Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean

. 2022 May 16 ; 19 (10) : . [epub] 20220516

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35627577

The main objective of this research is to analyze the most relevant aspects of the management of the organic fraction of municipal solid waste (OFMSW) and the Sustainable and Circular Production Models (SCPMs) in Latin America and the Caribbean (LAC). The bibliometric method was used for the analysis of 190 studies obtained from the Scopus and Latin America and The Caribbean on Health Sciences (LILACS) databases. The systematic review provided information on the main research approaches: identification and characterization; quantification; strategic and interdisciplinary management; and processes for treatment or valorization. Finally, an evaluation of public policies and strategies was performed. The results show that Brazil, Mexico, and Colombia have the highest number of publications on OFMSW. The findings also indicate that both research and policy strategies on SCPMs prioritize bioenergy and biofuels as the leading alternatives for the valorization of OFMSW. It also reflects the relevance of the Circular Economy (CE) and Bioeconomy (BE) as the main drivers of waste recovery and/or valorization in LAC. These aspects are of great interest to governments that are still in the process of implementing SCPMs. However, for those more advanced in this area, it provides valuable information on progress, policy effectiveness, and future actions for improvement.

Zobrazit více v PubMed

Savino A., Solórzano G., Quispe C., Correal M.C. In: Waste Management Outlook for Latin America and the Caribbean Waste Management Outlook for Latin America and the Caribbean. Savino A., editor. United Nations Environment Programme, Latin America and the Caribbean Office; Panama City, Panama: 2018.

Hettiarachchi H., Ryu S., Caucci S., Silva R. Municipal solid waste management in Latin America and the Caribbean: Issues and potential solutions from the governance perspective. Recycling. 2018;3:19. doi: 10.3390/recycling3020019. DOI

Merchán V.M. Master’s Thesis. Universiteit Utrecht; Utrecht, The Netherlands: 2018. Waste-to-Energy in Mexico. Technical Potential for Biogas Production and Greenhouse Gas Mitigation from the Anaerobic Digestion of Municipal Solid Waste.

Babs-Shomoye F., Kabir R. Health effects of solid waste disposal at a dumpsite on the surrounding human settlements. J. Public Health Dev. Ctries. 2016;2:268–275.

WHO . Waste and Human Health: Evidence and Needs. WHO; Bonn, Germany: 2015.

WHO . Population Health and Waste Management: Scientifc Data and Policy Options. WHO; Copenhagen, Denmak: 2007.

Vinti G., Bauza V., Clasen T., Medlicott K., Tudor T., Zurbrügg C., Vaccari M. Municipal solid waste management and adverse health outcomes: A systematic review. Int. J. Environ. Res. Public Health. 2021;18:4331. doi: 10.3390/ijerph18084331. PubMed DOI PMC

Mahler C.F., De Oliveira S.B., Taquette S.R. Doenças respiratórias de população infantil residente próxima a um lixão. Biosci. J. 2016;32:1403–1411. doi: 10.14393/BJ-v32n1a2016-33067. DOI

Njoku P.O., Edokpayi J.N., Odiyo J.O. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health. 2019;16:2125. doi: 10.3390/ijerph16122125. PubMed DOI PMC

Giusti L. A review of waste management practices and their impact on human health. Waste Manag. 2009;29:2227–2239. doi: 10.1016/j.wasman.2009.03.028. PubMed DOI

Gouveia N., Prado R.R. do Health risks in areas close to urban solid waste landfill sites. Rev. Saude Publica. 2010;44:859–866. doi: 10.1590/S0034-89102010005000029. PubMed DOI

Mataloni F., Badaloni C., Golini M.N., Bolignano A., Bucci S., Sozzi R., Forastiere F., Davoli M., Ancona C. Morbidity and mortality of people who live close to municipal waste landfills: A multisite cohort study. Int. J. Epidemiol. 2016;45:806. doi: 10.1093/ije/dyw052. PubMed DOI PMC

Vaccari M., Vinti G., Tudor T. An Analysis of the Risk Posed by Leachate from Dumpsites in Developing Countries. Environments. 2018;5:99. doi: 10.3390/environments5090099. DOI

Gobierno de México . Proyectos de Aprovechamiento Energético a partir de Residuos Urbanos en México. GIZ Mexico; Mexico city, Mexico: 2018.

