HLA-G 14bp Ins/Del Polymorphism, Plasma Level of Soluble HLA-G, and Association with IL-6/IL-10 Ratio and Survival of Glioma Patients

. 2022 Apr 27 ; 12 (5) : . [epub] 20220427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35626255

Grantová podpora
Z/2018/1079/VIII/LF/017 Slovak non-profit organization League against Cancer (LPR; 2018)
UK 252/2018 and UK 299/2019 Comenius University grants

Odkazy

PubMed 35626255
PubMed Central PMC9139224
DOI 10.3390/diagnostics12051099
PII: diagnostics12051099
Knihovny.cz E-zdroje

HLA-G is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities, and its expression and level of its soluble form (sHLA-G) may play an important role in tumor prognosis. The HLA-G 14bp ins/del polymorphism and the plasma level of soluble HLA-G (sHLA-G) were investigated by a polymerase chain reaction and ELISA, respectively, in 59 glioma patients. A significantly higher proportion of glioma patients had the 14 nt insert in both homozygous and heterozygous states compared to the control group. Glioma patients also had higher plasma levels of sHLA-G. Patients with methylated MGMT promoters had lower levels of sHLA-G than those with unmethylated MGMT promoters. The level of sHLA-G negatively correlated with the overall survival of patients. Glioblastoma patients who survived more than one year after diagnosis had lower levels of sHLA-G than those surviving less than one year. Patients with sHLA-G levels below the cut-off value of 40 U/mL survived significantly longer than patients with sHLA-G levels above 40 U/mL. The levels of sHLA-G were also negatively correlated with the level of IL-6 (p = 0.0004) and positively with IL-10/IL-6 (p = 0.046). Conclusion: The presence of the 14 nt insert in both homozygous and heterozygous states of the HLA-G 14bp ins/del polymorphism is more frequent in glioma patients and the elevated plasma levels of sHLA-G are negatively associated with their survival.

Zobrazit více v PubMed

Carosella E.D., Rouas-Freiss N., Roux D.T., Moreau P., LeMaoult J. HLA-G: An Immune Checkpoint Molecule. Adv. Immunol. 2015;127:33–144. PubMed

Carosella E.D., Favier B., Rouas-Freiss N., Moreau P., Lemaoult J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood. 2008;111:4862–4870. doi: 10.1182/blood-2007-12-127662. PubMed DOI

Ferreira L.M.R., Meissner T.B., Tilburgs T., Strominger J.L. HLA-G: At the interface of maternal-fetal tolerance. Trends Immunol. 2017;38:272–286. doi: 10.1016/j.it.2017.01.009. PubMed DOI

Ishitani A., Geraghty D.E. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc. Natl. Acad. Sci. USA. 1992;89:3947–3951. doi: 10.1073/pnas.89.9.3947. PubMed DOI PMC

Kirszenbaum M., Moreau P., Gluckman E., Dausset J., Carosella E. An alternatively spliced form of HLA-G mRNA in human trophoblasts and evidence for the presence of HLA-G transcript in adult lymphocytes. Proc. Natl. Acad. Sci. USA. 1994;91:4209–4213. doi: 10.1073/pnas.91.10.4209. PubMed DOI PMC

Donadi E.A., Castelli E.C., Arnaiz-Villena A., Roger M., Rey D., Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell. Mol. Life Sci. 2011;68:369–395. doi: 10.1007/s00018-010-0580-7. PubMed DOI PMC

Kovats S., Main E.K., Librach C., Stubblebine M., Fisher S.J., DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248:220–223. doi: 10.1126/science.2326636. PubMed DOI

Loustau M., Anna F., Dréan R., Lecomte M., Langlade-Demoyen P., Caumartin J. HLA-G Neo-Expression on Tumors. Front. Immunol. 2020;11:1685. doi: 10.3389/fimmu.2020.01685. PubMed DOI PMC

Contini P., Murdaca G., Puppo F., Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front. Immunol. 2020;11:1613. doi: 10.3389/fimmu.2020.01613. PubMed DOI PMC

Rizzo R., Bortolotti D., Bolzani S., Fainardi E. HLA-G molecules in autoimmune diseases and infections. Front. Immunol. 2014;5:592. doi: 10.3389/fimmu.2014.00592. PubMed DOI PMC

