACOG Practice Advisory. Use of Antenatal Steroids at 22 weeks of gestation
Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016 Apr 7;374((14)):1311–1320. PubMed PMC
Gulersen M, Gyamfi-Bannerman C, Greenman M, Lenchner E, Rochelson B, Bornstein E. Time interval from late preterm antenatal corticosteroid administration to delivery and the impact on neonatal outcomes. Am J Obstet Gynecol MFM. 2021 Sep;3((5)):100426. PubMed
Kamath-Rayne BD, Rozance PJ, Goldenberg RL, Jobe AH. Antenatal corticosteroids beyond 34 weeks gestation: what do we do now? Am J Obstet Gynecol. 2016 Oct;215((4)):423–430. PubMed
Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Evaluation of long-term outcomes associated with preterm exposure to antenatal corticosteroids: a systematic review and meta-analysis. JAMA Pediatr. 2022 Apr 11;176((6)):e220483. PubMed PMC
Norman M, Piedvache A, Børch K, Huusom LD, Bonamy AE, Howell EA, et al. Effective Perinatal Intensive Care in Europe (EPICE) research group. Association of short antenatal corticosteroid administration-to-birth intervals with survival and morbidity among very preterm infants: results from the EPICE cohort. JAMA Pediatr. 2017 Jul 1;171((7)):678–686. PubMed PMC
Crowther CA, Middleton PF, Voysey M, Askie L, Zhang S, Martlow TK, et al. Effects of repeat prenatal corticosteroids given to women at risk of preterm birth: an individual participant data meta-analysis. PLoS Med. 2019 Apr 12;16((4)):e1002771. PubMed PMC
Asztalos EV, Murphy KE, Willan AR, Matthews SG, Ohlsson A, Saigal S, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5) JAMA Pediatr. 2013 Dec;167((12)):1102–1110. PubMed
Räikkönen K, Gissler M, Kajantie E. Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children. JAMA. 2020 May 19;323((19)):1924–1933. PubMed PMC
Paules C, Pueyo V, Martí E, de Vilchez S, Burd I, Calvo P, et al. Threatened preterm labor is a risk factor for impaired cognitive development in early childhood. Am J Obstet Gynecol. 2017 Feb;216((2)):157.e1–7. PubMed
Jobe AH, Kemp M, Schmidt A, Takahashi T, Newnham J, Milad M. Antenatal corticosteroids: a reappraisal of the drug formulation and dose. Pediatr Res. 2021;89((2)):318–325. PubMed PMC
Schmitz T, Doret-Dion M, Sentilhes L, Parant O, Claris O, Renesme L, et al. Neonatal outcomes for women at risk of preterm delivery given half dose versus full dose of antenatal betamethasone: a randomised, multicentre, double-blind, placebo-controlled, non-inferiority trial. Lancet. 2022 20;400((10352)):592–604. PubMed
Saugstad OD. Delivery room management of term and preterm newly born infants. Neonatology. 2015;107((4)):365–371. PubMed
Madar J, Roehr CC, Ainsworth S, Ersdal H, Morley C, Rüdiger M, et al. European Resuscitation Council Guidelines 2021: newborn resuscitation and support of transition of infants at birth. Resuscitation. 2021 Apr;161:291–326. PubMed
Murphy MC, McCarthy LK, O'Donnell CPF. Crying and breathing by new-born preterm infants after early or delayed cord clamping. Arch Dis Child Fetal Neonatal Ed. 2020 May;105((3)):331–333. PubMed
Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018 Jan;218((1)):1–18. PubMed
Robledo KP, Tarnow-Mordi WO, Rieger I, Suresh P, Martin A, Yeung C, et al. Effects of delayed versus immediate umbilical cord clamping in reducing death or major disability at 2 years corrected age among very preterm infants (APTS): a multicentre, randomised clinical trial. Lancet Child Adolesc Health. 2022 Mar;6((3)):150–157. PubMed
Jasani B, Torgalkar R, Ye XY, Syed S, Shah PS. Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. JAMA Pediatr. 2021;175((4)):e210102. PubMed PMC
Katheria A, Reister F, Essers J, Mendler M, Hummler H, Subramaniam A, et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019 Nov 19;322((19)):1877–1886. PubMed PMC
Knol R, Brouwer E, van den Akker T, DeKoninck P, van Geloven N, Polglase GR, et al. Physiological-based cord clamping in very preterm infants - randomised controlled trial on effectiveness of stabilisation. Resuscitation. 2020 Feb 1;147:26–33. PubMed
Dekker J, Hooper SB, Martherus T, Cramer SJE, van Geloven N, Te Pas AB. Repetitive versus standard tactile stimulation of preterm infants at birth - a randomized controlled trial. Resuscitation. 2018 Jun;127:37–43. PubMed
Dekker J, Hooper SB, van Vonderen JJ, Witlox RSGM, Lopriore E, Te Pas AB. Caffeine to improve breathing effort of preterm infants at birth: a randomized controlled trial. Pediatr Res. 2017 Aug;82((2)):290–296. PubMed