Wang D., He J., Tang Y.-T., Higgitt D., Robinson D. Life cycle assessment of municipal solid waste management in Nottingham, England: Past and future perspectives. J. Clean. Prod. 2020;251:119636. doi: 10.1016/j.jclepro.2019.119636. DOI

Hogland M., Āriņa D., Kriipsalu M., Jani Y., Kaczala F., de Sá Salomão A.L., Orupõld K., Pehme K.-M., Rudoviča V., Denafas G., et al. Remarks on four novel landfill mining case studies in Estonia and Sweden. J. Mater. Cycles Waste Manag. 2018;20:1355–1363. doi: 10.1007/s10163-017-0683-4. DOI

Krook J., Svensson N., Eklund M. Landfill mining: A critical review of two decades of research. Waste Manag. 2012;32:513–520. doi: 10.1016/j.wasman.2011.10.015. PubMed DOI

Basinas P., Rusín J., Chamrádová K. Dry anaerobic digestion of the fine particle fraction of mechanically-sorted organic fraction of municipal solid waste in laboratory and pilot reactor. Waste Manag. 2021;136:83–92. doi: 10.1016/j.wasman.2021.09.041. PubMed DOI

United Nations . Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. UN Department of Economic and Social Affairs; New York, NY, USA: 2015.

Forbes H., Quested T., O’Connor C. Food Waste Index Report 2021. United Nations Environment Programme; Nairobi, Kenya: 2021.

de Miguel C., Martínez K., Pereira M., Kohout M. Economía Circular en América Latina y el Caribe. Oportunidad para una recuperación transformadora. ECLAC; Santiago, Chile: 2021.

Schröder P., Albaladejo M., Ribas P.A., MacEwen M., Tilkanen J. The Circular Economy in Latin America and the Caribbean Opportunities for Building Resilience. Energy, Environment and Resources Programme. Chatham House; London, UK: 2020. 65p

International Advisory Council on Global Bioeconomy . Global Bioeconomy Policy Report (IV): A Decade of Bioeconomy Policy Development around the World. A Report from the International Advisory Council on Global Bioeconomy. IACGB; Berlin, Germany: 2020.

European Environmental Agency . In: The Circular Economy and the Bioeconomy—Partners in Sustainability. European Environment Agency, editor. Office of the European Union; Luxembourg: 2018.

Pavolová H., Lacko R., Hajduová Z., Šimková Z., Rovňák M. The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia. Int. J. Environ. Res. Public Health. 2020;17:1839. doi: 10.3390/ijerph17061839. PubMed DOI PMC

Ellen MacArthur Foundation . Towards the Circular Economy: Accelerating the Scale-Up across Global Supply Chains. Ellen MacArthur Foundation; Isle of Wight, UK: 2014.

Rodríguez A.G., Rodrigues M., Sotomayor O. Towards a Sustainable Bioeconomy in Latin America and the Caribbean: Elements for a Regional Vision. ECLAC; Santiago, Chile: 2019.

Brenes-Peralta L., Jiménez-Morales M.F.M.F., Campos-Rodríguez R., De Menna F., Vittuari M. Decision-Making Process in the Circular Economy: A Case Study on University Food Waste-to-Energy Actions in Latin America. Energies. 2020;13:2291. doi: 10.3390/en13092291. DOI

Betancourt Morales C.M., Zartha Sossa J.W. Circular economy in Latin America: A systematic literature review. Bus. Strategy Environ. 2020;29:2479–2497. doi: 10.1002/bse.2515. DOI

Sasson A., Malpica C. Bioeconomy in Latin America. New Biotechnol. 2018;40:40–45. doi: 10.1016/j.nbt.2017.07.007. PubMed DOI

Elsevier about Scopus—Abstract and Citation Database. [(accessed on 8 April 2022)]. Available online: https://www.elsevier.com/solutions/scopus.

