Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines

. 2022 Apr 27 ; 12 (5) : . [epub] 20220427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35629120

Grantová podpora
LTAUSA18083 Ministry of Education, Youth and Sports of the Czech Republic
JSPS-22-01 Czech Academy of Sciences
Japan-Czech Republic Research Cooperative Program Japan Society for the Promotion of Science

Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.

Zobrazit více v PubMed

Lammers T., Kiessling F., Hennink W.E., Storm G. Nanotheranostics and Image-Guided Drug Delivery: Current Concepts and Future Directions. Mol. Pharm. 2010;7:1899–1912. doi: 10.1021/mp100228v. PubMed DOI

Tong R., Langer R. Nanomedicines Targeting the Tumor Microenvironment. Cancer. 2015;21:314–321. doi: 10.1097/PPO.0000000000000123. PubMed DOI

Canal F., Sanchis J., Vicent M.J. Polymer-drug conjugates as nano-sized medicines. Curr. Opin. Biotechnol. 2011;22:894–900. doi: 10.1016/j.copbio.2011.06.003. PubMed DOI

Dordevic S., Gonzalez M.M., Conejos-Sanchez I., Carreira B., Pozzi S., Acurcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC

Kopeček J., Yang J.Y. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC

Sawant R.R., Torchilin V.P. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter. 2010;6:4026–4044. doi: 10.1039/b923535n. DOI

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007;24:1–16. doi: 10.1007/s11095-006-9132-0. PubMed DOI

Oerlemans C., Bult W., Bos M., Storm G., Nijsen J.F.W., Hennink W.E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010;27:2569–2589. doi: 10.1007/s11095-010-0233-4. PubMed DOI PMC

Leong J., Teo J.Y., Aakalu V.K., Yang Y.Y., Kong H. Engineering Polymersomes for Diagnostics and Therapy. Adv. Healthc. Mater. 2018;7:1701276. doi: 10.1002/adhm.201701276. PubMed DOI PMC

Meng F.H., Zhong Z.Y., Feijen J. Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules. 2009;10:197–209. doi: 10.1021/bm801127d. PubMed DOI

Yang H., Kao W.Y.J. Dendrimers for pharmaceutical and biomedical applications. J. Biomater. Sci. Polym. Ed. 2006;17:3–19. doi: 10.1163/156856206774879171. PubMed DOI

Gulla S., Lomada D., Srikanth V., Shankar M.V., Reddy K.R., Soni S., Reddy M.C. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Methods Microbiol. 2019;46:255–293.

Arslan F.B., Atar K.O., Calis S. Antibody-mediated drug delivery. Int. J. Pharm. 2021;596:120268. doi: 10.1016/j.ijpharm.2021.120268. PubMed DOI

Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC

Malugin A., Kopečková P., Kopeček J. Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells. J. Control. Release. 2007;124:6–10. doi: 10.1016/j.jconrel.2007.08.016. PubMed DOI PMC

Hatakeyama H., Akita H., Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev. 2011;63:152–160. doi: 10.1016/j.addr.2010.09.001. PubMed DOI

Chytil P., Kostka L., Etrych T. Structural design and synthesis of polymer prodrugs. In: Scholz C., editor. Polymers for Biomedicine: Synthesis, Characterization, and Applications. Wiley; Hoboken, NJ, USA: 2017. pp. 391–420.

