• This record comes from PubMed

Automated Oxygen Delivery in Neonatal Intensive Care

. 2022 ; 10 () : 915312. [epub] 20220622

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Oxygen is the most common drug used in the neonatal intensive care. It has a narrow therapeutic range in preterm infants. Too high (hyperoxemia) or low oxygen (hypoxemia) is associated with adverse neonatal outcomes. It is not only prudent to maintain oxygen saturations in the target range, but also to avoid extremes of oxygen saturations. In routine practice when done manually by the staff, it is challenging to maintain oxygen saturations within the target range. Automatic control of oxygen delivery is now feasible and has shown to improve the time spent with in the target range of oxygen saturations. In addition, it also helps to avoid extremes of oxygen saturation. However, there are no studies that evaluated the clinical outcomes with automatic control of oxygen delivery. In this narrative review article, we aim to present the current evidence on automatic oxygen control and the future directions.

See more in PubMed

Tan A, Schulze A, O'Donnell CP, Davis PG. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst Rev. (2005) 2005:Cd002273. 10.1002/14651858.CD002273.pub2 PubMed DOI PMC

Dargaville PA, Marshall AP, McLeod L, Salverda HH, Te Pas AB, Gale TJ. Automation of oxygen titration in preterm infants: current evidence and future challenges. Early Hum Dev. (2021) 162:105462. 10.1016/j.earlhumdev.2021.105462 PubMed DOI

Hütten MC, Goos TG, Ophelders D, Nikiforou M, Kuypers E, Willems M, et al. . Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs. Pediatr Res. (2015) 78:657–63. 10.1038/pr.2015.158 PubMed DOI

Jensen EA, Whyte RK, Schmidt B, Bassler D, Vain NE, Roberts RS. Association between intermittent hypoxemia and severe bronchopulmonary dysplasia in preterm infants. Am J Respir Crit Care Med. (2021) 204:1192–9. 10.1164/rccm.202105-1150OC PubMed DOI PMC

Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, et al. . Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. (2015) 314:595–603. 10.1001/jama.2015.8841 PubMed DOI

Cunningham S, Fleck BW, Elton RA, McIntosh N. Transcutaneous oxygen levels in retinopathy of prematurity. Lancet. (1995) 346:1464–5. 10.1016/S0140-6736(95)92475-2 PubMed DOI

Laughon M, Allred EN, Bose C, O'Shea TM, Van Marter LJ, Ehrenkranz RA, et al. . Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. (2009) 123:1124–31. 10.1542/peds.2008-0862 PubMed DOI PMC

Saugstad OD. Update on oxygen radical disease in neonatology. Curr Opin Obstet Gynecol. (2001) 13:147–53. 10.1097/00001703-200104000-00009 PubMed DOI

Askie LM, Darlow BA, Davis PG, Finer N, Stenson B, Vento M, et al. . Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev. (2017) 4:Cd011190. 10.1002/14651858.CD011190.pub2 PubMed DOI PMC

Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. . Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA. (2018) 319:2190–201. 10.1001/jama.2018.5725 PubMed DOI PMC

Hagadorn JI, Furey AM, Nghiem TH, Schmid CH, Phelps DL, Pillers DA, et al. . Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks' gestation: the AVIOx study. Pediatrics. (2006) 118:1574–82. 10.1542/peds.2005-0413 PubMed DOI

Martin RJ, Wang K, Köroglu O, Di Fiore J, Kc P. Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology. (2011) 100:303–10. 10.1159/000329922 PubMed DOI PMC

Beddis IR, Collins P, Levy NM, Godfrey S, Silverman M. New technique for servo-control of arterial oxygen tension in preterm infants. Arch Dis Child. (1979) 54:278–80. 10.1136/adc.54.4.278 PubMed DOI PMC

Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. . Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. (2010) 362:1959–69. 10.1056/NEJMoa0911781 PubMed DOI PMC