Yactayo-Alburquerque M.T., Alen-Méndez M.L., Azañedo D., Comandé D., Hernández-Vásquez A. Impact of oral diseases on oral health-related quality of life: A systematic review of studies conducted in Latin America and the Caribbean. PLoS ONE. 2021;16:e0252578. doi: 10.1371/journal.pone.0252578. PubMed DOI PMC

Zupic I., Čater T. Bibliometric Methods in Management and Organization. Organ. Res. Methods. 2015;18:429–472. doi: 10.1177/1094428114562629. DOI

Murillo J., Villegas L.M., Ulloa-Murillo L.M., Rodríguez A.R. Recent trends on omics and bioinformatics approaches to study SARS-CoV-2: A bibliometric analysis and mini-review. Comput. Biol. Med. 2021;128:104162. doi: 10.1016/j.compbiomed.2020.104162. PubMed DOI PMC

Belmonte-Ureña L.J., Plaza-Úbeda J.A., Vazquez-Brust D., Yakovleva N. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: A global analysis and future agenda. Ecol. Econ. 2021;185:107050. doi: 10.1016/j.ecolecon.2021.107050. DOI

Duque-Acevedo M., Belmonte-Ureña L.J., Cortés-García F.J., Camacho-Ferre F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020;22:e00902. doi: 10.1016/j.gecco.2020.e00902. DOI

Duque-Acevedo M., Belmonte-Ureña L.J., Yakovleva N., Camacho-Ferre F. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management. Int. J. Environ. Res. Public Health. 2020;17:9549. doi: 10.3390/ijerph17249549. PubMed DOI PMC

López Torres M., Espinosa Lloréns M.d.C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag. 2008;28:2229–2234. doi: 10.1016/j.wasman.2007.10.006. PubMed DOI

Garcia-Peña E.I., Parameswaran P., Kang D.W., Canul-Chan M., Krajmalnik-Brown R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011;102:9447–9455. doi: 10.1016/j.biortech.2011.07.068. PubMed DOI

Diener S., Studt Solano N.M., Roa Gutiérrez F., Zurbrügg C., Tockner K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization. 2011;2:357–363. doi: 10.1007/s12649-011-9079-1. DOI

Schneider F. The evolution of food donation with respect to waste prevention. Waste Manag. 2013;33:755–763. doi: 10.1016/j.wasman.2012.10.025. PubMed DOI

Matharu A.S., de Melo E.M., Houghton J.A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016;215:123–130. doi: 10.1016/j.biortech.2016.03.039. PubMed DOI

Barreira L.P., Philippi Junior A., Rodrigues M.S. Usinas de compostagem do Estado de São Paulo: Qualidade dos compostos e processos de produção. Eng. Sanit. Ambient. 2006;11:385–393. doi: 10.1590/S1413-41522006000400012. DOI

Silva H., Barbieri A.F., Monte-Mór R.L. Demografia do consumo urbano: Um estudo sobre a geração de resíduos sólidos domiciliares no município de belo horizonte. Rev. Bras. Estud. Popul. 2012;29:421–449. doi: 10.1590/S0102-30982012000200012. DOI

Gutiérrez E.E.L., Medina G.B., Roman M.O., Flórez O.A., Martínez O.L. Obtención y cualtificación de fibra dietaria a partir de resíduos de algunas frutas comúnes en Colombia. Vitae. 2002;9:5–14.

Strasburg V.J., Jahno V.D. Paradigmas das práticas de gestão ambiental no segmento de produção de refeições no Brasil—Paradigms of environmental management practices in the meal production sector in Brazil. Eng. Sanit. Ambient. 2017;22:3–12. doi: 10.1590/s1413-41522017155538. DOI

Mersoni C., Reichert G.A. Comparação de cenários de tratamento de resíduos sólidos urbanos por meio da técnica da Avaliação do Ciclo de Vida: O caso do município de Garibaldi, RS TT—Comparison of municipal solid waste treatment scenarios through the technique of Life Cycle Asse. Eng. Sanit. Ambient. 2017;22:863–875. doi: 10.1590/s1413-41522017150351. DOI

Menezes R.O., Castro S.R., Silva J.B.G., Teixeira G.P., Silva M.A.M. Statistical analysis of the gravimetric characterization of household solid waste: A case study from the city of juiz de fora, Minas Gerais, Brazil. Eng. Sanit. Ambient. 2019;24:271–282. doi: 10.1590/s1413-41522019177437. DOI

de Oliveira Silva C., Konrad O., Callado N.H., Feitosa A.K., de Araujo L.G.S. Differentiation of estimates in per capita generation and gravimetric analysis of urban solid wastes. Rev. Agronegocio Meio Ambient. 2021;14:e8128. doi: 10.17765/2176-9168.2021V14N3E8128. DOI

Juffo E.E.L.D., de Moraes I.M.A., Allegretti G., Pelegrine D.d.C.P., de Moraes J.F.D., Schmidt V. Avaliação quantitativa e do grau de segregação dos resíduos sólidos orgânicos gerados em serviços de alimentação de um shopping center em Porto Alegre RS TT—Quantitative evaluation and segregation of organic solid waste generated in food services of. Hig. Aliment. 2016;30:53–58.