Ines F, Hutson S, Coughlin K, Hopper A, Banerji A, Uy C, et al. Multicentre, randomised trial of preterm infants receiving caffeine and less invasive surfactant administration compared with caffeine and early continuous positive airway pressure (CaLI trial): study protocol. BMJ Open. 2021 Jan 22;11((1)):e038343. PubMed PMC
Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation of Continuous Positive Airway Pressure (CPAP) for preterm infants. Cochrane Database Syst Rev. 2021 Oct 18;10((10)):CD001243. PubMed PMC
Bamat N, Fierro J, Mukerji A, Wright CJ, Millar D, Kirpalani H. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2021 Nov 30;11((11)):CD012778. PubMed PMC
Kirpalani H, Ratcliffe SJ, Keszler M, Davis PG, Foglia EE, Te Pas A, et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial. JAMA. 2019 Mar 26;321((12)):1165–1175. PubMed PMC
Kuypers KLAM, Lamberska T, Martherus T, Dekker J, Böhringer S, Hooper SB, et al. The effect of a face mask for respiratory support on breathing in preterm infants at birth. Resuscitation. 2019 Nov;144:178–184. PubMed
Mangat A, Bruckner M, Schmölzer GM. Face mask versus nasal prong or nasopharyngeal tube for neonatal resuscitation in the delivery room: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021 Sep;106((5)):561–567. PubMed
Donaldsson S, Drevhammar T, Li Y, Bartocci M, Rettedal SI, Lundberg F, et al. Comparison of respiratory support after delivery in infants born before 28 Weeks' gestational age: the CORSAD randomized clinical trial. JAMA Pediatr. 2021 Sep 1;175((9)):911–918. PubMed PMC
Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, Pullattayil AK, Thanigainathan S, Trevisanuto D, et al. Delivery room interventions for hypothermia in preterm neonates: a systematic review and network meta-analysis. JAMA Pediatr. 2021 Sep 1;175((9)):e210775. PubMed PMC
Cavallin F, Doglioni N, Allodi A, Battajon N, Vedovato S, Capasso L, et al. Thermal management with and without servo-controlled system in preterm infants immediately after birth: a multicentre, randomised controlled study. Arch Dis Child Fetal Neonatal Ed. 2021 Nov;106((6)):572–577. PubMed
McCarthy LK, Molloy EJ, Twomey AR, Murphy JF, O'Donnell CP. A randomized trial of exothermic mattresses for preterm newborns in polyethylene bags. Pediatrics. 2013 Jul;132((1)):e135–41. PubMed
Thamrin V, Saugstad OD, Tarnow-Mordi W, Wang YA, Lui K, Wright IM, et al. Preterm infant outcomes after randomization to initial resuscitation with FiO2 0.21 or 1.0. J Pediatr. 2018 Oct;201:55–61. e1. PubMed
Kapadia V, Oei JL, Finer N, Rich W, Rabi Y, Wright IM, et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: a retrospective cohort study of randomised trials of high vs low initial oxygen concentration and an individual patient data analysis. Resuscitation. 2021 Oct;167:209–217. PubMed PMC
Anton O, Fernandez R, Rendon-Morales E, Aviles-Espinosa R, Jordan H, Rabe H. Heart rate monitoring in newborn babies: a systematic review. Neonatology. 2019;116((3)):199–210. PubMed
Abbey NV, Mashruwala V, Weydig HM, Steven Brown L, Ramon EL, Ibrahim J, et al. Electrocardiogram for heart rate evaluation during preterm resuscitation at birth: a randomized trial. Pediatr Res. 2022;91((6)):1445–1451. PubMed PMC
Hawkes GA, Hawkes CP, Kenosi M, Demeulemeester J, Livingstone V, Ryan CA, et al. Auscultate, palpate and tap: time to re-evaluate. Acta Paediatr. 2016 Feb;105((2)):178–182. PubMed
de Medeiros SM, Mangat A, Polglase GR, Sarrato GZ, Davis PG, Schmölzer GM. Respiratory function monitoring to improve the outcomes following neonatal resuscitation: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022 Jan 20;107((6)):589–596. PubMed
Lui K, Jones LJ, Foster JP, Davis PG, Ching SK, Oei JL, et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018 May 4;5((5)):CD010239. PubMed PMC
Saugstad OD, Kapadia V, Oei JL. Oxygen in the first minutes of life in very preterm infants. Neonatology. 2021;118((2)):218–224. PubMed
Dekker J, Martherus T, Lopriore E, Giera M, McGillick EV, Hutten J, et al. The effect of initial high versus low FiO2 on breathing effort in preterm infants at birth: a randomized controlled trial. Front Pediatr. 2019 Dec 12;7:504. PubMed PMC
Herting E, Härtel C, Göpel W. Less invasive surfactant administration: best practices and unanswered questions. Curr Opin Pediatr. 2020 Apr;32((2)):228–234. PubMed PMC
Evans P, Shults J, Weinberg DD, Napolitano N, Ades A, Johnston L, et al. Intubation competence during neonatal fellowship training. Pediatrics. 2021 Jul;148((1)):e2020036145. PubMed PMC
Garvey AA, Dempsey EM. Simulation in neonatal resuscitation. Front Pediatr. 2020 Feb 25;8:59. PubMed PMC
O'Shea JE, Kirolos S, Thio M, Kamlin COF, Davis PG. Neonatal videolaryngoscopy as a teaching aid: the trainees' perspective. Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106((2)):168–171. PubMed
