Thresholds for oximetry alarms and target range in the NICU: an observational assessment based on likely oxygen tension and maturity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, pozorovací studie
PubMed
32593300
PubMed Central
PMC7320542
DOI
10.1186/s12887-020-02225-3
PII: 10.1186/s12887-020-02225-3
Knihovny.cz E-zdroje
- Klíčová slova
- Alarm fatigue, Neonatology, Pulse oximetry,
- MeSH
- analýza krevních plynů MeSH
- hypoxie diagnóza etiologie MeSH
- jednotky intenzivní péče o novorozence * MeSH
- kojenec MeSH
- kyslík * MeSH
- lidé MeSH
- novorozenec MeSH
- oxymetrie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- kyslík * MeSH
BACKGROUND: Continuous monitoring of SpO2 in the neonatal ICU is the standard of care. Changes in SpO2 exposure have been shown to markedly impact outcome, but limiting extreme episodes is an arduous task. Much more complicated than setting alarm policy, it is fraught with balancing alarm fatigue and compliance. Information on optimum strategies is limited. METHODS: This is a retrospective observational study intended to describe the relative chance of normoxemia, and risks of hypoxemia and hyperoxemia at relevant SpO2 levels in the neonatal ICU. The data, paired SpO2-PaO2 and post-menstrual age, are from a single tertiary care unit. They reflect all infants receiving supplemental oxygen and mechanical ventilation during a 3-year period. The primary measures were the chance of normoxemia (PaO2 50-80 mmHg), risks of severe hypoxemia (PaO2 ≤ 40 mmHg), and of severe hyperoxemia (PaO2 ≥ 100 mmHg) at relevant SpO2 levels. RESULTS: Neonates were categorized by postmenstrual age: < 33 (n = 155), 33-36 (n = 192) and > 36 (n = 1031) weeks. From these infants, 26,162 SpO2-PaO2 pairs were evaluated. The post-menstrual weeks (median and IQR) of the three groups were: 26 (24-28) n = 2603; 34 (33-35) n = 2501; and 38 (37-39) n = 21,058. The chance of normoxemia (65, 95%-CI 64-67%) was similar across the SpO2 range of 88-95%, and independent of PMA. The increasing risk of severe hypoxemia became marked at a SpO2 of 85% (25, 95%-CI 21-29%), and was independent of PMA. The risk of severe hyperoxemia was dependent on PMA. For infants < 33 weeks it was marked at 98% SpO2 (25, 95%-CI 18-33%), for infants 33-36 weeks at 97% SpO2 (24, 95%-CI 14-25%) and for those > 36 weeks at 96% SpO2 (20, 95%-CI 17-22%). CONCLUSIONS: The risk of hyperoxemia and hypoxemia increases exponentially as SpO2 moves towards extremes. Postmenstrual age influences the threshold at which the risk of hyperoxemia became pronounced, but not the thresholds of hypoxemia or normoxemia. The thresholds at which a marked change in the risk of hyperoxemia and hypoxemia occur can be used to guide the setting of alarm thresholds. Optimal management of neonatal oxygen saturation must take into account concerns of alarm fatigue, staffing levels, and FiO2 titration practices.
Zobrazit více v PubMed
Hagadorn JJ, Sink DW, Buus-Frank ME, et al. Alarm safety and oxygen saturation targets in the Vermont Oxford network iNICQ 2015 collaborative. J Perinatol. 2017;37:270–276. doi: 10.1038/jp.2016.219. PubMed DOI
Bitan Y, Meyer J, Shinar D, Zmora E. Nurses’ reactions to alarms in a neonatal intensive care unit. Cogn Tech Work. 2004;6:239–246. doi: 10.1007/s10111-004-0162-2. DOI
Ketko A, Martin C, Nemshak M, et al. Balancing the tension between hyperoxia prevention and alarm fatigue in the NICU. Pediatrics. 2015;136(2):496–504. doi: 10.1542/peds.2014-1550. PubMed DOI
Johnson KR, Hagadorn JJ, Sink DW. Alarm safety and alarm fatigue. Clin Perinatol. 2017;44:713–728. doi: 10.1016/j.clp.2017.05.005. PubMed DOI
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants– 2019 update. Neonatology. 2019;114(2):432–450. doi: 10.1159/000499361. PubMed DOI
Lansdowne K, Strauss DG, Scully CG. Retrospective analysis of pulse oximeter alarm settings in an intensive care unit patient population. BMC Nurs. 2016;15:36. doi: 10.1186/s12912-016-0149-3. PubMed DOI PMC
Cummings JJ, Polin RA. Committee on fetus and newborn. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(2):e20161576.8. doi: 10.1542/peds.2016-1576. PubMed DOI
Huizing MJ, Villamor E, Vento M, Villamor E. Pulse oximetry saturation target for preterm infants: a survey among European neonatal intensive care units. Eur J Pediatr. 2017;176(1):51–56. doi: 10.1007/s00431-016-2804-9. PubMed DOI PMC
