Determining an Optimal Oxygen Saturation Target Range Based on Neonatal Maturity: Demonstration of a Decision Tree Analytic
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37958208
PubMed Central
PMC10648394
DOI
10.3390/diagnostics13213312
PII: diagnostics13213312
Knihovny.cz E-resources
- Keywords
- decision tree classification, hyperoxemic-risk, hypoxemic-risk, machine learning, neonatal, oxygen saturation targeting,
- Publication type
- Journal Article MeSH
UNLABELLED: The utility of decision tree machine learning in exploring the interactions among the SpO2 target range, neonatal maturity, and oxemic-risk is demonstrated. METHODS: This observational study used 3 years of paired age-SpO2-PaO2 data from a neonatal ICU. The CHAID decision tree method was used to explore the interaction of postmenstrual age (PMA) on the risk of extreme arterial oxygen levels at six different potential SpO2 target ranges (88-92%, 89-93%, 90-94%, 91-95%, 92-96% and 93-97%). Risk was calculated using a severity-weighted average of arterial oxygen outside the normal range for neonates (50-80 mmHg). RESULTS: In total, 7500 paired data points within the potential target range envelope were analyzed. The two lowest target ranges were associated with the highest risk, and the ranges of 91-95% and 92-96% were associated with the lowest risk. There were shifts in the risk associated with PMA. All the target ranges showed the lowest risk at ≥42 weeks PMA. The lowest risk for preterm infants was within a target range of 92-96% with a PMA of ≤34 weeks. CONCLUSIONS: This study demonstrates the utility of decision tree analytics. These results suggest that SpO2 target ranges that are different from typical range might reduce morbidity and mortality. Further research, including prospective randomized trials, is warranted.
See more in PubMed
Askie L.M., Darlow B.A., Finer N., Schmidt B., Stenson B., Tarnow-Mordi W., Davis P.G., Carlo W.A., Brocklehurst P., Davies L.C., et al. Association between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA. 2018;319:2190–2201. doi: 10.1001/jama.2018.5725. PubMed DOI PMC
Poets C.F., Roberts R.S., Schmidt B., Whyte R.K., Asztalos E.V., Bader D., Bairam A., Moddemann D., Peliowski A., Rabi Y., et al. Association between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. JAMA. 2015;314:595–603. doi: 10.1001/jama.2015.8841. PubMed DOI
Silverman W.A. A Cautionary Tale About Supplemental Oxygen: The Albatross of Neonatal Medicine. Pediatrics. 2004;113:394–396. doi: 10.1542/peds.113.2.394. PubMed DOI
Hagadorn J.I., Furey A.M., Nghiem T.-H., Schmid C.H., Phelps D.L., Pillers D.-A.M., Cole C.H., The AVIOx Study Group Achieved Versus Intended Pulse Oximeter Saturation in Infants Born Less Than 28 Weeks’ Gestation: The AVIOx Study. Pediatrics. 2006;118:1574–1582. doi: 10.1542/peds.2005-0413. PubMed DOI
Sweet D.G., Carnielli V.P., Greisen G., Hallman M., Klebermass-Schrehof K., Ozek E., Pas A.T., Plavka R., Roehr C.C., Saugstad O.D., et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120:3–23. doi: 10.1159/000528914. PubMed DOI PMC
Cummings J.J., Polin R.A., Watterberg K.L., Benitz W.E., Eichenwald E.C., Poindexter B.B., Stewart D.L., Aucott S.W., Goldsmith J.P., Puopolo K.M., et al. Oxygen Targeting in Extremely Low Birth Weight Infants. Pediatrics. 2016;138:e20161576. doi: 10.1542/peds.2016-1576. PubMed DOI
Jubran A. Pulse oximetry. Crit. Care. 2015;19:272. doi: 10.1186/s13054-015-0984-8. PubMed DOI PMC
Huizing M.J., Villamor-Martínez E., Vento M., Villamor E. Pulse oximeter saturation target limits for preterm infants: A survey among European neonatal intensive care units. Eur. J. Pediatr. 2017;176:51–56. doi: 10.1007/s00431-016-2804-9. PubMed DOI PMC
Perrone S., on behalf of the National Study Group of Neonatal Clinical Biochemistry of the Italian Society of Neonatology. Giordano M., De Bernardo G., Lugani P., Sarnacchiaro P., Stazzoni G., Buonocore G., Esposito S., Tataranno M.L. Management of oxygen saturation monitoring in preterm newborns in the NICU: The Italian picture. Ital. J. Pediatr. 2021;47:1–10. doi: 10.1186/s13052-021-01050-3. PubMed DOI PMC