Walter-Nicolet E, Courtois E, Milesi C, Ancel PY, Beuchée A, Tourneux P, et al. Premedication practices for delivery room intubations in premature infants in France: results from the EPIPAGE 2 cohort study. PLoS One. 2019 Apr 10;14((4)):e0215150. PubMed PMC
Norman M, Jonsson B, Wallström L, Sindelar R. Respiratory support of infants born at 22-24 weeks of gestational age. Semin Fetal Neonatal Med. 2022 Apr;27((2)):101328. PubMed
Stevens TP, Harrington EW, Blennow M, Soll RF. Early surfactant administration with brief ventilation versus selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007 Oct;2007((4)):CD003063. PubMed PMC
Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021 May 10;5((5)):CD011672. PubMed PMC
De Luca D, de Winter JP. Less invasive surfactant administration: all that glitters is not gold. Eur J Pediatr. 2020 Aug;179((8)):1295–1296. PubMed
Dargaville PA, Kamlin COF, Orsini F, Wang X, De Paoli AG, Kanmaz Kutman HG, et al. Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST-A randomized clinical trial. JAMA. 2021 Dec 28;326((24)):2478–2487. PubMed PMC
Härtel C, Herting E, Humberg A, Hanke K, Mehler K, Keller T, et al. Association of administration of surfactant using less invasive methods with outcomes in extremely preterm infants less than 27 Weeks of gestation. JAMA Netw Open. 2022 Aug 1;5((8)):e2225810. PubMed PMC
Reynolds P, Bustani P, Darby C, Fernandez Alvarez JR, Fox G, Jones S, et al. Less-invasive surfactant administration for neonatal respiratory distress syndrome: a consensus guideline. Neonatology. 2021;118((5)):586–592. PubMed
Herting E, Kribs A, Härtel C, von der Wense A, Weller U, Hoehn T, et al. Two-year outcome data suggest that Less Invasive Surfactant Administration (LISA) is safe. Results from the follow-up of the randomized controlled AMV (Avoid Mechanical Ventilation) study. Eur J Pediatr. 2020 Aug;179((8)):1309–1313. PubMed PMC
Federici C, Fornaro G, Roehr CC. Cost-saving effect of early less invasive surfactant administration versus continuous positive airway pressure therapy alone for preterm infants with respiratory distress syndrome. Eur J Hosp Pharm. 2022;29((6)):346–352. PubMed PMC
Moschino L, Ramaswamy VV, Reiss IKM, Baraldi E, Roehr CC, Simons SHP. Sedation for less invasive surfactant administration in preterm infants: a systematic review and meta-analysis. Pediatr Res. 2022 Jun 2 PubMed
Krajewski P, Szpecht D, Hożejowski R. Premedication practices for less invasive surfactant administration - results from a nationwide cohort study. J Matern Fetal Neonatal Med. 2020 Dec 25;:1–5. PubMed
Roberts KD, Brown R, Lampland AL, Leone TA, Rudser KD, Finer NN, et al. Laryngeal mask airway for surfactant administration in neonates: a randomized, controlled trial. J Pediatr. 2018 Feb;193:40–46. e1. PubMed
Gallup JA, Ndakor SM, Pezzano C, Pinheiro JMB. Randomized trial of surfactant therapy via laryngeal mask airway versus brief tracheal intubation in neonates born preterm. J Pediatr. 2022 Oct 12;3476((22)):S002200891–5. PubMed
Gaertner VD, Thomann J, Bassler D, Rüegger CM. Surfactant nebulization to prevent intubation in preterm infants: a systematic review and meta-analysis. Pediatrics. 2021;148((5)):e2021052504. PubMed
Murphy MC, Galligan M, Molloy B, Hussain R, Doran P, O'Donnell C. Study protocol for the POPART study-prophylactic oropharyngeal surfactant for preterm infants: a randomised trial. BMJ Open. 2020 Jul 20;10((7)):e035994. PubMed PMC
Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012 Nov 14;11((11)):CD001456. PubMed PMC
Verder H, Albertsen P, Ebbesen F, Greisen G, Robertson B, Bertelsen A, et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation. Pediatrics. 1999 Feb;103((2)):E24. PubMed
Gulczyńska E, Szczapa T, Hożejowski R, Borszewska-Kornacka MK, Rutkowska M. Fraction of inspired oxygen as a predictor of CPAP failure in preterm infants with respiratory distress syndrome: a prospective multicenter study. Neonatology. 2019;116((2)):171–178. PubMed PMC
Dell'Orto V, Nobile S, Correani A, Marchionni P, Giretti I, Rondina C, et al. Early nasal continuous positive airway pressure failure prediction in preterm infants less than 32 weeks gestational age suffering from respiratory distress syndrome. Pediatr Pulmonol. 2021 Dec;56((12)):3879–3886. PubMed
Wright CJ, Glaser K, Speer CP, Härtel C, Roehr CC. Noninvasive ventilation and exogenous surfactant in times of ever decreasing gestational age: how do we make the most of these tools? J Pediatr. 2022;247:138–146. PubMed
