Evaluation of two SpO2 alarm strategies during automated FiO2 control in the NICU: a randomized crossover study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
PubMed
31060536
PubMed Central
PMC6501373
DOI
10.1186/s12887-019-1496-5
PII: 10.1186/s12887-019-1496-5
Knihovny.cz E-zdroje
- Klíčová slova
- Alarm fatigue, Automated oxygen control, Oxygen saturation,
- MeSH
- automatizace MeSH
- hypoxie prevence a kontrola MeSH
- jednotky intenzivní péče o novorozence MeSH
- klinické alarmy * MeSH
- klinické křížové studie MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- nemocnice veřejné MeSH
- novorozenec nedonošený * MeSH
- novorozenec MeSH
- oxygenoterapie metody MeSH
- oxymetrie MeSH
- péče o pacienty v kritickém stavu metody MeSH
- prognóza MeSH
- spotřeba kyslíku fyziologie MeSH
- umělé dýchání metody MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Polsko MeSH
BACKGROUND: Changes in oxygen saturation (SpO2) exposure have been shown to have a marked impact on neonatal outcomes and therefore careful titration of inspired oxygen is essential. In routine use, however, the frequency of SpO2 alarms not requiring intervention results in alarm fatigue and its corresponding risk. SpO2 control systems that automate oxygen adjustments (Auto-FiO2) have been shown to be safe and effective. We speculated that when using Auto-FiO2, alarm settings could be refined to reduce unnecessary alarms, without compromising safety. METHODS: An unblinded randomized crossover study was conducted in a single NICU among infants routinely managed with Auto-FiO2. During the first 6 days of respiratory support a tight and a loose alarm strategy were switched each 24 h. A balanced block randomization was used. The tight strategy set the alarms at the prescribed SpO2 target range, with a 30-s delay. The loose strategy set the alarms 2 wider, with a 90-s delay. The effectiveness outcome was the frequency of SpO2 alarms, and the safety outcomes were time at SpO2 extremes (< 80, > 98%). We hypothesized that the loose strategy would result in a marked decrease in the frequency of SpO2 alarms, and no increases at SpO2 extremes with 20 subjects. Within subject differences between alarm strategies for the primary outcomes were evaluated with Wilcoxon signed-rank test. RESULTS: During a 13-month period 26 neonates were randomized. The analysis included 21 subjects with 49 days of both tight and loose intervention. The loose alarm strategy resulted in a reduction in the median rate of SpO2 alarms from 5.2 to 1.6 per hour (p < 0.001, 95%-CI difference 1.6-3.7). The incidence of hypoxemia and hyperoxemia were very low (less than 0.1%-time) with no difference associated with the alarm strategy (95%-CI difference less than 0.0-0.2%). CONCLUSIONS: In this group of infants we found a marked advantage of the looser alarm strategy. We conclude that the paradigms of alarm strategies used for manual titration of oxygen need to be reconsidered when using Auto-FiO2. We speculate that with optimal settings false positive SpO2 alarms can be minimized, with better vigilance of clinically relevant alarms. TRIAL REGISTRATION: Retrospectively registered 15 May 2018 at ISRCTN ( 49239883 ).
Zobrazit více v PubMed
Cummings JJ, Polin RA. Committee on fetus and newborn. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(2):e20161576. doi: 10.1542/peds.2016-1576. PubMed DOI
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants– 2016 update. Neonatology. 2017;111(2):107–125. doi: 10.1159/000448985. PubMed DOI
Cummings JJ, Lakshminrusimha S. Oxygen saturation targeting by pulse oximetry in the extremely low gestational age neonate: a quixotic quest. Curr Opin in Pediatr. 2017;29(2):153–158. doi: 10.1097/MOP.0000000000000458. PubMed DOI PMC
Bitan Y, Meyer J, Shinar D, Zmora E. Nurses’ reactions to alarms in a neonatal intensive care unit. Cogn Tech Work. 2004;6:239–246. doi: 10.1007/s10111-004-0162-2. DOI
Ketko A, Martin C, Nemshak M, et al. Balancing the tension between hyperoxia prevention and alarm fatigue in the NICU. Pediatrics. 2015;136(2):496–504. doi: 10.1542/peds.2014-1550. PubMed DOI
Bonafide CP, Localio AR. Holmes , et al. video analysis of factors associated with response time to physiologic monitor alarms in a Children’s hospital. JAMA Pediatr. 2017;171(6):524–531. doi: 10.1001/jamapediatrics.2016.5123. PubMed DOI PMC
Johnson KR, Hagadorn JJ, Sink DW. Alarm safety and alarm fatigue. Clin Perinatol. 2017;44:713–728. doi: 10.1016/j.clp.2017.05.005. PubMed DOI
Cvach M. Monitor alarm fatigue: an integrative review. Biomed Instrum Technol. 2012;46(4):268–277. doi: 10.2345/0899-8205-46.4.268. PubMed DOI
Johnson KR, Hagadorn JJ, Sink DW. Reducing alarm fatigue in two neonatal intensive care units through a quality improvement collaboration. Am J Perinatol. 2018;35(13):1311–1318. doi: 10.1055/s-0038-1653945. PubMed DOI
McClure C, Young-Jang S, Fairchild K. Alarms, oxygen saturations, and SpO2 averaging time in the NICU. J Neonatal Perinatal Med. 2016;9(4):357–362. doi: 10.3233/NPM-16162. PubMed DOI PMC
Hagadorn JJ, Sink DW, Buus-Frank ME. Alarm safety and oxygen saturation targets in the Vermont Oxford network iNICQ 2015 collaborative. J Perinatol. 2017;37:270–276. doi: 10.1038/jp.2016.219. PubMed DOI
Mitra S, Singh B, El-Naggar W, McMillan DD. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: a systematic review and meta-analysis. J Perinatol. 2018;38(4):351–360. doi: 10.1038/s41372-017-0037-z. PubMed DOI
Wilinska M, Skrzypek M, Bachman T, et al. Using the automated FiO2-SpO2 control in neonatal intensive care units in Poland: a preliminary report. Developmental Period Medicine. 2015;XIX:3(216. PubMed
Wilinska M, Bachman T, Swietlinski J, et al. Automated FiO2-SpO2 control system in neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range. BMC Pediatr. 2014;14:130. doi: 10.1186/1471-2431-14-130. PubMed DOI PMC
van Kaam AH, Hummler HD, Wilinska M, et al. Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants. J Pediatr. 2015;167:545–550. doi: 10.1016/j.jpeds.2015.06.012. PubMed DOI
van den Heuvel ME, van Zanten HA , T. Bachman T, et al. Optimal target range of closed-loop inspired oxygen support in preterm infants: a randomized controlled study. J Pediatr 2018;197:36:41. PubMed
Bachman TE, Newth CJL, Iyer NP, et al. Hypoxemia and hyperoxemic likelihood in pulse oximetery ranges: NICU observational study. Arch Dis Child Fetal Neonatal Ed. 2018;0:F1–F6. PubMed
Poets CF, Roberts RS, Schmidt B, et al. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. 2015;314:595–603. doi: 10.1001/jama.2015.8841. PubMed DOI
van Zenten HA, Kuypers KLAM, Stenson BJ, et al. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2017;102(5):F395–F399. doi: 10.1136/archdischild-2016-312172. PubMed DOI
Routine use of automated FiO2 control in Poland: prospective registry and survey
ISRCTN
ISRCTN49239883