Tumor Stimulus-Responsive Biodegradable Diblock Copolymer Conjugates as Efficient Anti-Cancer Nanomedicines
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18083
Ministry of Education, Youth and Sports of the Czech Republic
JSPS-22-01
Czech Academy of Sciences
Japan-Czech Republic Research Cooperative Program
Japan Society for the Promotion of Science
PubMed
35629120
PubMed Central
PMC9145326
DOI
10.3390/jpm12050698
PII: jpm12050698
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA conjugate, anticancer, diblock conjugate, drug delivery, pirarubicin,
- Publikační typ
- časopisecké články MeSH
Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.
Zobrazit více v PubMed
Lammers T., Kiessling F., Hennink W.E., Storm G. Nanotheranostics and Image-Guided Drug Delivery: Current Concepts and Future Directions. Mol. Pharm. 2010;7:1899–1912. doi: 10.1021/mp100228v. PubMed DOI
Tong R., Langer R. Nanomedicines Targeting the Tumor Microenvironment. Cancer. 2015;21:314–321. doi: 10.1097/PPO.0000000000000123. PubMed DOI
Canal F., Sanchis J., Vicent M.J. Polymer-drug conjugates as nano-sized medicines. Curr. Opin. Biotechnol. 2011;22:894–900. doi: 10.1016/j.copbio.2011.06.003. PubMed DOI
Dordevic S., Gonzalez M.M., Conejos-Sanchez I., Carreira B., Pozzi S., Acurcio R.C., Satchi-Fainaro R., Florindo H.F., Vicent M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2022;12:500–525. doi: 10.1007/s13346-021-01024-2. PubMed DOI PMC
Kopeček J., Yang J.Y. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC
Sawant R.R., Torchilin V.P. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter. 2010;6:4026–4044. doi: 10.1039/b923535n. DOI
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007;24:1–16. doi: 10.1007/s11095-006-9132-0. PubMed DOI
Oerlemans C., Bult W., Bos M., Storm G., Nijsen J.F.W., Hennink W.E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010;27:2569–2589. doi: 10.1007/s11095-010-0233-4. PubMed DOI PMC
Leong J., Teo J.Y., Aakalu V.K., Yang Y.Y., Kong H. Engineering Polymersomes for Diagnostics and Therapy. Adv. Healthc. Mater. 2018;7:1701276. doi: 10.1002/adhm.201701276. PubMed DOI PMC
Meng F.H., Zhong Z.Y., Feijen J. Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules. 2009;10:197–209. doi: 10.1021/bm801127d. PubMed DOI
Yang H., Kao W.Y.J. Dendrimers for pharmaceutical and biomedical applications. J. Biomater. Sci. Polym. Ed. 2006;17:3–19. doi: 10.1163/156856206774879171. PubMed DOI
Gulla S., Lomada D., Srikanth V., Shankar M.V., Reddy K.R., Soni S., Reddy M.C. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Methods Microbiol. 2019;46:255–293.
Arslan F.B., Atar K.O., Calis S. Antibody-mediated drug delivery. Int. J. Pharm. 2021;596:120268. doi: 10.1016/j.ijpharm.2021.120268. PubMed DOI
Prabhakar U., Maeda H., Jain R.K., Sevick-Muraca E.M., Zamboni W., Farokhzad O.C., Barry S.T., Gabizon A., Grodzinski P., Blakey D.C. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology. Cancer Res. 2013;73:2412–2417. doi: 10.1158/0008-5472.CAN-12-4561. PubMed DOI PMC
Malugin A., Kopečková P., Kopeček J. Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells. J. Control. Release. 2007;124:6–10. doi: 10.1016/j.jconrel.2007.08.016. PubMed DOI PMC
Hatakeyama H., Akita H., Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Adv. Drug Deliv. Rev. 2011;63:152–160. doi: 10.1016/j.addr.2010.09.001. PubMed DOI
Chytil P., Kostka L., Etrych T. Structural design and synthesis of polymer prodrugs. In: Scholz C., editor. Polymers for Biomedicine: Synthesis, Characterization, and Applications. Wiley; Hoboken, NJ, USA: 2017. pp. 391–420.