Negrini S., Contini P., Pupo F., Greco M., Murdaca G., Puppo F. Expression of membrane-bound human leucocyte antigen-G in systemic sclerosis and systemic lupus erythematosus. Hum. Immunol. 2020;81:162–167. doi: 10.1016/j.humimm.2019.12.004. PubMed DOI

Bu X., Zhong J., Li W., Cai S., Gao Y., Ping B. Immunomodulating functions of human leukocyte antigen-G and its role in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2021;100:1391–1400. doi: 10.1007/s00277-021-04486-z. PubMed DOI PMC

Xu C.X., Zhang Y.L., Huang X.Y., Han F., Jin Z.K., Tian P.X., Dou M. Prediction of acute renal allograft rejection by combined HLA-G 14-bp insertion/deletion genotype analysis and detection of kidney injury molecule-1 and osteopontin in the peripheral blood. Transpl. Immunol. 2021;65:101371. doi: 10.1016/j.trim.2021.101371. PubMed DOI

Le Rond S., Le Maoult J., Creput C., Menier C., Deschamps M., Le Friec G., Amiot L., Durrbach A., Jean Dausset J., Carosella E.D., et al. Alloreactive CD4+ and CD8+ T cells express the immunotolerant HLA-G molecule in mixed lymphocyte reactions: In vivo implications in transplanted patients. Eur. J. Immunol. 2004;34:649–660. doi: 10.1002/eji.200324266. PubMed DOI

Brugiere O., Thabut G., Krawice-Radanne I., Rizzo R., Dauriat G., Danel C., Suberbielle C., Mal H., Stern M., Schilte C., et al. Role of HLA-G as a predictive marker of low risk of chronic rejection in lung transplant recipients: A clinical prospective study. Am. J. Transplant. 2015;15:461–471. doi: 10.1111/ajt.12977. PubMed DOI

Amodio G., Sales de Albuquerque R., Gregori S. New insights into HLA-G mediated tolerance. Tissue Antigens. 2014;84:255–263. doi: 10.1111/tan.12427. PubMed DOI

Jaakola A., Roger M., Faucher M.C., Syrjänen K., Grénman S., Syrjänen S., Louvanto K. HLA-G polymorphism impacts the outcome of oral HPV infections in women. BMC Infect. Dis. 2021;21:419. doi: 10.1186/s12879-021-06079-7. PubMed DOI PMC

Rashidi S., Farhadi L., Ghasemi F., Sheikhesmaeili F., Mohammadi A. The potential role of HLA-G in the pathogenesis of HBV infection: Immunosuppressive or immunoprotective? Infect. Genet. Evol. 2020;85:104580. doi: 10.1016/j.meegid.2020.104580. PubMed DOI

Kaprio T., Sariola H., Linder N., Lundin J., Kere J., Haglund C., Wedenoja S. HLA-G expression correlates with histological grade but not with prognosis in colorectal carcinoma. HLA. 2021;98:213–217. doi: 10.1111/tan.14334. PubMed DOI

Rouas-Freiss N., Moreau P., LeMaoult J., Carosella E.D. The dual role of HLA-G in cancer. J. Immunol. Res. 2014;2014:359748. doi: 10.1155/2014/359748. PubMed DOI PMC

Yan W.H. HLA-G expression in cancers: Potential role in diagnosis, prognosis and therapy. Endocr. Metab. Immune Disord. Drug Targets. 2011;11:76–89. doi: 10.2174/187153011794982059. PubMed DOI

Lin A., Zhang X., Xu H.H., Xu D.P., Ruan Y.Y., Yan W.H. HLA-G expression is associated with metastasis and poor survival in the Balb/c nu/nu murine tumor model with ovarian cancer. Int. J. Cancer. 2012;131:150–157. doi: 10.1002/ijc.26375. PubMed DOI

Urosevic M., Dummer R. Human Leukocyte Antigen–G and Cancer Immunoediting. Cancer Res. 2008;68:627–630. doi: 10.1158/0008-5472.CAN-07-2704. PubMed DOI

Dhatchinamoorthy K., Colbert J.D., Rock K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021;12:636568. doi: 10.3389/fimmu.2021.636568. PubMed DOI PMC