Askie LM, Darlow BA, Finer N, et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA. 2018;319(21):2190–2201. doi: 10.1001/jama.2018.5725. PubMed DOI PMC
Sola A, Golombek S, Montes-Bueno MT, et al. Safe oxygen saturation targeting and monitoring in preterm infants: can we avoid hypoxia and hyperoxia? Acta Paediatr. 2014;103:1009–1018. doi: 10.1111/apa.12692. PubMed DOI PMC
Cayabyab R, Arora V, Wertheimer F, et al. Graded oxygen saturation targets and retinopathy of prematurity in extremely preterm infants. Pediatr Res. 2016;80(3):401–406. doi: 10.1038/pr.2016.98. PubMed DOI
Raffay TM, Walsh MC. Pulse oximetry targets in extremely premature infants and associated mortality: one-size may not fit all. J Nat Sci. 2018;4(6):e508. PubMed PMC
Cummings JJ, Lakshminrusimha S. Oxygen saturation targeting by pulse oximetry in the extremely low gestational age neonate: a quixotic quest. Curr Opin Pediatr. 2017;29(2):153–158. doi: 10.1097/MOP.0000000000000458. PubMed DOI PMC
Bachman TE, Newth CJL, Iyer NP, et al. Hypoxemia and hyperoxemic likelihood in pulse oximetery ranges: NICU observational study. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F244–F279. doi: 10.1136/archdischild-2017-314448. PubMed DOI
Bonafide CP, Localio AR, Holmes, et al. Video Analysis of Factors Associated With Response Time to Physiologic Monitor Alarms in a Children’s Hospital. JAMA Pediatr. 2017;171(6):524–531. doi: 10.1001/jamapediatrics.2016.5123. PubMed DOI PMC
Warakomska M, Bachman TE, Wilinska M. Evaluation of two SpO2 alarm strategies during automated FiO2 control in the NICU: a randomized crossover study. BMC Pediatr. 2019;19(1):142. doi: 10.1186/s12887-019-1496-5. PubMed DOI PMC
Johnson KR, Hagadorn JJ, Sink DW. Reducing alarm fatigue in two neonatal intensive care units through a quality improvement collaboration. Am J Perinatol. 2018;35(13):1311–1318. doi: 10.1055/s-0038-1653945. PubMed DOI
Poets CF, Roberts RS, Schmidt B, et al. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. 2015;314:595–603. doi: 10.1001/jama.2015.8841. PubMed DOI
Austin N. Practical recommendations for oxygen saturation targets for newborns cared for in neonatal units. New Zealand: Newborn Clinical Network Clinical Reference Group; 2017.
Pilgrim S. Monitoring of oxygen saturation levels in the newborn in midwifery setting. Clinical Guidelines. 2018;NHS 04220.
Numa A, Aneja H, Awad J, et al. Admission hyperoxia is a risk factor for mortality in pediatric intensive care. Pediatr Crit Care Med. 2018;19(8):699–704. doi: 10.1097/PCC.0000000000001630. PubMed DOI
Aggarwal N, Brower R, Hager D, et al. Oxygen exposure resulting in arterial oxygen tensions above the protocol goal was associated with worse clinical outcomes in acute respiratory distress syndrome. Crit Care Med. 2018;46(4):517–524. doi: 10.1097/CCM.0000000000002886. PubMed DOI PMC
Ross PA, Newth CJL, Khemani R. Accuracy of pulse oximetry in children. Pediatrics. 2014;133:22–29. doi: 10.1542/peds.2013-1760. PubMed DOI
Bard H, Lachance C, Widness JA, Gagnon C. The reactivation of fetal hemoglobin synthesis during anemia of prematurity. Pediatr Res. 1994;36(2):253–256. doi: 10.1203/00006450-199408000-00018. PubMed DOI
De Halleux V, Truttmann A, Gagnon Bard H. The effect of blood transfusion on the hemoglobin oxygen dissociation curve of very early preterm infants during the first week of life. Semin Perinatol. 2002;26(6):411–415. doi: 10.1053/sper.2002.37313. PubMed DOI
Shiao SY. Effects of fetal hemoglobin on accurate measurements of oxygen saturation in neonates. Perinat Neonatal Nurs. 2005;19(4):348–361. doi: 10.1097/00005237-200510000-00010. PubMed DOI
Quine D, Stenson BJ. Arterial oxygen tension (PaO2) values in infants <29 weeks of gestation at currently targeted saturations. Arch Dis Child Fetal Neonatal Ed. 2009;94:F51–F53. doi: 10.1136/adc.2007.135285. PubMed DOI
McClure C, Jang SY, Fairchild K. Alarms, oxygen saturations, and SpO2 averaging time in the NICU. J Neonatal Perinatal Med. 2016;9(4):357–362. doi: 10.3233/NPM-16162. PubMed DOI PMC
Lakshminrusimha S, Manja V, Mathew B, Suresh GK. Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol. 2015;35(1):8–15. doi: 10.1038/jp.2014.199. PubMed DOI PMC
Johnson ED, Boyle B, Juszczak E, et al. Oxygen targeting in preterm infants using the Masimo SET radical pulse oximeter. Arch Dis Child Fetal Neonatal Ed. 2011;96:F429–F433. doi: 10.1136/adc.2010.206011. PubMed DOI PMC