Darlow BA, Marschner SL, Donoghoe M, Battin MR, Broadbent RS, Elder MJ, et al. . Randomized controlled trial of oxygen saturation targets in very preterm infants: two year outcomes. J Pediatr. (2014) 165:30–5.e2. 10.1016/j.jpeds.2014.01.017 PubMed DOI

Schmidt B, Whyte RK, Asztalos EV, Moddemann D, Poets C, Rabi Y, et al. . Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. (2013) 309:2111–20. 10.1001/jama.2013.5555 PubMed DOI

Tarnow-Mordi W, Stenson B, Kirby A, Juszczak E, Donoghoe M, Deshpande S, et al. . Outcomes of two trials of oxygen-saturation targets in preterm infants. N Engl J Med. (2016) 374:749–60. 10.1056/NEJMoa1514212 PubMed DOI

Vaucher YE, Peralta-Carcelen M, Finer NN, Carlo WA, Gantz MG, Walsh MC, et al. . Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial. N Engl J Med. (2012) 367:2495–504. 10.1056/NEJMoa1208506 PubMed DOI PMC

Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr. (2015) 169:332–40. 10.1001/jamapediatrics.2014.3307 PubMed DOI PMC

Manja V, Saugstad OD, Lakshminrusimha S. Oxygen saturation targets in preterm infants and outcomes at 18-24 months: a systematic review. Pediatrics. (2017) 139:e20161609. 10.1542/peds.2016-1609 PubMed DOI PMC

Saugstad OD, Aune D. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology. (2014) 105:55–63. 10.1159/000356561 PubMed DOI

Stenson BJ. Achieved oxygenation saturations and outcome in extremely preterm infants. Clin Perinatol. (2019) 46:601–10. 10.1016/j.clp.2019.05.011 PubMed DOI

Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. . European consensus guidelines on the management of respiratory distress syndrome - 2016 update. Neonatology. (2017) 111:107–25. 10.1159/000448985 PubMed DOI

Gantz MG, Carlo WA, Finer NN, Rich W, Faix RG, Yoder BA, et al. . Achieved oxygen saturations and retinopathy of prematurity in extreme preterms. Arch Dis Child Fetal Neonat Ed. (2020) 105:138–44. 10.1136/archdischild-2018-316464 PubMed DOI PMC

Askie LM, Brocklehurst P, Darlow BA, Finer N, Schmidt B, Tarnow-Mordi W. NeOProM: neonatal oxygenation prospective meta-analysis collaboration study protocol. BMC Pediatr. (2011) 11:6. 10.1186/1471-2431-11-6 PubMed DOI PMC

Schmidt B, Whyte RK, Roberts RS. Trade-off between lower or higher oxygen saturations for extremely preterm infants: the first benefits of oxygen saturation targeting (BOOST) II trial reports its primary outcome. J Pediatr. (2014) 165:6–8. 10.1016/j.jpeds.2014.03.004 PubMed DOI

Salverda HH, Cramer SJE, Witlox R, Dargaville PA, Te Pas AB. Automated oxygen control in preterm infants, how does it work and what to expect: a narrative review. Arch Dis Child Fetal Neonatal Ed. (2021) 106:215–21. 10.1136/archdischild-2020-318918 PubMed DOI

Morozoff EP, Smyth JA. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates. Annu Int. (2009) 2009:3079–82. 10.1109/IEMBS.2009.5332532 PubMed DOI

Claure N, Gerhardt T, Everett R, Musante G, Herrera C, Bancalari E. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics. (2001) 107:1120–4. 10.1542/peds.107.5.1120 PubMed DOI

Claure N, D'Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. J Pediatr. (2009) 155:640–5.e1-2. 10.1016/j.jpeds.2009.04.057 PubMed DOI

Claure N, Bancalari E, D'Ugard C, Nelin L, Stein M, Ramanathan R, et al. . Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics. (2011) 127:e76–83. 10.1542/peds.2010-0939 PubMed DOI

Lal M, Tin W, Sinha S. Automated control of inspired oxygen in ventilated preterm infants: crossover physiological study. Acta Paediatr. (2015) 104:1084–9. 10.1111/apa.13137 PubMed DOI