Ścieżyńska A., Komorowski M., Soszyńska M., Malejczyk J. NK Cells as Potential Targets for Immunotherapy in Endometriosis. J. Clin. Med. 2019;8:1468. doi: 10.3390/jcm8091468. PubMed DOI PMC

Llano M., Lee N., Navarro F., Garcia P., Albar J.P., Geraghty D.E., Lopez-Botet M. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: Preferential response to an HLA-G-derived nonamer. Eur. J. Immunol. 1998;28:2854–2863. doi: 10.1002/(SICI)1521-4141(199809)28:09<2854::AID-IMMU2854>3.0.CO;2-W. PubMed DOI

LeMaoult J., Zafaranloo K., Le Danff C., Carosella E.D. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;6:662–664. doi: 10.1096/fj.04-1617fje. PubMed DOI

Chen B.G., Xu D.P., Lin A., Yan W.H. NK cytolysis is dependent on the proportion of HLA-G expression. Hum. Immunol. 2013;74:286–289. doi: 10.1016/j.humimm.2012.12.005. PubMed DOI

Riteau B., Menier C., Khalil-Daher I., Martinozzi S., Pla M., Dausset J., Carosella E.D., Rouas-Freiss N. HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int. Immunol. 2001;13:193–201. doi: 10.1093/intimm/13.2.193. PubMed DOI

Kapasi K., Albert S.E., Yie S., Zavazava N., Librach C.L. HLA-G has a concentration-dependent effect on the generation of anallo-CTL response. Immunology. 2000;101:191–200. doi: 10.1046/j.1365-2567.2000.00109.x. PubMed DOI PMC

Naji A., Menier C., Morandi F., Agaugue S., Maki G., Ferretti E., Bruel S., Pistoia V., Carosella E.D., Rouas-Freiss N. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J. Immunol. 2014;192:1536–1546. doi: 10.4049/jimmunol.1300438. PubMed DOI

Naji A., Le Rond S., Durrbach A., Krawice-Radanne I., Creput C., Daouya M., Caumartin J., LeMaoult J., Carosella E.D., Rouas-Freiss N. CD3+CD4 low and CD3+CD8 low are induced by HLA-G: Novel human peripheral blood suppressor T-cell subsets involved in transplant acceptance. Blood. 2007;110:3936–3948. doi: 10.1182/blood-2007-04-083139. PubMed DOI

Dumont C., Jacquier A., Verine J., Noel F., Goujon A., Wu C.L., Hung T.M., Desgrandchamps F., Culine S., Carosella E.D., et al. CD8+PD-1-ILT2+ T Cells Are an Intratumoral Cytotoxic Population Selectively Inhibited by the Immune-Checkpoint HLA-G. Cancer. Immunol. Res. 2019;7:1619–1632. doi: 10.1158/2326-6066.CIR-18-0764. PubMed DOI

LeMaoult J., Krawice-Radanne I., Dausset J., Carosella E.D. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+T cells. Proc. Natl. Acad. Sci. USA. 2004;101:7064–7069. doi: 10.1073/pnas.0401922101. PubMed DOI PMC

Horuzsko A., Lenfant F., Munn D.H., Mellor A.L. Maturation of antigen-presenting cells is compromised in HLA-G transgenicmice. Int. Immunol. 2001;13:385–394. doi: 10.1093/intimm/13.3.385. PubMed DOI

Cai Z., Wang L., Han Y., Gao W., Wei X., Gong R., Zhu M., Sun Y., Yu S. Immunoglobulin like transcript 4 and human leukocyte antigen G interaction promotes the progression of human colorectal cancer. Int. J. Oncol. 2019;54:1943–1954. doi: 10.3892/ijo.2019.4761. PubMed DOI PMC

Contini P., Ghio M., Poggi A., Filaci G., Indiveri F., Ferrone S., Puppo F. Soluble HLA-F-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur. J. Immunol. 2003;33:125–134. doi: 10.1002/immu.200390015. PubMed DOI

Lindaman A., Dowden A., Zavazava N. Soluble HLA-G molecules induce apoptosis in natural killer cells. Am. J. Reprod. Immunol. 2006;56:68–76. doi: 10.1111/j.1600-0897.2006.00395.x. PubMed DOI