Capasso L, Pacella D, Migliaro F, De Luca D, Raimondi F. Can lung ultrasound score accurately predict the need for surfactant replacement in preterm neonates? A systematic review and meta-analysis protocol. PLoS One. 2021 Jul 28;16((7)):e0255332. PubMed PMC
Heiring C, Verder H, Schousboe P, Jessen TE, Bender L, Ebbesen F, et al. Predicting respiratory distress syndrome at birth using a fast test based on spectroscopy of gastric aspirates: 2. Clinical part. Acta Paediatr. 2020 Feb;109((2)):285–290. PubMed PMC
Ramaswamy VV, Abiramalatha T, Bandyopadhyay T, Boyle E, Roehr CC. Surfactant therapy in late preterm and term neonates with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022 Jul;107((4)):393–397. PubMed
Lanciotti L, Correani A, Pasqualini M, Antognoli L, Dell'Orto VG, Giorgetti C, et al. Respiratory distress syndrome in preterm infants of less than 32 weeks: what difference does giving 100 or 200 mg/kg of exogenous surfactant make? Pediatr Pulmonol. 2022 May 16;57((9)):2067–2073. PubMed PMC
Singh N, Halliday HL, Stevens TP, Suresh G, Soll R, Rojas-Reyes MX. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2015 Dec;2015:CD010249. PubMed PMC
Ramanathan R, Biniwale M, Sekar K, Hanna N, Golombek S, Bhatia J, et al. Synthetic surfactant CHF5633 compared with poractant alfa in the treatment of neonatal respiratory distress syndrome: a multicenter, double-blind, randomized, controlled clinical trial. J Pediatr. 2020 Oct;225:90–96. e1. PubMed
Zhong YY, Li JC, Liu YL, Zhao XB, Male M, Song DK. Early intratracheal administration of corticosteroid and pulmonary surfactant for preventing bronchopulmonary dysplasia in preterm infants with neonatal respiratory distress syndrome: a meta-analysis. Curr Med Sci. 2019 Jun;39((3)):493–499. PubMed
Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA. 2018 Jun 5;319((21)):2190–2201. PubMed PMC
Saugstad OD. Oxygenation of the immature infant: a commentary and recommendations for oxygen saturation targets and alarm limits. Neonatology. 2018;114((1)):69–75. PubMed
Liu T, Tomlinson LA, Yu Y, Ying GS, Quinn GE, Binenbaum G, et al. Changes in institutional oxygen saturation targets are associated with an increased rate of severe retinopathy of prematurity. J AAPOS. 2022 Feb;26((1)):18.e1–6. PubMed
Söderström F, Normann E, Holmström G, Larsson E, Ahlsson F, Sindelar R, et al. Reduced rate of treated retinopathy of prematurity after implementing lower oxygen saturation targets. J Perinatol. 2019 Mar;39((3)):409–414. PubMed
Gentle SJ, Abman SH, Ambalavanan N. Oxygen therapy and pulmonary hypertension in preterm infants. Clin Perinatol. 2019;46((3)):611–619. PubMed
Ali SK, Jayakar RV, Marshall AP, Gale TJ, Dargaville PA. Preliminary study of automated oxygen titration at birth for preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022 Feb 9;107((5)):539–544. PubMed
Claure N, Bancalari E. New modes of respiratory support for the premature infant: automated control of inspired oxygen concentration. Clin Perinatol. 2021 Dec;48((4)):843–853. PubMed
Dargaville PA, Marshall AP, Ladlow OJ, Bannink C, Jayakar R, Eastwood-Sutherland C, et al. Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed. 2022 Jan;107((1)):39–44. PubMed
Ramaswamy VV, Abiramalatha T, Bandyopadhyay T, Shaik NB, Pullattayil S AK, Cavallin F, et al. Delivery room CPAP in improving outcomes of preterm neonates in low-and middle-income countries: a systematic review and network meta-analysis. Resuscitation. 2022 Jan;170:250–263. PubMed
Ho JJ, Subramaniam P, Davis PG. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst Rev. 2020 Oct 15;10((10)):CD002271. PubMed PMC
Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016 Jun 14;((6)):CD001243. PubMed
Owen LS, Manley BJ, Davis PG, Doyle LW. The evolution of modern respiratory care for preterm infants. Lancet. 2017 Apr 22;389((10079)):1649–1659. PubMed
Backes CH, Notestine JL, Lamp JM, Balough JC, Notestine AM, Alfred CM, et al. Evaluating the efficacy of Seattle-PAP for the respiratory support of premature neonates: study protocol for a randomized controlled trial. Trials. 2019 Jan 18;20((1)):63. PubMed PMC
Jensen CF, Sellmer A, Ebbesen F, Cipliene R, Johansen A, Hansen RM, et al. Sudden vs pressure wean from nasal continuous positive airway pressure in infants born before 32 weeks of gestation: a randomized clinical trial. JAMA Pediatr. 2018 Sep 1;172((9)):824–831. PubMed PMC
Falk M, Gunnarsdottir K, Baldursdottir S, Donaldsson S, Jonsson B, Drevhammar T. Interface leakage during neonatal CPAP treatment: a randomised, cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2021 Nov;106((6)):663–667. PubMed PMC