Morozoff E, Smyth JA, Saif M. Applying computer models to realize closed-loop neonatal oxygen therapy. Anesth Analg. (2017) 124:95–103. 10.1213/ANE.0000000000001367 PubMed DOI

Sturrock S, Ambulkar H, Williams EE, Sweeney S, Bednarczuk NF, Dassios T, et al. . A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants. Acta Paediatr. (2021) 110:833–7. 10.1111/apa.15585 PubMed DOI

Hallenberger A, Poets CF, Horn W, Seyfang A, Urschitz MS. Closed-loop automatic oxygen control (CLAC) in preterm infants: a randomized controlled trial. Pediatrics. (2014) 133:e379–85. 10.1542/peds.2013-1834 PubMed DOI

van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, et sal. Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants. J Pediatr. (2015) 167:545–50.e1-2. 10.1016/j.jpeds.2015.06.012 PubMed DOI

Waitz M, Schmid MB, Fuchs H, Mendler MR, Dreyhaupt J, Hummler HD. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J Pediatr. (2015) 166:240–4.e1. 10.1016/j.jpeds.2014.10.007 PubMed DOI

Gajdos M, Waitz M, Mendler MR, Braun W, Hummler H. Effects of a new device for automated closed loop control of inspired oxygen concentration on fluctuations of arterial and different regional organ tissue oxygen saturations in preterm infants. Arch Dis Child Fetal Neonatal Ed. (2019) 104:F360–5. 10.1136/archdischild-2018-314769 PubMed DOI

Schwarz CE, Kidszun A, Bieder NS, Franz AR, König J, Mildenberger E, et al. . Is faster better? A randomised crossover study comparing algorithms for closed-loop automatic oxygen control. Arch Dis Child Fetal Neonat Ed. (2020) 105:369–74. 10.1136/archdischild-2019-317029 PubMed DOI

Urschitz MS, Horn W, Seyfang A, Hallenberger A, Herberts T, Miksch S, et al. . Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med. (2004) 170:1095–100. 10.1164/rccm.200407-929OC PubMed DOI

Plottier GK, Wheeler KI, Ali SK, Fathabadi OS, Jayakar R, Gale TJ, et al. . Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed. (2017) 102:F37–43. 10.1136/archdischild-2016-310647 PubMed DOI

Dargaville PA, Marshall AP, Ladlow OJ, Bannink C, Jayakar R, Eastwood-Sutherland C, et al. . Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Arch Dis Child Fetal Neonatal Ed. (2022) 107:39–44. 10.1136/archdischild-2020-321538 PubMed DOI

Zapata J, Gómez JJ, Araque Campo R, Matiz Rubio A, Sola A. A randomised controlled trial of an automated oxygen delivery algorithm for preterm neonates receiving supplemental oxygen without mechanical ventilation. Acta Paediatr. (2014) 103:928–33. 10.1111/apa.12684 PubMed DOI PMC

Reynolds PR, Miller TL, Volakis LI, Holland N, Dungan GC, Roehr CC, et al. . Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed. (2019) 104:F366–71. 10.1136/archdischild-2018-315342 PubMed DOI

Dijkman KP, Mohns T, Dieleman JP, van Pul C, Goos TG, Reiss IK, et al. . Predictive intelligent control of oxygenation (PRICO) in preterm infants on high flow nasal cannula support: a randomised cross-over study. Arch Dis Child Fetal Neonatal Ed. (2021) 106:621–6. 10.1136/archdischild-2020-320728 PubMed DOI

Abdo M, Hanbal A, Asla MM, Ishqair A, Alfar M, Elnaiem W, et al. . Automated versus manual oxygen control in preterm infants receiving respiratory support: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. (2021) 1−8. 10.1080/14767058.2021.1904875 PubMed DOI

Salverda HH, Cramer SJE, Witlox R, Gale TJ, Dargaville PA, Pauws SC, et al. . Comparison of two devices for automated oxygen control in preterm infants: a randomised crossover trial. Arch Dis Child Fetal Neonat Ed. (2022) 107:20–5. 10.1136/archdischild-2020-321387 PubMed DOI PMC

Maiwald CA, Niemarkt HJ, Poets CF, Urschitz MS, König J, Hummler H, et al. . Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO(2)-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr. (2019) 19:363. 10.1186/s12887-019-1735-9 PubMed DOI PMC

Dani C, Pratesi S, Luzzati M, Petrolini C, Montano S, Remaschi G, et al. . Cerebral and splanchnic oxygenation during automated control of inspired oxygen [FiO(2)] in preterm infants. Pediatr Pulmonol. (2021) 56:2067–72. 10.1002/ppul.25379 PubMed DOI

Li T, Matsushima M, Timpson W, Young S, Miedema D, Gupta M, et al. . Epidemiology of patient monitoring alarms in the neonatal intensive care unit. J Perinatol. (2018) 38:1030–8. 10.1038/s41372-018-0095-x PubMed DOI PMC

Warakomska M, Bachman TE, Wilinska M. Evaluation of two SpO(2) alarm strategies during automated FiO(2) control in the NICU: a randomized crossover study. BMC Pediatr. (2019) 19:142. 10.1186/s12887-019-1496-5 PubMed DOI PMC

Van Zanten HA, Kuypers K, Stenson BJ, Bachman TE, Pauws SC, Te Pas AB. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed. (2017) 102:F395–f9. 10.1136/archdischild-2016-312172 PubMed DOI

Salverda HH, Oldenburger NJ, Rijken M, Pauws SC, Dargaville PA, Te Pas AB. The effect of automated oxygen control on clinical outcomes in preterm infants: a pre- and post-implementation cohort study. Eur J Pediatr. (2021) 180:2107–13. 10.1007/s00431-021-03982-8 PubMed DOI PMC

Kaltsogianni O, Dassios T, Belbal R, Greenough A. Survey of closed-loop automated oxygen control systems in neonatal intensive care units. Acta Paediatr. (2022) 111:1002–3. 10.1111/apa.16239 PubMed DOI PMC

Sturrock S, Williams E, Dassios T, Greenough A. Closed loop automated oxygen control in neonates-A review. Acta Paediatr. (2020) 109:914–22. PubMed

Cummings JJ Polin RA Committee Committee on Fetus and Newborn . Oxygen targeting in extremely low birth weight infants. Pediatrics. (2016) 138:e20161576. 10.1542/peds.2016-1576 PubMed DOI

Di Fiore JM, Martin RJ, Li H, Morris N, Carlo WA, Finer N, et al. . Patterns of oxygenation, mortality, and growth status in the surfactant positive pressure and oxygen trial cohort. J Pediatr. (2017) 186:49–56.e1. 10.1016/j.jpeds.2017.01.057 PubMed DOI PMC

Schmidt B, Whyte RK. Oxygen saturation target ranges and alarm settings in the NICU: what have we learnt from the neonatal oxygenation prospective meta-analysis (NeOProM)? Semin Fetal Neonatal Med. (2020) 25:101080. 10.1016/j.siny.2020.101080 PubMed DOI

Pemberton C, Howarth C. Resuscitation Council UK: review of updated 2021 neonatal life support guideline. Arch Dis Child Educ Pract Ed. (2022). 10.1136/archdischild-2021-323277. [Epub ahead of print]. PubMed DOI

Aziz K, Lee HC, Escobedo MB, Hoover AV, Kamath-Rayne BD, Kapadia VS, et al. . Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. (2020) 142(16_suppl_2):S524–50. 10.1161/CIR.0000000000000902 PubMed DOI

Goos TG, Rook D, van der Eijk AC, Kroon AA, Pichler G, Urlesberger B, et al. . Observing the resuscitation of very preterm infants: are we able to follow the oxygen saturation targets? Resuscitation. (2013) 84:1108–13. 10.1016/j.resuscitation.2013.01.025 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...