Trends in Neonatal Ophthalmic Screening Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
00064203
Ministry of Health, Czech Republic - conceptual development of research organization, Motol University Hospital, Prague, Czech Republic
PubMed
35626406
PubMed Central
PMC9140133
DOI
10.3390/diagnostics12051251
PII: diagnostics12051251
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, neonatal ophthalmic screening, wide-field digital imaging system,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neonatal ophthalmic screening should lead to early diagnosis of ocular abnormalities to reduce long-term visual impairment in selected diseases. If a treatable pathology is diagnosed within a few days after the birth, adequate therapy may be indicated to facilitate the best possible conditions for further development of visual functions. Traditional neonatal ophthalmic screening uses the red reflex test (RRT). It tests the transmittance of the light through optical media towards the retina and the general disposition of the central part of the retina. However, RRT has weaknesses, especially in posterior segment affections. Wide-field digital imaging techniques have shown promising results in detecting anterior and posterior segment pathologies. Particular attention should be paid to telemedicine and artificial intelligence. These methods can improve the specificity and sensitivity of neonatal eye screening. Both are already highly advanced in diagnosing and monitoring of retinopathy of prematurity.
Zobrazit více v PubMed
Azad A.D., Al-Moujahed A., Ludwig C.A., Vail D., Callaway N.F., Rosenblatt T.R., Kumm J., Moshfeghi D.M. The utility of universal newborn eye screening: A review. Ophthalmic Surg. Lasers Imaging Retin. 2021;52:S6–S16. doi: 10.3928/23258160-20211115-02. PubMed DOI
Toli A., Perente A., Labiris G. Evaluation of the red reflex: An overview for the pediatrician. World J. Methodol. 2021;11:263–277. doi: 10.5662/wjm.v11.i5.263. PubMed DOI PMC
Ludwig C.A., Callaway N.F., Blumenkranz M.S., Fredrick D.R., Moshfeghi D.M. Validity of the red reflex exam in the newborn eye screening test cohort. Ophthalmic Surg. Lasers Imaging Retin. 2018;49:103–110. doi: 10.3928/23258160-20180129-04. PubMed DOI
Xu Y., Wang Y., Li S. A meta-analysis of prognostic biomarkers in neonatal retinal hemorrhage. Int. Ophthalmol. 2022;42:677–688. doi: 10.1007/s10792-021-02055-x. PubMed DOI
Wood E.H., Capone A., Jr., Drenser K.A., Berrocal A., Hubbard G.B., Callaway N.F., Kychenthal A., Ells A., Harper C.A., 3rd, Besirli C.G., et al. Referable macular hemorrhage-A clinically meaningful screening target in newborn infants. Position statement of the association of pediatric retina surgeons. Ophthalmic Surg. Lasers Imaging Retin. 2022;53:3–6. doi: 10.3928/23258160-20211214-01. PubMed DOI
Augestad L.B., Klingenberg O., Fosse P. Braille use among Norwegian children from 1967 to 2007: Trends in the underlying causes. Acta Ophthalmol. 2012;90:428–434. doi: 10.1111/j.1755-3768.2010.02100.x. PubMed DOI
Glatz M., Riedl R., Glatz W., Schneider M., Wedrich A., Bolz M., Strauss R.W. Blindness and visual impairment in Central Europe. PLoS ONE. 2022;17:e0261897. doi: 10.1371/journal.pone.0261897. PubMed DOI PMC