Ajith A., Portik-Dobos V., Nguyen-Lefebvre A.T., Callaway C., Horuzsko D.D., Kapoor R., Zayas C., Maenaka K., Mulloy L.L., Horuzsko A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival. FASEB J. 2019;33:5220–5236. doi: 10.1096/fj.201802017R. PubMed DOI PMC

Bainbridge D.R., Ellis S.A., Sargent I.L. HLA-G suppresses proliferation of CD4 (+) T-lymphocytes. J. Reprod. Immunol. 2000;48:17–26. doi: 10.1016/S0165-0378(00)00070-X. PubMed DOI

Amodio G., Gregori S. Human tolerogenic DC-10: Perspectives for clinical applications. Transpl. Res. 2012;1:14. doi: 10.1186/2047-1440-1-14. PubMed DOI PMC

Gregori S., Tomasoni D., Pacciani V., Scirpoli M., Battaglia M., Magnani C.F., Hauben E., Roncarolo M.G. Dierentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood. 2010;116:935–944. doi: 10.1182/blood-2009-07-234872. PubMed DOI

Lin A., Yan W.H. Intercellular transfer of HLA-G: Its potential in cancer immunology. Clin. Transl. Immunol. 2019;8:e1077. doi: 10.1002/cti2.1077. PubMed DOI PMC

Amiot L., Ferrone S., Grosse-Wilde H., Seliger B. Biology of HLA-G in cancer: A candidate molecule for therapeutic intervention? Cell. Mol. Life Sci. 2011;68:417–431. doi: 10.1007/s00018-010-0583-4. PubMed DOI PMC

Wastowski I.J., Simões R.T., Yaghi L., Donadi E.A., Pancoto J.T., Poras I., Lechapt-Zalcman E., Bernaudin M., Valable S., Carlotti C.G., Jr., et al. Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2′-deoxycytidine and interferon-γ treatments: Results from a multicentric study. Am. J. Pathol. 2013;182:540–552. doi: 10.1016/j.ajpath.2012.10.021. PubMed DOI PMC

Krijgsman D., Roelands J., Hendrickx W., Bedognetti D., Kuppen P.J.K. HLA-G: A New Immune Checkpoint in Cancer? Editorial. Int. J. Mol. Sci. 2020;21:4528. doi: 10.3390/ijms21124528. PubMed DOI PMC

Hviid T.V., Rizzo R., Melchiorri L., Stignani M., Baricordi O.R. Polymorphism in the 5′ upstream regulatory and 3′ untranslated regions of the HLA-G gene in relation to soluble HLA-G and IL-10 expression. Hum. Immunol. 2006;67:53–62. doi: 10.1016/j.humimm.2005.12.003. PubMed DOI

Hviid T.V., Hylenius S., Hoegh A.M., Kruse C., Christiansen O.B. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens. 2002;60:122–132. doi: 10.1034/j.1399-0039.2002.600202.x. PubMed DOI

Rousseau P., Le Discorde M., Mouillot G., Marcou C., Carosella E.D., Moreau P. The 14bp deletion insertion polymorphism in the 3′ UT region of the HLA-G gene influences HLA-G mRNA stability. Hum. Immunol. 2003;64:1005–1010. doi: 10.1016/j.humimm.2003.08.347. PubMed DOI

Chun S.J., Park S.H., Park C.K., Kim J.W., Kim T.M., Choi S.H., Lee S.T., Kim I.H. Survival gain with re-Op/RT for recurred high-grade gliomas depends upon risk groups. Radiother. Oncol. 2018;128:254–259. doi: 10.1016/j.radonc.2018.05.024. PubMed DOI

Liang R., Chen N., Li M., Wang X., Mao Q., Liu Y. Significance of systemic immune-inflammation index in the differential diagnosis of high- and low-grade gliomas. Clin. Neurol. Neurosurg. 2018;164:50–52. doi: 10.1016/j.clineuro.2017.11.011. PubMed DOI

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Sasaki M., Anast J., Bassett W., Kawakami T., Sakuragi N., Dahiya R. Bisulfite conversion-specific and methylation-specific PCR: A sensitive technique for accurate evaluation of CpG methylation. Biochem. Biophys. Res. Commun. 2003;309:305–309. doi: 10.1016/j.bbrc.2003.08.005. PubMed DOI

[(accessed on 20 February 2018)]. Available online: https://www.snpstats.net/start.htm.