Pan H., Sima M., Yang J., Kopeček J. Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy. Macromol. Biosci. 2013;13:155–160. doi: 10.1002/mabi.201200353. PubMed DOI PMC
Vu H.T., Hoang T.X., Kim J.Y. All-Trans Retinoic Acid Enhances Matrix Metalloproteinase 2 Expression and Secretion in Human Myeloid Leukemia THP-1 Cells. Biomed Res. Int. 2018;2018:5971080. doi: 10.1155/2018/5971080. PubMed DOI PMC
Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260. PubMed DOI
Gialeli C., Theocharis A.D., Karamanos N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27. doi: 10.1111/j.1742-4658.2010.07919.x. PubMed DOI
Hua H., Li M.J., Luo T., Yin Y.C., Jiang Y.F. Matrix metalloproteinases in tumorigenesis: An evolving paradigm. Cell. Mol. Life Sci. 2011;68:3853–3868. doi: 10.1007/s00018-011-0763-x. PubMed DOI PMC
Scannevin R.H., Alexander R., Haarlander T.M., Burke S.L., Singer M., Huo C.F., Zhang Y.M., Maguire D., Spurlino J., Deckman I., et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J. Biol. Chem. 2017;292:17963–17974. doi: 10.1074/jbc.M117.806075. PubMed DOI PMC
Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006;69:562–573. doi: 10.1016/j.cardiores.2005.12.002. PubMed DOI
Coussens L.M., Fingleton B., Matrisian L.M. Cancer therapy—Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science. 2002;295:2387–2392. doi: 10.1126/science.1067100. PubMed DOI
Cox G., O’Byrne K.J. Matrix metalloproteinases and cancer. Anticancer Res. 2001;21:4207–4219. PubMed
Etrych T., Šubr V., Laga R., Říhová B., Ulbrich K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur. J. Pharm. Sci. 2014;58:1–12. doi: 10.1016/j.ejps.2014.02.016. PubMed DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereiche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug. Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI
Kopečková P., Rathi R., Takada S., Říhová B., Berenson M.M., Kopeček J. Bioadhesive N-(2-hydroxypropyl) methacrylamide copolymers for colon-specific drug delivery. J. Control. Release. 1994;28:211–222. doi: 10.1016/0168-3659(94)90168-6. DOI
Říhová B. Clinical experience with anthracycline antibiotics-HPMA copolymer-human immunoglobulin conjugates. Adv. Drug. Deliv. Rev. 2009;61:1149–1158. doi: 10.1016/j.addr.2008.12.017. PubMed DOI
Seymour L.W., Ferry D.R., Kerr D.J., Rea D., Whitlock M., Poyner R., Boivin C., Hesslewood S., Twelves C., Blackie R., et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 2009;34:1629–1636. doi: 10.3892/ijo_00000293. PubMed DOI
Dozono H., Yanazune S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target. Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI
Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI
Etrych T., Jelínková M., Říhová B., Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI
Etrych T., Chytil P., Mrkvan T., Šírová M., Říhová B., Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release. 2008;132:184–192. doi: 10.1016/j.jconrel.2008.04.017. PubMed DOI
Etrych T., Strohalm J., Chytil P., Říhová B., Ulbrich K. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J. Drug Target. 2011;19:874–889. doi: 10.3109/1061186X.2011.622402. PubMed DOI
Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI
Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M. Synthesis of poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerization and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Convertine A.J., Ayres N., Scales C.W., Lowe A.B., McCormick C.L. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules. 2004;5:1177–1180. doi: 10.1021/bm049825h. PubMed DOI
Etrych T., Tsukigawa K., Nakamura H., Chytil P., Fang J., Ulbrich K., Otagiri M., Maeda H. Comparison of pharmacological and biological properties of HPMA copolymer pirarubicin conjugates: A single chain copolymer and its biodegradable tandem-diblock copolymer conjugates. Eur. J. Pharm. Sci. 2017;106:10–19. doi: 10.1016/j.ejps.2017.05.031. PubMed DOI
Nakamura H., Koziolová E., Chytil P., Tsukigawa K., Fang J., Haratake M., Ulbrich K., Etrych T., Maeda H. Pronounced cellular uptake of pirarubicin versus that of other anthracyclines: Comparison of HPMA copolymer conjugates of pirarubicin and doxorubicin. Mol. Pharm. 2016;13:4106–4115. doi: 10.1021/acs.molpharmaceut.6b00697. PubMed DOI