Aiello L.P. Vascular endothelial growth factor and the eye. Past, present and future. Arch. Ophthalmol. 1996;114:1252–1254. doi: 10.1001/archopht.1996.01100140452016. PubMed DOI
Provis J.M., Leech J., Diaz C.M., Penfold P.L., Stone J., Keshet E. Development of the human retinal vasculature: Cellular relations and VEGF expression. Exp. Eye Res. 1997;65:555–568. doi: 10.1006/exer.1997.0365. PubMed DOI
Andersen C.C., Phelps D.L. Peripheral retinal ablation for threshold retinopathy of prematurity in preterm infants. Cochrane. Database Syst. Rev. 2000;1999:CD001693. doi: 10.1002/14651858.CD001693. PubMed DOI PMC
Hartnett M.E., Penn J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med. 2012;367:2515–2526. doi: 10.1056/NEJMra1208129. PubMed DOI PMC
Kim S.J., Port A.D., Swan R., Campbell J.P., Chan R.V.P., Chiang M.F. Retinopathy of prematurity: A review of risk factors and their clinical significance. Surv. Ophthalmol. 2018;63:618–637. doi: 10.1016/j.survophthal.2018.04.002. PubMed DOI PMC
Fierson W.M., Chiang M.F., Good W., Phelps D., Reynolds J., Robbins S.L., Karr D.J., Bradford G.E., Nischal K., Roarty J., et al. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2018;142:e20183061. doi: 10.1542/peds.2018-3061. PubMed DOI
Reynolds J.D., Dobson V., Quinn G.E., Fielder A.R., Palmer E.A., Saunders R.A., Hardy R.J., Phelps D.L., Baker J.D., Trese M.T., et al. Evidence-based screening criteria for retinopathy of prematurity: Natural history data from the CRYO-ROP and LIGHT-ROP studies. Arch. Ophthalmol. 2002;120:1470–1476. doi: 10.1001/archopht.120.11.1470. PubMed DOI
International Committee for the Classification of Retinopathy of Prematurity the international classification of retinopathy of prematurity revisited. Arch. Ophthalmol. 2005;123:991–999. doi: 10.1001/archopht.123.7.991. PubMed DOI
Chiang M.F., Quinn G.E., Fielder A.R., Ostmo S.R., Paul Chan R.V., Berrocal A., Binenbaum G., Blair M., Peter Campbell J., Capone A., Jr., et al. International classification of retinopathy of prematurity, third edition. Ophthalmology. 2021;128:e51–e68. doi: 10.1016/j.ophtha.2021.05.031. PubMed DOI PMC
Lofqvist C., Andersson E., Sigurdsson J., Engstrom E., Hard A.L., Niklasson A., Smith L.E., Hellstrom A. Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch. Ophthalmol. 2006;124:1711–1718. doi: 10.1001/archopht.124.12.1711. PubMed DOI
Hellstrom A., Engstrom E., Hard A.L., Albertsson-Wikland K., Carlsson B., Niklasson A., Lofqvist C., Svensson E., Holm S., Ewald U., et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics. 2003;112:1016–1020. doi: 10.1542/peds.112.5.1016. PubMed DOI
Cao J.H., Wagner B.D., Cerda A., McCourt E.A., Palestine A., Enzenauer R.W., Braverman R.S., Wong R.K., Tsui I., Gore C., et al. Colorado retinopathy of prematurity model: A multi-institutional validation study. J. AAPOS. 2016;20:220–225. doi: 10.1016/j.jaapos.2016.01.017. PubMed DOI
Binenbaum G., Ying G.S., Quinn G.E., Huang J., Dreiseitl S., Antigua J., Foroughi N., Abbasi S. The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model. Arch. Ophthalmol. 2012;130:1560–1565. doi: 10.1001/archophthalmol.2012.2524. PubMed DOI