Bashir T, Murki S, Kiran S, Reddy VK, Oleti TP. Nasal mask' in comparison with “nasal prongs” or “rotation of nasal mask with nasal prongs” reduce the incidence of nasal injury in preterm neonates supported on nasal Continuous Positive Airway Pressure (nCPAP): a randomized controlled trial. PLoS One. 2019 Jan 31;14((1)):e0211476. PubMed PMC
Malakian A, Aramesh MR, Agahin M, Dehdashtian M. Non-invasive duo positive airway pressure ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial. BMC Pediatr. 2021 Jul 6;21((1)):301. PubMed PMC
Moretti C, Gizzi C. Synchronized nasal intermittent positive pressure ventilation. Clin Perinatol. 2021 Dec;48((4)):745–759. PubMed
Ramaswamy VV, More K, Roehr CC, Bandiya P, Nangia S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: systematic review and network meta-analysis. Pediatr Pulmonol. 2020 Nov;55((11)):2940–2963. PubMed
Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, More K, Oommen VI, et al. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: a systematic review and network meta-analysis. Pediatr Pulmonol. 2020 Nov;55((11)):2924–2939. PubMed
Fischer HS, Bohlin K, Bührer C, Schmalisch G, Cremer M, Reiss I, et al. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015 Apr;174((4)):465–471. PubMed
Gaertner VD, Waldmann AD, Davis PG, Bassler D, Springer L, Thomson J, et al. Lung volume distribution in preterm infants on non-invasive high-frequency ventilation. Arch Dis Child Fetal Neonatal. 2022 Jan 31;107((5)):551–557. PubMed
Li J, Chen L, Shi Y. Nasal high-frequency oscillatory ventilation versus nasal continuous positive airway pressure as primary respiratory support strategies for respiratory distress syndrome in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2022 Jan;181((1)):215–223. PubMed
Zhu XW, Zhao JN, Tang SF, Yan J, Shi Y. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with moderate-severe respiratory distress syndrome: a preliminary report. Pediatr Pulmonol. 2017 Aug;52((8)):1038–1042. PubMed
Roehr CC, Yoder BA, Davis PG, Ives K. Evidence support and guidelines for using heated, humidified, high-flow nasal cannulae in Neonatology: oxford nasal high-flow therapy meeting. Clin Perinatol. 20152016 Dec;43((4)):693–705. PubMed
Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009 Oct;103((10)):1400–1405. PubMed
Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016 Feb 22;2:CD006405. PubMed PMC
Roberts CT, Owen LS, Manley BJ, Frøisland DH, Donath SM, Dalziel KM, et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016 Sep 22;375((12)):1142–1151. PubMed
Hodgson KA, Manley BJ, Davis PG. Is nasal high flow inferior to continuous positive airway pressure for neonates? Clin Perinatol. 2019 Sep;46((3)):537–551. PubMed
Zivanovic S, Scrivens A, Panza R, Reynolds P, Laforgia N, Ives KN, et al. Nasal high-flow therapy as primary respiratory support for preterm infants without the need for rescue with nasal continuous positive airway pressure. Neonatology. 2019;115((2)):175–181. PubMed
Bruet S, Butin M, Dutheil F. Systematic review of high-flow nasal cannula versus continuous positive airway pressure for primary support in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022 Jan;107((1)):56–59. PubMed
Firestone KS, Beck J, Stein H. Neurally adjusted ventilatory assist for noninvasive support in neonates. Clin Perinatol. 2016 Dec;43((4)):707–724. PubMed
Makker K, Cortez J, Jha K, Shah S, Nandula P, Lowrie D, et al. Comparison of extubation success using Noninvasive Positive Pressure Ventilation (NIPPV) versus noninvasive neurally adjusted ventilatory assist (NI-NAVA) J Perinatol. 2020 Aug;40((8)):1202–1210. PubMed PMC
Dargaville PA, Gerber A, Johansson S, De Paoli AG, Kamlin CO, Orsini F, et al. Incidence and outcome of CPAP failure in preterm infants. Pediatrics. 2016 Jul;138((1)):e20153985. PubMed
Chawla S, Natarajan G, Shankaran S, Carper B, Brion LP, Keszler M, et al. Markers of successful extubation in extremely preterm infants, and morbidity after failed extubation. J Pediatr. 2017 Oct;189:113–119. e2. PubMed PMC
Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017 Oct 17;10((10)):CD003666. PubMed PMC
Keszler M, Nassabeh-Montazami S, Abubakar K. Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with volume guarantee. Arch Dis Child Fetal Neonatal Ed. 2009 Jul;94((4)):F279–82. PubMed
National Institute for Clinical Excellence Specialist neonatal respiratory care: evidence reviews for respiratory support FINAL (April 2019) https://www.nice.org.uk/guidance/NG124 . PubMed
Wallström L, Sjöberg A, Sindelar R. Early volume targeted ventilation in preterm infants born at 22-25 weeks of gestational age. Pediatr Pulmonol. 2021 May;56((5)):1000–1007. PubMed