Pan H., Sima M., Yang J., Kopeček J. Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy. Macromol. Biosci. 2013;13:155–160. doi: 10.1002/mabi.201200353. PubMed DOI PMC

Vu H.T., Hoang T.X., Kim J.Y. All-Trans Retinoic Acid Enhances Matrix Metalloproteinase 2 Expression and Secretion in Human Myeloid Leukemia THP-1 Cells. Biomed Res. Int. 2018;2018:5971080. doi: 10.1155/2018/5971080. PubMed DOI PMC

Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260. PubMed DOI

Gialeli C., Theocharis A.D., Karamanos N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27. doi: 10.1111/j.1742-4658.2010.07919.x. PubMed DOI

Hua H., Li M.J., Luo T., Yin Y.C., Jiang Y.F. Matrix metalloproteinases in tumorigenesis: An evolving paradigm. Cell. Mol. Life Sci. 2011;68:3853–3868. doi: 10.1007/s00018-011-0763-x. PubMed DOI PMC

Scannevin R.H., Alexander R., Haarlander T.M., Burke S.L., Singer M., Huo C.F., Zhang Y.M., Maguire D., Spurlino J., Deckman I., et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J. Biol. Chem. 2017;292:17963–17974. doi: 10.1074/jbc.M117.806075. PubMed DOI PMC

Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006;69:562–573. doi: 10.1016/j.cardiores.2005.12.002. PubMed DOI

Coussens L.M., Fingleton B., Matrisian L.M. Cancer therapy—Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science. 2002;295:2387–2392. doi: 10.1126/science.1067100. PubMed DOI

Cox G., O’Byrne K.J. Matrix metalloproteinases and cancer. Anticancer Res. 2001;21:4207–4219. PubMed

Etrych T., Šubr V., Laga R., Říhová B., Ulbrich K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur. J. Pharm. Sci. 2014;58:1–12. doi: 10.1016/j.ejps.2014.02.016. PubMed DOI

Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereiche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug. Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI

Kopečková P., Rathi R., Takada S., Říhová B., Berenson M.M., Kopeček J. Bioadhesive N-(2-hydroxypropyl) methacrylamide copolymers for colon-specific drug delivery. J. Control. Release. 1994;28:211–222. doi: 10.1016/0168-3659(94)90168-6. DOI

Říhová B. Clinical experience with anthracycline antibiotics-HPMA copolymer-human immunoglobulin conjugates. Adv. Drug. Deliv. Rev. 2009;61:1149–1158. doi: 10.1016/j.addr.2008.12.017. PubMed DOI

Seymour L.W., Ferry D.R., Kerr D.J., Rea D., Whitlock M., Poyner R., Boivin C., Hesslewood S., Twelves C., Blackie R., et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 2009;34:1629–1636. doi: 10.3892/ijo_00000293. PubMed DOI

Dozono H., Yanazune S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target. Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI

Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI

Etrych T., Jelínková M., Říhová B., Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI

Etrych T., Chytil P., Mrkvan T., Šírová M., Říhová B., Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release. 2008;132:184–192. doi: 10.1016/j.jconrel.2008.04.017. PubMed DOI

Etrych T., Strohalm J., Chytil P., Říhová B., Ulbrich K. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J. Drug Target. 2011;19:874–889. doi: 10.3109/1061186X.2011.622402. PubMed DOI

Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI

Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M. Synthesis of poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerization and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Convertine A.J., Ayres N., Scales C.W., Lowe A.B., McCormick C.L. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules. 2004;5:1177–1180. doi: 10.1021/bm049825h. PubMed DOI

Etrych T., Tsukigawa K., Nakamura H., Chytil P., Fang J., Ulbrich K., Otagiri M., Maeda H. Comparison of pharmacological and biological properties of HPMA copolymer pirarubicin conjugates: A single chain copolymer and its biodegradable tandem-diblock copolymer conjugates. Eur. J. Pharm. Sci. 2017;106:10–19. doi: 10.1016/j.ejps.2017.05.031. PubMed DOI

Nakamura H., Koziolová E., Chytil P., Tsukigawa K., Fang J., Haratake M., Ulbrich K., Etrych T., Maeda H. Pronounced cellular uptake of pirarubicin versus that of other anthracyclines: Comparison of HPMA copolymer conjugates of pirarubicin and doxorubicin. Mol. Pharm. 2016;13:4106–4115. doi: 10.1021/acs.molpharmaceut.6b00697. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...