Hutchinson A.K., Melia M., Yang M.B., VanderVeen D.K., Wilson L.B., Lambert S.R. Clinical models and algorithms for the prediction of retinopathy of prematurity: A report by the american academy of ophthalmology. Ophthalmology. 2016;123:804–816. doi: 10.1016/j.ophtha.2015.11.003. PubMed DOI
Almeida A.C., Bitoque D.B., Martins C., Coelho C., Borrego L.M., Silva G.A. Serum levels of placental growth factor reflect the severity of retinopathy of prematurity. Acta Paediatr. 2021;110:2778–2779. doi: 10.1111/apa.15976. PubMed DOI
Silverman R.H., Urs R., Jokl D.H., Pinto L., Coki O., Sahni R., Horowitz J.D., Brooks S.E. Ocular blood flow in preterm neonates: A preliminary report. Transl. Vis. Sci. Technol. 2021;10:22. doi: 10.1167/tvst.10.2.22. PubMed DOI PMC
Tao T., Meng X., Xu N., Li J., Cheng Y., Chen Y., Huang L. Ocular phenotype and genetical analysis in patients with retinopathy of prematurity. BMC Ophthalmol. 2022;22:22. doi: 10.1186/s12886-022-02252-x. PubMed DOI PMC
Lorenz B., Spasovska K., Elflein H., Schneider N. Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicentre field study. Graefes. Arch. Clin. Exp. Ophthalmol. 2009;247:1251–1262. doi: 10.1007/s00417-009-1077-7. PubMed DOI PMC
Wood E.H., Moshfeghi A.A., Nudleman E.D., Moshfeghi D.M. Evaluation of visunex medical’s PanoCam(TM) LT and PanoCam(TM) pro wide-field imaging systems for the screening of ROP in newborn infants. Expert. Rev. Med. Devices. 2016;13:705–712. doi: 10.1080/17434440.2016.1208560. PubMed DOI
Dhami A., Gupta G., Dhami N.B., Arora N., Dhami G.S. Analysis of the parental satisfaction for retinopathy of prematurity screening using binocular indirect ophthalmoscopy versus wide field retinal imaging. Indian J. Ophthalmol. 2021;69:2142–2145. doi: 10.4103/ijo.IJO_3705_20. PubMed DOI PMC
Goyal A., Gopalakrishnan M., Anantharaman G., Chandrashekharan D.P., Thachil T., Sharma A. Smartphone guided wide-field imaging for retinopathy of prematurity in neonatal intensive care unit—A smart ROP (SROP) initiative. Indian J. Ophthalmol. 2019;67:840–845. doi: 10.4103/ijo.IJO_1177_18. PubMed DOI PMC
Vural A., Ekinci D.Y., Onur I.U., Hergunsel G.O., Yigit F.U. Comparison of fluorescein angiographic findings in type 1 and type 2 retinopathy of prematurity with intravitreal bevacizumab monotherapy and spontaneous regression. Int. Ophthalmol. 2019;39:2267–2274. doi: 10.1007/s10792-018-01064-7. PubMed DOI
Vural A., Demirayak B., Ozbas M., Onur I.U., Celik G. Comparison of fluorescein angiography findings in stage 3 retinopathy of prematurity in zone II treated with or without Anti-VEGF. Eur. J. Ophthalmol. 2022:11206721221076691. doi: 10.1177/11206721221076691. PubMed DOI
Mansukhani S.A., Hutchinson A.K., Neustein R., Schertzer J., Allen J.C., Hubbard G.B. Fluorescein angiography in retinopathy of prematurity: Comparison of infants treated with bevacizumab to those with spontaneous regression. Ophthalmol. Retina. 2019;3:436–443. doi: 10.1016/j.oret.2019.01.016. PubMed DOI PMC
Mao J., Shao Y., Lao J., Yu X., Chen Y., Zhang C., Li H., Shen L. Ultra-wide-field imaging and intravenous fundus fluorescein angiography in infants with retinopathy of prematurity. Retina. 2020;40:2357–2365. doi: 10.1097/IAE.0000000000002761. PubMed DOI PMC