Fierro Ochoa A., Armijo de Vega C., Buenrostro Delgado O., Valdez Salas B. Analysis of solid waste generation in supermarkets in the city of Mexicali, Mexico. Rev. Int. Contam. Ambient. 2010;26:291–297.

Ruiz Morales M. Caracterización de residuos sólidos en la universidad iberoamericana, ciudad de México. Rev. Int. Contam. Ambient. 2011;28:93–97.

Angulo J., Mahecha L., Yepes S.A., Yepes A.M., Bustamante G., Jaramillo H., Valencia E., Villamil T., Gallo J. Quantitative and nutritional characterization of fruit and vegetable waste from marketplace: A potential use as bovine feedstuff? J. Environ. Manag. 2012;95:S203–S209. doi: 10.1016/j.jenvman.2010.09.022. PubMed DOI

Robles-Ramírez M.d.C., Monterrubio-López R., Mora-Escobedo R., Beltrán-Orozco M.d.C. Evaluation of extracts from potato and tomato wastes as natural antioxidant additives. Arch. Latinoam. Nutr. 2016;66:66–73.

Dal’ Magro G.P., Talamini E. Estimating the magnitude of the food loss and waste generated in Brazil. Waste Manag. Res. 2019;37:706–716. doi: 10.1177/0734242X19836710. PubMed DOI

Tenser C.M.R., Ginani V.C., Araújo W.M.C. Ações contra o desperdício em restaurantes e similares. Hig. Aliment. 2007;21:22–25.

Henz G.P., Porpino G. Perdas e desperdício de alimentos: Como o Brasil tem enfrentado este desafio global? Hortic. Bras. 2017;35:472–482. doi: 10.1590/s0102-053620170402. DOI

Aranha F.Q., Gustavo A.F.S. e Avaliação do desperdício de alimentos em uma unidade de alimentação e nutrição na cidade de Botucatu, SP. Hig. Aliment. 2018;32:28–32.

de Mello A.G., Back F.d.S., Baratta R., Pires L.A., Colares L.G.T. Avaliação do desperdício de alimentos em unidade de alimentação e nutrição localizada em um clube da cidade do Rio de Janeiro—Evaluation of food waste in food and nutrition unit located in a club in the city of Rio de Janeiro. Hig. Aliment. 2011;25:33–39.

Mota Viana R., Ferreira L. Avaliação do desperdício de alimentos em unidade de alimentação e nutrição cidade de Januária, MG. Hig. Aliment. 2017;31:22–26.

Fehr M., Calçado M.D.R., Romão D.C. The basis of a policy for minimizing and recycling food waste. Environ. Sci. Policy. 2002;5:247–253. doi: 10.1016/S1462-9011(02)00036-9. DOI

Oliveira dos Santos Menezes R., Oliveira dos Anjos R. Otimização do manejo de resíduos em restaurante universitário de Salvador, BA. Hig. Aliment. 2017;31:36–39.

Kinasz T.R. A produção de resíduos sólidos em serviços de alimentação e nutrição e a educação ambiental: Uma abordagem sobre a percepção, atuação e formação do nutricionista—The production of solid wastes in food services and nutrition and environmental educati. Hig. Aliment. 2009;23:44–53.

Basso N., Brkic M., Moreno C., Poullier P., Romero A. Valoremos los alimentos, evitemos pérdidas y desperdicios. Diaeta. 2016;34:25–32.

Gonçalves A.T.T., Moraes F.T.F., Marques G.L., Lima J.P., Lima R.S. Urban solid waste challenges in the BRICS countries: A systematic literature review. Rev. Ambient. Agua. 2018;13:2. doi: 10.4136/ambi-agua.2157. DOI

Ibáñez-Forés V., Bovea M.D., Coutinho-Nóbrega C., de Medeiros-García H.R., Barreto-Lins R. Temporal evolution of the environmental performance of implementing selective collection in municipal waste management systems in developing countries: A Brazilian case study. Waste Manag. 2018;72:65–77. doi: 10.1016/j.wasman.2017.10.027. PubMed DOI

Chinchilla Barrantes N.P., Sagot Carvajal P.M., Villalobos Villalobos G.V. Educación nutricional y ambiental en el manejo de grasas residuales. Rev. Costarric. Salud Pública. 2016;25:20–27.