Hunt KA, Dassios T, Greenough A. Proportional Assist Ventilation (PAV) versus neurally adjusted ventilator assist (NAVA): effect on oxygenation in infants with evolving or established bronchopulmonary dysplasia. Eur J Pediatr. 2020 Jun;179((6)):901–908. PubMed PMC
Beck J, Sinderby C. Neurally adjusted ventilatory assist in newborns. Clin Perinatol. 2021 Dec;48((4)):783–811. PubMed
Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015 Mar 19;((3)):CD000104. PubMed PMC
De Jaegere AP, Deurloo EE, van Rijn RR, Offringa M, van Kaam AH. Individualized lung recruitment during high-frequency ventilation in preterm infants is not associated with lung hyperinflation and air leaks. Eur J Pediatr. 2016 Aug;175((8)):1085–1090. PubMed PMC
Iscan B, Duman N, Tuzun F, Kumral A, Ozkan H. Impact of volume guarantee on high-frequency oscillatory ventilation in preterm infants: a randomized crossover clinical trial. Neonatology. 2015;108((4)):277–282. PubMed
Garrido F, Gonzalez-Caballero JL, Lomax R, Dady I. The immediate efficacy of inhaled nitric oxide treatment in preterm infants with acute respiratory failure during neonatal transport. Acta Paediatr. 2020 Feb;109((2)):309–313. PubMed
Aikio O, Metsola J, Vuolteenaho R, Perhomaa M, Hallman M. Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J Pediatr. 2012 Sep;161((3)):397–403. e1. PubMed
Blazek EV, East CE, Jauncey-Cooke J, Bogossian F, Grant CA, Hough J. Lung recruitment manoeuvres for reducing mortality and respiratory morbidity in mechanically ventilated neonates. Cochrane Database Syst Rev. 2021 Mar 30;3((3)):CD009969. PubMed PMC
Vento G, Ventura ML, Pastorino R, van Kaam AH, Carnielli V, Cools F, et al. Lung recruitment before surfactant administration in extremely preterm neonates with respiratory distress syndrome (IN-REC-SUR-E): a randomised, unblinded, controlled trial. Lancet Respir Med. 2021 Feb;9((2)):159–166. PubMed
Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2017 Feb 1;171((2)):165–174. PubMed
Danan C, Durrmeyer X, Brochard L, Decobert F, Benani M, Dassieu G. A randomized trial of delayed extubation for the reduction of reintubation in extremely preterm infants. Pediatr Pulmonol. 2008 Feb;43((2)):117–124. PubMed
Shalish W, Kanbar L, Kovacs L, Chawla S, Keszler M, Rao S, et al. Assessment of extubation readiness using spontaneous breathing trials in extremely preterm neonates. JAMA Pediatr. 2020 Feb 1;174((2)):178–185. PubMed PMC
Gupta D, Greenberg RG, Sharma A, Natarajan G, Cotten M, Thomas R, et al. A predictive model for extubation readiness in extremely preterm infants. J Perinatol. 2019 Dec;39((12)):1663–1669. PubMed
Buzzella B, Claure N, D'Ugard C, Bancalari E. A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants. J Pediatr. 2014 Jan;164((1)):46–51. PubMed
Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007 Nov 8;357((19)):1893–1902. PubMed
Davis PG, Schmidt B, Roberts RS, Doyle LW, Asztalos E, Haslam R, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010 Mar;156((3)):382–387. PubMed
Nylander Vujovic S, Nava C, Johansson M, Bruschettini M. Confounding biases in studies on early- versus late-caffeine in preterm infants: a systematic review. Pediatr Res. 2020 Sep;88((3)):357–364. PubMed
Elmowafi M, Mohsen N, Nour I, Nasef N. Prophylactic versus therapeutic caffeine for apnea of prematurity: a randomized controlled trial. J Matern Fetal Neonatal Med. 2021 Mar 26;:1–9. PubMed
Chavez L, Bancalari E. Caffeine: some of the evidence behind its use and abuse in the preterm infant. Neonatology. 2022;119((4)):428–432. PubMed
Saroha V, Patel RM. Caffeine for preterm infants: fixed standard dose, adjustments for age or high dose? Semin Fetal Neonatal Med. 2020 Dec;25((6)):101178. PubMed PMC
Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev. 2001;2001((2)):CD002061. PubMed PMC
Wong SK, Chim M, Allen J, Butler A, Tyrrell J, Hurley T, et al. Carbon dioxide levels in neonates: what are safe parameters? Pediatr Res. 2022 Apr;91((5)):1049–1056. PubMed PMC
Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021 Oct 21;11((11)):CD001146. PubMed PMC
Doyle LW, Cheong JL, Hay S, Manley BJ, Halliday HL. Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2021 Nov 11;11((11)):CD001145. PubMed PMC
Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014 Dec;165((6)):1258–1260. PubMed
Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, DART Study Investigators Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics. 2006 Jan;117((1)):75–83. PubMed
Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, DART Study Investigators Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics. 2007 Apr;119((4)):716–721. PubMed
Shaffer ML, Baud O, Lacaze-Masmonteil T, Peltoniemi OM, Bonsante F, Watterberg KL. Effect of prophylaxis for early adrenal insufficiency using low-dose hydrocortisone in very preterm infants: an individual patient data meta-analysis. J Pediatr. 2019 Apr;207:136–142. e5. PubMed
Rousseau C, Guichard M, Saliba E, Morel B, Favrais G. Duration of mechanical ventilation is more critical for brain growth than postnatal hydrocortisone in extremely preterm infants. Eur J Pediatr. 2021 Nov;180((11)):3307–3315. PubMed
Renolleau C, Toumazi A, Bourmaud A, Benoist JF, Chevenne D, Mohamed D, et al. Association between baseline cortisol serum concentrations and the effect of prophylactic hydrocortisone in extremely preterm infants. J Pediatr. 2021 Jul;234:65–70. e3. PubMed
Fontijn JR, Bassler D. Early systemic steroids in preventing bronchopulmonary dysplasia: are we moving closer to a benefit-risk-adapted treatment strategy? J Pediatr. 2021 Jul;234:12–13. PubMed
Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017 Jan 4;10((10)):CD002058. PubMed PMC
Ramaswamy VV, Bandyopadhyay T, Nanda D, Bandiya P, Ahmed J, Garg A, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: a systematic review and network meta-analysis. JAMA Pediatr. 2021 Jun 1;175((6)):e206826. PubMed PMC
Bassler D, Shinwell ES, Hallman M, Jarreau PH, Plavka R, Carnielli V, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N Engl J Med. 2018 Jan 11;378((2)):148–157. PubMed
Lemyre B, Dunn M, Thebaud B. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia in preterm infants. Paediatr Child Health. 2020 Aug;25((5)):322–331. PubMed PMC
Bellù R, Romantsik O, Nava C, de Waal KA, Zanini R, Bruschettini M. Opioids for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev. 2021 Mar 17;3((3)):CD013732. PubMed PMC
Ozawa Y, Ades A, Foglia EE, DeMeo S, Barry J, Sawyer T, et al. Premedication with neuromuscular blockade and sedation during neonatal intubation is associated with fewer adverse events. J Perinatol. 2019 Jun;39((6)):848–856. PubMed
van Weteringen W, van Essen T, Gangaram-Panday NH, Goos TG, de Jonge RCJ, Reiss IKM. Validation of a new transcutaneous tcPO2/tcPCO2 sensor with an optical oxygen measurement in preterm neonates. Neonatology. 2020;117((5)):628–636. PubMed
Greisen G, Hansen ML, Rasmussen MIS, Vestager M, Hyttel-Sørensen S, Hahn GH. Cerebral oximetry in preterm infants-to use or not to use, that is the question. Front Pediatr. 2022 Feb 2;9:747660. PubMed PMC
de Siqueira Caldas JP, Ferri WAG, Marba STM, Aragon DC, Guinsburg R, de Almeida MFB, et al. Admission hypothermia, neonatal morbidity, and mortality: evaluation of a multicenter cohort of very low birth weight preterm infants according to relative performance of the center. Eur J Pediatr. 2019 Jul;178((7)):1023–1032. PubMed
Sharma D, Farahbakhsh N, Sharma S, Sharma P, Sharma A. Role of kangaroo mother care in growth and breast feeding rates in Very Low Birth Weight (VLBW) neonates: a systematic review. J Matern Fetal Neonatal Med. 2019 Jan;32((1)):129–142. PubMed
Prevention of Group B. Streptococcal early-onset disease in newborns: ACOG committee opinion summary, number 797. Obstet Gynecol. 2020 Feb;135((2)):489–492. PubMed
Rajar P, Saugstad OD, Berild D, Dutta A, Greisen G, Lausten-Thomsen U, et al. Antibiotic stewardship in premature infants: a systematic review. Neonatology. 2020;117((6)):673–686. PubMed
Capin I, Hinds A, Vomero B, Roth P, Blau J. Are early-onset sepsis evaluations and empiric antibiotics mandatory for all neonates admitted with respiratory distress? Am J Perinatol. 2022 Mar;39((4)):444–448. PubMed
Barrington KJ. Management during the first 72 h of age of the periviable infant: an evidence-based review. Semin Perinatol. 2014 Feb;38((1)):17–24. PubMed
Hartnoll G, Bétrémieux P, Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82((1)):F24–8. PubMed PMC
Osborn DA, Schindler T, Jones LJ, Sinn JK, Bolisetty S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst Rev. 2018 Mar 5;3((3)):CD005949. PubMed PMC
Mihatsch WA, Braegger C, Bronsky J, Cai W, Campoy C, Carnielli V, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin Nutr. 2018 Dec;37((6 Pt B)):2303–2305. PubMed
Kim K, Kim NJ, Kim SY. Safety and efficacy of early high parenteral lipid supplementation in preterm infants: a systematic review and meta-analysis. Nutrients. 2021 May 2;13((5)):1535. PubMed PMC
Morgan J, Bombell S, McGuire W. Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2013 Mar 28;((3)):CD000504. PubMed PMC