Lin A., Yan W.H. Heterogeneity of HLA-G expression in cancers: Facing the Challenges. Front. Immunol. 2018;9:2164. doi: 10.3389/fimmu.2018.02164. PubMed DOI PMC

Wagner S.N., Rebmann V., Willers C.P., Grosse-Wilde H., Goos M. Expression analysis of classic and non-classic HLA molecules before interferon alfa-2b treatment of melanoma. Lancet. 2000;56:220–221. doi: 10.1016/S0140-6736(00)02486-7. PubMed DOI

Boujelbene N., Ben Y.H., Babay W., Gadria S., Zemni I., Azaiez H., Dhouioui S., Zidi N., Mchiri R., Mrad K., et al. HLA-G, HLA-E, and IDO overexpression predicts a worse survival of Tunisian patients with vulvar squamous cell carcinoma. HLA. 2019;94:11–24. doi: 10.1111/tan.13536. PubMed DOI

Imani R., Seyedmajidi M., Ghasemi N., Moslemi D., Shafaee S., Bijani A. HLA-G Expression is Associated with an Unfavorable Prognosis of Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2018;19:2527–2533. PubMed PMC

De Kruijf E.M., Sajet A., van Nes J.G., Natanov R., Putter H., Smit V.T., Liefers G.J., van den Elsen P.J., van de Velde C.J., Kuppen P.J. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 2010;185:7452–7459. doi: 10.4049/jimmunol.1002629. PubMed DOI

Guo Z.Y., Lv Y.G., Wang L., Shi S.J., Yang F., Zheng G.X., Wen W.H., Yang A.G. Predictive value of HLA-G and HLA-E in the prognosis of colorectal cancer patients. Cell. Immunol. 2015;293:10–16. doi: 10.1016/j.cellimm.2014.10.003. PubMed DOI

Durmanova V., Kluckova K., Filova B., Minarik G., Kozak J., Rychly B., Svajdler M., Matejcik V., Steno J., Bucova M. HLA-G 5’URR regulatory polymorphisms are associated with the risk of developing gliomas. Int. J. Neurosci. 2021:1–10. doi: 10.1080/00207454.2021.1922401. online ahead of print. PubMed DOI

de Magalhães K.C.S.F., Silva K.R., Gomes N.A., Sadissou I., Carvalho G.T., Buzellin M.A., Tafuri L.S., Nunes C.B., Nunes M.B., Donadi E.A., et al. HLA-G 14bp In/Del and +3142 C/G Genotypes Are Differentially Expressed Between Patients with Grade IV Gliomas and Controls. Int. J. Neurosci. 2021;131:327–335. doi: 10.1080/00207454.2020.1744593. PubMed DOI

Lau D.T., Norris M.D., Marshall G.M., Haber M., Ashton L.J. HLA-G polymorphisms, genetic susceptibility, and clinical outcome in childhood neuroblastoma. Tissue Antigens. 2011;78:421–427. doi: 10.1111/j.1399-0039.2011.01781.x. PubMed DOI

Ferguson R., Ramanakumar A.V., Koushik A., Coutlée F., Franco E., Roger M. Human Leukocyte Antigen G Polymorphism Is Associated with an Increased Risk of Invasive Cancer of the Uterine Cervix. Int. J. Cancer. 2012;131:E312–E319. doi: 10.1002/ijc.27356. PubMed DOI

Ge Y.Z., Ge Q., Li M.H., Shi G.M., Xu X., Xu L.W., Xu Z., Lu T.Z., Wu R., Zhou L.H., et al. Association between human leukocyte antigen-G 14-bp insertion/deletion polymorphism and cancer risk: A meta-analysis and systematic review. Hum. Immunol. 2014;75:827–832. doi: 10.1016/j.humimm.2014.06.004. PubMed DOI

Jiang Y., Chen S., Jia S., Zhu Z., Gao X., Dong D., Gao Y. Association of HLA-G 3′ UTR 14-bp insertion/deletion polymorphism with hepatocellular carcinoma susceptibility in a Chinese population. DNA Cell Biol. 2011;30:1027–1032. doi: 10.1089/dna.2011.1238. PubMed DOI