Estrada-Martínez R., Carrillo-Sancen G., Cerón-Montes G.I., Garrido-Hernández A., Martínez-Valdez F.J. Mathematical modeling for monitoring and controlling aerobic degradation conditions of the organic fraction of urban solid waste. Rev. Mex. Ing. Quim. 2021;20:IA2479. doi: 10.24275/rmiq/IA2479. DOI

Castán E., Satti P., González-Polo M., Iglesias M.C., Mazzarino M.J. Managing the value of composts as organic amendments and fertilizers in sandy soils. Agric. Ecosyst. Environ. 2016;224:29–38. doi: 10.1016/j.agee.2016.03.016. DOI

Arrigoni J.P., Paladino G., Garibaldi L.A., Laos F. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins. Waste Manag. 2018;76:284–293. doi: 10.1016/j.wasman.2018.03.010. PubMed DOI

Hernández-Gómez A., Calderón A., Medina C., Sanchez-Torres V., Oviedo-Ocaña E.R.R. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. Environ. Sci. Pollut. Res. 2021;28:24321–24327. doi: 10.1007/s11356-020-08103-w. PubMed DOI

Tognetti C., Mazzarino M.J., Laos F. Comprehensive quality assessment of municipal organic waste composts produced by different preparation methods. Waste Manag. 2011;31:1146–1152. doi: 10.1016/j.wasman.2010.12.022. PubMed DOI

Lima J.Z., Raimondi I.M., Schalch V., Rodrigues V.G.S. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. J. Environ. Manag. 2018;226:386–399. doi: 10.1016/j.jenvman.2018.08.047. PubMed DOI

Olguin E.J., Sanchez G., Gonzalez R. Accelerated food waste composting. World J. Microbiol. Biotechnol. 1993;9:625–629. doi: 10.1007/BF00369568. PubMed DOI

De Souza S.N.M., Horttanainen M., Antonelli J., Klaus O., Lindino C.A., Nogueira C.E.C. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: Landfill gas, biogas and thermal treatment. Waste Manag. Res. 2014;32:1015–1023. doi: 10.1177/0734242X14552553. PubMed DOI

Anaya-Reza O., Altamirano-Corona M.F., Castelán-Rodríguez G., García-González S.A., Durán-Moreno A. Techno-Economic and Environmental Assessment for Biomethane Production and Cogeneration Scenarios from OFMSW in Mexico. Waste Biomass Valorization. 2021;13:1059–1075. doi: 10.1007/s12649-021-01592-x. DOI

Santos L., Valença R., Silva L., Holanda S., Silva A., Jucá J., Santos A. Methane generation potential through anaerobic digestion of fruit waste. J. Clean. Prod. 2020;256:120389. doi: 10.1016/j.jclepro.2020.120389. DOI

Kuczman O., Gueri M.V.D., De Souza S.N.M., Schirmer W.N., Alves H.J., Secco D., Buratto W.G., Ribeiro C.B., Hernandes F.B. Food waste anaerobic digestion of a popular restaurant in Southern Brazil. J. Clean. Prod. 2018;196:382–389. doi: 10.1016/j.jclepro.2018.05.282. DOI

Campuzano R., González-Martínez S. Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresour. Technol. 2015;178:247–253. doi: 10.1016/j.biortech.2014.08.042. PubMed DOI

Pin B.V.R., Barros R.M., Silva Lora E.E., dos Santos I.F.S. Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strategy Rev. 2018;19:31–43. doi: 10.1016/j.esr.2017.11.002. DOI

Gomes S., Weirich Neto P.H., da Silva D.A., Antunes S.R.M., Rocha C.H., da Silva D.A., Antunes S.R.M., Rocha C.H. Potencial energético de resíduos sólidos domiciliares do município de Ponta Grossa, Paraná, Brasil. Eng. Sanit. Ambient. 2017;22:1197–1202. doi: 10.1590/s1413-41522017143432. DOI

Morero B., Montagna A.F., Campanella E.A., Cafaro D.C. Optimal process design for integrated municipal waste management with energy recovery in Argentina. Renew. Energy. 2020;146:2626–2636. doi: 10.1016/j.renene.2019.08.085. DOI