Wilinski M., Bachman T.E., Piwowrczyk P., Kostuch M., Tousty J., Berła K., Hajdar R., Skrzypek M. Routine se of automated FiO2 control in Poland: Prospective registry and survey. Front. Pediatr. 2023;11:1213310. doi: 10.3389/fped.2023.1213310. PubMed DOI PMC
Hagadorn J.I., Sink D.W., Buus-Frank M.E., Edward E.M., Morrow K.A., Horbar J.D., Ferrelli K., Soll R.F. Alarm safety and oxygen saturation targets in the Vermont Oxford Network iNICQ 2015 collaborative. J. Perinatol. 2017;37:270–276. doi: 10.1038/jp.2016.219. PubMed DOI
Askie L.M., Henderson-Smart D.J., Irwig L., Simpson J.M. Oxygen-Saturation Targets and Outcomes in Extremely Preterm Infants. N. Engl. J. Med. 2003;349:959–967. doi: 10.1056/NEJMoa023080. PubMed DOI
Bizzarro M.J., Li F.Y., Katz K., Shabanova V., Ehrenkranz R.A., Bhandari V. Temporal quantification of oxygen saturation ranges: An effort to reduce hyperoxia in the neonatal intensive care unit. J. Perinatol. 2014;34:33–38. doi: 10.1038/jp.2013.122. PubMed DOI
Castillo A., Sola A., Baquero H., Neira F., Alvis R., Deulofeut R., Critz A. Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: Is 85% to 93% an acceptable range? Pediatrics. 2008;121:882–889. doi: 10.1542/peds.2007-0117. PubMed DOI
Sola A., Golombek S.G., Montes Bueno M.T., Lemus-Varela L., Zuluaga C., Domínguez F., Baquero H., Young Sarmiento A.E., Natta D., Rodriguez Perez J.M., et al. Safe oxygen saturation targeting and monitoring in preterm infants: Can we avoid hypoxia and hyperoxia? Acta Paediatr. 2014;103:1009–1018. doi: 10.1111/apa.12692. PubMed DOI PMC
Kelly R., Quine D., Stenson B.J. Exploring the risk of hyperoxia in oxygen-dependent very low birthweight infants in the first week of life to plan future trials of oxygen targeting. Arch. Dis. Child. Fetal Neonatal Ed. 2023;108:434–435. doi: 10.1136/archdischild-2022-324717. PubMed DOI
Quine D., Stenson B.J. Arterial oxygen tension (PaO2) values in infants <29 weeks of gestation at currently targeted saturations. Arch. Dis. Child. Fetal Neonatal Ed. 2008;94:F51–F53. PubMed
Di Fiore J.M., MacFarlane P.M., Martin R.J. Intermittent Hypoxemia in Preterm Infants. Clin. Perinatol. 2019;46:553–565. doi: 10.1016/j.clp.2019.05.006. PubMed DOI PMC
Bachman T.E., Iyer N.P., Newth C.J.L., Ross P.A., Khemani R.G. Thresholds for oximetry alarms and target range in the NICU: An observational assessment based on likely oxygen tension and maturity. BMC Pediatr. 2020;20:317. doi: 10.1186/s12887-020-02225-3. PubMed DOI PMC
Engle W.A., American Academy of Pediatrics Committee on Fetus and Newborn Age terminology during the perinatal period. Pediatrics. 2004;114:1362–1364. PubMed
Wu X., Kumar V., Ross Quinlan J., Ghosh J., Yang Q., Motoda H., McLachlan G.J., Ng A., Liu B., Yu P.S., et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008;14:1–37. doi: 10.1007/s10115-007-0114-2. DOI
Kass G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Appl. Stat. 1980;29:119–127. doi: 10.2307/2986296. DOI
Kelman G.R., Elliott J.E., Laurie S.S., Kern J.P., Beasley K.M., Goodman R.D., Kayser B., Subudhi A.W., Roach R.C., Lovering A.T., et al. Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 1966;21:1375–1376. doi: 10.1152/jappl.1966.21.4.1375. PubMed DOI
McEvoy C., Durand M., Hewlett V. Episodes of spontaneous desaturations in infants with chronic lung disease at two different levels of oxygenation. Pediatr. Pulmonol. 1993;15:140–144. doi: 10.1002/ppul.1950150303. PubMed DOI
Kurtom W., Dormishian A., Jain D., Schott A., Aguilar A.C., Grieb G., Bancalari E., Claure N. Effect of the Target Range on Arterial Oxygen Saturation Stability in Extremely Premature Infants. Neonatology. 2022;119:638–643. doi: 10.1159/000525271. PubMed DOI
Nair V., Loganathan P., Lal M.K., Bachman T. Automated Oxygen Delivery in Neonatal Intensive Care. Front. Pediatr. 2022;10:915312. doi: 10.3389/fped.2022.915312. PubMed DOI PMC
van Zanten H.A., Tan R.N., Thio M., De Man-Van Ginkel J.M., Van Zwet E.W., Lopriore E., te Pas A.B. The risk for hyperoxaemia after apnoea, bradycardia and hypoxaemia in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2014;99:F269–F273. doi: 10.1136/archdischild-2013-305745. PubMed DOI