Oddie SJ, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2021;8((8)):CD001241. PubMed PMC
Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2019 Jul 19;7((7)):CD002971. PubMed PMC
Dempsey E, El-Khuffash A. Clinical trials in hemodynamic support: past, present, and future. Clin Perinatol. 2020 Sep;47((3)):641–652. PubMed
Thewissen L, Naulaers G, Hendrikx D, Caicedo A, Barrington K, Boylan G, et al. Cerebral oxygen saturation and autoregulation during hypotension in extremely preterm infants. Pediatr Res. 2021 Aug;90((2)):373–380. PubMed
Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Evolving blood pressure dynamics for extremely preterm infants. J Perinatol. 2014 Apr;34((4)):301–305. PubMed PMC
Nestaas E. Neonatologist performed echocardiography for evaluating the newborn infant. Front Pediatr. 2022 Mar 24;10:853205. PubMed PMC
Finn D, Roehr CC, Ryan CA, Dempsey EM. Optimising intravenous volume resuscitation of the newborn in the delivery room: practical considerations and gaps in knowledge. Neonatology. 2017;112((2)):163–171. PubMed
Subhedar NV, Shaw NJ. Dopamine versus dobutamine for hypotensive preterm infants. Cochrane Database Syst Rev. 2003;3:CD001242. PubMed
Masumoto K, Kusuda S. Hemodynamic support of the micropreemie: should hydrocortisone never be left out? Semin Fetal Neonatal Med. 2021 Jun;26((3)):101222. PubMed
Rozé JC, Cambonie G, Marchand-Martin L, Gournay V, Durrmeyer X, Durox M, et al. Association between early screening for patent ductus arteriosus and in-hospital mortality among extremely preterm infants. JAMA. 2015 Jun 23-30;313((24)):2441–2448. PubMed
Liebowitz M, Clyman RI. Prophylactic indomethacin compared with delayed conservative management of the patent ductus arteriosus in extremely preterm infants: effects on neonatal outcomes. J Pediatr. 2017 Aug;187:119–126. e1. PubMed PMC
Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev. 2020 Feb 11;2((2)):CD003481. PubMed PMC
Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020 Jan 27;1((1)):CD010061. PubMed PMC
Mitra S, Florez ID, Tamayo ME, Mbuagbaw L, Vanniyasingam T, Veroniki AA, et al. Association of placebo, indomethacin, ibuprofen, and acetaminophen with closure of hemodynamically significant patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. JAMA. 2018 Mar 27;319((12)):1221–1238. PubMed PMC
Juujärvi S, Saarela T, Pokka T, Hallman M, Aikio O. Intravenous paracetamol for neonates: long-term diseases not escalated during 5 years of follow-up. Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106((2)):178–183. PubMed
Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001 Jun 28;344((26)):1966–1972. PubMed
Hundscheid T, Donders R, Onland W, Kooi EMW, Vijlbrief DC, de Vries WB, et al. Multi-centre, randomised non-inferiority trial of early treatment versus expectant management of patent ductus arteriosus in preterm infants (the BeNeDuctus trial): statistical analysis plan. Trials. 2021 Sep 15;22((1)):627. PubMed PMC
Weisz DE, Mirea L, Rosenberg E, Jang M, Ly L, Church PT, et al. Association of patent ductus arteriosus ligation with death or neurodevelopmental impairment among extremely preterm infants. JAMA Pediatr. 2017 May 1;171((5)):443–449. PubMed PMC
Kirpalani H, Bell EF, Hintz SR, Tan S, Schmidt B, Chaudhary AS, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med. 2020 Dec 31;383((27)):2639–2651. PubMed PMC
Franz AR, Engel C, Bassler D, Rüdiger M, Thome UH, Maier RF, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA. 2020 Aug 11;324((6)):560–570. PubMed PMC
Bell EF. Red cell transfusion thresholds for preterm infants: finally some answers. Arch Dis Child Fetal Neonatal Ed. 2022 Mar;107((2)):126–130. PubMed
Deshpande S, Suryawanshi P, Ahya K, Maheshwari R, Gupta S. Surfactant therapy for early onset pneumonia in late preterm and term neonates needing mechanical ventilation. J Clin Diagn Res. 2017 Aug;11((8)):SC09–12. PubMed PMC
Aziz A, Ohlsson A. Surfactant for pulmonary haemorrhage in neonates. Cochrane Database Syst Rev. 2020 Feb 3;2((2)):CD005254. PubMed PMC
El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev. 2014 Dec 14;2014((12)):CD002054. PubMed PMC
Hascoët JM, Picaud JC, Ligi I, Blanc T, Moreau F, Pinturier MF, et al. Late surfactant administration in very preterm neonates with prolonged respiratory distress and pulmonary outcome at 1 Year of age: a randomized clinical trial. JAMA Pediatr. 2016 Apr;170((4)):365–372. PubMed
Williams E, Greenough A. Respiratory support of infants with congenital diaphragmatic hernia. Front Pediatr. 2021 Dec 24;9:808317. PubMed PMC
Routine use of automated FiO2 control in Poland: prospective registry and survey