Chan Gutiérrez E., Wall D.M., O’Shea R., Novelo R.M., Gómez M.M., Murphy J.D. An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J. Clean. Prod. 2018;196:852–862. doi: 10.1016/j.jclepro.2018.06.051. DOI

Garcia-Peña E.I., Canul-Chan M., Chairez I., Salgado-Manjarez E., Aranda-Barradas J. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit-vegetable waste as feedstocks. Appl. Biochem. Biotechnol. 2013;171:279–293. doi: 10.1007/s12010-013-0341-9. PubMed DOI

Morero B., Vicentin R., Campanella E.A. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag. 2017;61:195–205. doi: 10.1016/j.wasman.2016.11.033. PubMed DOI

Proença C., Machado G. Biodigestores como tecnologia social para promoção da saúde: Estudo de caso para saneamento residencial em áreas periféricas—Biodigesters as social technology for health promotion: Case study for residential sanitation in peripheral áreas. Saúde Redes. 2018;4:87–99.

Torri S.I., Puelles M.M. Use of vermiculture technology for waste management and environmental remediation in Argentina. Int. J. Glob. Environ. Issues. 2010;10:239–254. doi: 10.1504/IJGENVI.2010.037269. DOI

Russo R.O. Organic foliar fertilizer prepared from fermented fruits on growth of Vochysia guatemalensis in the Costa Rican humid tropics. J. Sustain. Agric. 2001;18:161–166. doi: 10.1300/J064v18n02_12. DOI

de Oliveira J.A.R., da Conceição A.C., da Silva Martins L.H., Moreira D.K.T., Passos M.F., Komesu A. Evaluation of the technological potential of four wastes from Amazon fruit industry in glucose and ethanol production. J. Food Process Eng. 2021;44:e13610. doi: 10.1111/jfpe.13610. DOI

de Sousa M.H., da Silva A.S.F., Correia R.C., Leite N.P., Bueno C.E.G., dos Santos Pinheiro R.L., de Santana J.S., da Silva J.L., Sales A.T., de Souza C.C., et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: An integrated biorefinery approach. Biomass Convers. Biorefinery. 2021;12:827–841. doi: 10.1007/s13399-020-01252-5. DOI

de Brito Nogueira T.B., da Silva T.P.M., de Araújo Luiz D., de Andrade C.J., de Andrade L.M., Ferreira M.S.L., Fai A.E.C. Fruits and vegetable-processing waste: A case study in two markets at Rio de Janeiro, RJ, Brazil. Environ. Sci. Pollut. Res. 2020;27:18530–18540. doi: 10.1007/s11356-020-08244-y. PubMed DOI

Weber C.T., Trierweiler L.F., Trierweiler J.O. Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato. J. Clean. Prod. 2020;268:121788. doi: 10.1016/j.jclepro.2020.121788. DOI

Ministério de Minas e Energia . Plano Decenal de Expansão de Energia 2029. MME; Brasilia, Brazil: 2020.

MSA . Estrategia Nacional para la Gestión Integral de los Residuos Sólidos Urbanos 2005–2025. MSA; Buenos Aires, Argentina: 2005.

República de Argentina . Ley 25916 Gestión de Residuos domiciliarios. República de Argentina; Buenos Aires, Argentina: 2004.

República de Argentina . Ley 1.854 “Basura Cero”. República de Argentina; Buenos Aires, Argentina: 2006.

Anlló G., Añon M.C., Bassó S., Bellinzoni R., Bisang R., Cardillo S., Carricarte V., Cassullo E., Ciccia G. In: Biotecnología argentina al año 2030, Llave estratégica para un modelo de desarrollo tecno-productivo. UBATEC S.A. y Cámara Argentina de Biotecnología (CAB), editor. Ministerio de Ciencia, Tecnología e Innovación Productiva, MINCY; Buenos Aires, Argentina: 2016.

Romano L. Bioeconomía como Estrategia para el Desarrollo Argentino. Ano; Buenos Aires, Argentina: 2019.

Trigo E., Morales E.V., Grassi L., Losada J., Dellisanti J.P., Molinari M.E., Murmis M.R., Almada M., Molina S. Bioeconomía Argentina. Visión desde Agroindustria. Ministerio de Agroindustria; Buenos Aires, Argentina: 2016.

República Federativa do Brasil . Lei de no 12.305: Política Nacional de Resíduos Sólidos (PNRS) República Federativa do Brasil; Brasilia, Brazil: 2010.