Maldonado R.S., Toth C.A. Optical coherence tomography in retinopathy of prematurity: Looking beyond the vessels. Clin. Perinatol. 2013;40:271–296. doi: 10.1016/j.clp.2013.02.007. PubMed DOI PMC
Maldonado R.S., O’Connell R.V., Sarin N., Freedman S.F., Wallace D.K., Cotten C.M., Winter K.P., Stinnett S., Chiu S.J., Izatt J.A., et al. Dynamics of human foveal development after premature birth. Ophthalmology. 2011;118:2315–2325. doi: 10.1016/j.ophtha.2011.05.028. PubMed DOI PMC
Cabrera M.T., Maldonado R.S., Toth C.A., O’Connell R.V., Chen B.B., Chiu S.J., Farsiu S., Wallace D.K., Stinnett S.S., Panayotti G.M., et al. Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2012;153:167–175.e163. doi: 10.1016/j.ajo.2011.06.017. PubMed DOI PMC
Chen X., Mangalesh S., Tran-Viet D., Freedman S.F., Vajzovic L., Toth C.A. Fluorescein angiographic characteristics of macular edema during infancy. JAMA Ophthalmol. 2018;136:538–542. doi: 10.1001/jamaophthalmol.2018.0467. PubMed DOI PMC
Chen X., Prakalapakorn S.G., Freedman S.F., Vajzovic L., Toth C.A. Differentiating retinal detachment and retinoschisis using handheld optical coherence tomography in stage 4 retinopathy of prematurity. JAMA Ophthalmol. 2020;138:81–85. doi: 10.1001/jamaophthalmol.2019.4796. PubMed DOI PMC
Chen X., Mangalesh S., Dandridge A., Tran-Viet D., Wallace D.K., Freedman S.F., Toth C.A. Spectral-domain OCT findings of retinal vascular-avascular junction in infants with retinopathy of prematurity. Ophthalmol. Retina. 2018;2:963–971. doi: 10.1016/j.oret.2018.02.001. PubMed DOI PMC
Cernichiaro-Espinosa L.A., Olguin-Manriquez F.J., Henaine-Berra A., Garcia-Aguirre G., Quiroz-Mercado H., Martinez-Castellanos M.A. New insights in diagnosis and treatment for Retinopathy of Prematurity. Int. Ophthalmol. 2016;36:751–760. doi: 10.1007/s10792-016-0177-8. PubMed DOI
Bao Y., Ming W.K., Mou Z.W., Kong Q.H., Li A., Yuan T.F., Mi X.S. Current application of digital diagnosing systems for retinopathy of prematurity. Comput. Methods Programs Biomed. 2021;200:105871. doi: 10.1016/j.cmpb.2020.105871. PubMed DOI
Zhang J., Liu Y., Mitsuhashi T., Matsuo T. Accuracy of deep learning algorithms for the diagnosis of retinopathy of prematurity by fundus images: A systematic review and meta-analysis. J. Ophthalmol. 2021;2021:8883946. doi: 10.1155/2021/8883946. PubMed DOI PMC
Islam M.M., Yang H.C., Poly T.N., Jian W.S., Jack Li Y.C. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Comput. Methods Programs Biomed. 2020;191:105320. doi: 10.1016/j.cmpb.2020.105320. PubMed DOI
Lu W., Tong Y., Yu Y., Xing Y., Chen C., Shen Y. Applications of artificial intelligence in ophthalmology: General overview. J. Ophthalmol. 2018;2018:5278196. doi: 10.1155/2018/5278196. PubMed DOI PMC
Stranak Z., Pencak M., Veith M. Arteficial intelligence in diabetic retinopathy screening. A review. Cesk Slov. Oftalmol. 2021;77:224–231. doi: 10.31348/2021/6. PubMed DOI
Attallah O. DIAROP: Automated deep learning-based diagnostic tool for retinopathy of prematurity. Diagnostics. 2021;11:2034. doi: 10.3390/diagnostics11112034. PubMed DOI PMC
Wang J., Ji J., Zhang M., Lin J.W., Zhang G., Gong W., Cen L.P., Lu Y., Huang X., Huang D., et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening. JAMA Netw. Open. 2021;4:e218758. doi: 10.1001/jamanetworkopen.2021.8758. PubMed DOI PMC