Eskandari-Nasab E., Hashemi M., Hasani S.S., Omrani M., Taheri M., Mashhadi M.A. Association between HLA-G 3’UTR 14-bp ins/del polymorphism and susceptibility to breast cancer. Cancer Biomark. 2013;13:253–259. doi: 10.3233/CBM-130364. PubMed DOI

Li T., Huang H., Liao D., Ling H., Su B., Cai M. Genetic Polymorphism in HLA-G 3’UTR 14-bp Ins/Del and Risk of Cancer: A Meta-Analysis of Case-Control Study. Mol. Genet. Genom. 2015;290:1235–1245. doi: 10.1007/s00438-014-0985-3. PubMed DOI

Fan X., Wang Y., Zhang C., Liu X., Qian Z., Jiang T.J. Human leukocyte antigen-G overexpression predicts poor clinical outcomes in low-grade gliomas. Neuroimmunology. 2016;294:27–31. doi: 10.1016/j.jneuroim.2016.03.015. PubMed DOI

Li Y., Patel S.P., Roszik J., Qin Y. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Front. Immunol. 2018;9:1591. doi: 10.3389/fimmu.2018.01591. PubMed DOI PMC

Ziliotto M., Rodrigues R.M., Bogo A.J.C. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med. Hypotheses. 2020;140:109664. doi: 10.1016/j.mehy.2020.109664. PubMed DOI

Gupta S.K., Kizilbash S.H., Carlson B.L., Mladek A.C., Boakye-Agyeman F., Bakken K.K., Pokorny J.L., Schroeder M.A., Decker P.A., Cen L., et al. Delineation of MGMT Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma. J. Natl. Cancer Inst. 2015;108:djv369. doi: 10.1093/jnci/djv369. PubMed DOI PMC

Konig L., Kasimir-Bauer S., Hoffmann O., Bittner A.K., Wagner B., Manvailer L.F., Sabine Schramm S., Bankfalvi A., Giebel B., Rainer Kimmig R., et al. The prognostic impact of soluble and vesicular HLA-G and its relationship to circulating tumor cells in neoadjuvant treated breast cancer patients. Hum. Immunol. 2016;77:791–799. doi: 10.1016/j.humimm.2016.01.002. PubMed DOI

Ben A.A., Beauchemin K., Faucher M.C., Hamzaoui A., Hamzaoui K., Roger M. Human Leukocyte Antigen G Polymorphism and Expression Are Associated with an Increased Risk of Non-Small-Cell Lung Cancer and Advanced Disease Stage. PLoS ONE. 2016;11:e0161210. PubMed PMC

Ben Y.H., Babay W., Bortolotti D., Boujelbene N., Laaribi A.B., Zidi N., Kehila M., Chelbi H., Boudabous A., Mrad K., et al. Increased plasmatic soluble HLA-G levels in endometrial cancer. Mol. Immunol. 2018;99:82–86. doi: 10.1016/j.molimm.2018.04.007. PubMed DOI

Lázaro-Sánchez A.D., Salces-Ortiz P., Velásquez L.I., Orozco-Beltrán D., Díaz-Fernández N., Juárez-Marroquí A. HLA-G as a new tumor biomarker: Detection of soluble isoforms of HLA-G in the serum and saliva of patients with colorectal cancer. Clin. Transl. Oncol. 2020;22:1166–1171. doi: 10.1007/s12094-019-02244-2. PubMed DOI

Kirana C., Ruszkiewicz A., Stubbs R.S., Hardingham J.E., Hewett P.J., Maddern G.J., Hauben E. Soluble HLA-G is a differential prognostic marker in sequential colorectal cancer disease stages. Int. J. Cancer. 2017;140:2577–2586. doi: 10.1002/ijc.30667. PubMed DOI

Hasanah N., Mintaroem K., Fitri L.E., Noorhamdani N. Interleukin 10 Induces the Expression of Membrane-Bound HLA- G and the Production of Soluble HLA-G on HeLa CCL-2 Cells. Open Access Maced. J. Med. Sci. 2019;7:3554–3558. doi: 10.3889/oamjms.2019.830. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...