Institui a Política de Desenvolvimento da Biotecnologia . Política de Biotenologia. Proteção e desenvolvimento. Federal Government of Brazil; Brasilia, Brazil: 2007.

Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) Plano de Ação em Ciência, Tecnologia e Inovação em Bioeconomia. Federal Government of Brazil; Brasilia, Brasil: 2018.

Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC) National Strategy on Science, Technology and Innovation 2016–2022. Executive Summary. Centro de Gestão e Estudos Estratégicos (CGEE); Brasilia, Brasil: 2018.

República de Costa Rica . Ley No. 8839 para la Gestión Integral de Residuos. Government of Costa Rica; San Jose, Costa Rica: 2010.

República de Costa Rica . Estrategia Nacional de Separación, Recuperación y Valorización de Residuos (ENSRVR) 2016–2021. Government of Costa Rica; San Jose, Costa Rica: 2016.

República de Costa Rica . Política Nacional de Producción y consumo Sostenible 2018–2030. Government of Costa Rica; San Jose, Costa Rica: 2018.

República de Costa Rica . Plan Nacional de Descarbonización 2018–2050. Government of Costa Rica; San Jose, Costa Rica: 2018.

Government of Costa Rica . National Bioeconomy Strategy Costa Rica 2020–2030. Government of Costa Rica; San Jose, Costa Rica: 2020.

República de Colombia . Ley 1990 Por Medio de la Cual se Crea la PolíTica Para Prevenir la Pérdida y el Desperdicio de Alimentos y se Dictan Otras Disposiciones. Republic of Colombia; Bogota, Colombia: 2019.

MADS . Resolución No. 1407 Por la Cual se Reglamenta la Gestión Ambiental de los Residuos de Envases y Empaques de Papel, Cartón, Plástico, Vidrio, Metal y se Toman Otras Determinaciones. Republic of Colombia; Bogota, Colombia: 2018.

Departamento Nacional de Planeacion . CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos Colombia. Departamento Nacional de Planeacion; Bogota, Colombia: 2016.

República de Colombia . Estrategia Nacional de Economía Circular 2018–2022. Republic of Colombia; Bogota, Colombia: 2019.

Ministerio de Ciencia, Tecnologia e Innovacion . Bioeconomía para una Colombia Potencia viva y diversa: Hacia una sociedad impulsada por el Conocimiento. Ministerio de Ciencia, Tecnologia e Innovacion; Bogota, Colombia: 2020.

Consejo Nacional de Política Económica y Social . CONPES 3934: Política de Crecimiento Verde. Republic of Colombia; Bogota, Colombia: 2018.

Comité Técnico Nacional de Biodiversidad y Competitividad . Programa Nacional de Biocomercio Sostenible (2014–2024) Republic of Colombia; Bogota, Colombia: 2014.

Consejo Nacional de Política Económica y Social . Documento CONPES 3697. Política para el Desarrollo Comercial de la Biotecnología a Partir del Uso Sostenible de la Biodiversidad. Republic of Colombia; Bogota, Colombia: 2011.

República de Cuba . Política para el incremento del Reciclaje de Materias Primas. Republic of Cuba; Habana, Cuba: 2012.

Procuraduria Federal de Proteccion al Ambiente . Ley General para la Prevención y Gestión Integral de los Residuos. GDM; Mexico City, Mexico: 2003.

Secretaría de Medio Ambiente y Recursos Naturales—MRN . Visión Basura Cero. GDM; Mexico City, Mexico: 2019.

Gobierno de Ciudad de México . Plan de Acción de Economía Circular. GDM; Mexico City, Mexico: 2019.

Secretaría de Energía . Acuerdo por el que la Secretaría de Energía aprueba y publica la actualización de la Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles más Limpios, en términos de la Ley de Transición Energética. GDM; Mexico City, Mexico: 2020.

Margallo M., Ziegler-Rodriguez K., Vázquez-Rowe I., Aldaco R., Irabien Á., Kahhat R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019;689:1255–1275. doi: 10.1016/j.scitotenv.2019.06.393. PubMed DOI

Departamento Nacional de Planeacion . Plan Nacional de Desarrollo 2018–2022. Pacto por Colombia, Pacto por la Equidad. Departamento Nacional de Planeacion; Bogota, Colombia: 2019.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace