Assessing the Need for Semantic Data Integration for Surgical Biobanks-A Knowledge Representation Perspective
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM111324
NIGMS NIH HHS - United States
R01GM111324
NIGMS NIH HHS - United States
PubMed
35629179
PubMed Central
PMC9147545
DOI
10.3390/jpm12050757
PII: jpm12050757
Knihovny.cz E-zdroje
- Klíčová slova
- biomedical ontologies, knowledge representation, osteomyelitis, post-traumatic arthritis, semantic data integration, surgical biobank, system theory,
- Publikační typ
- časopisecké články MeSH
To improve patient outcomes after trauma, the need to decrypt the post-traumatic immune response has been identified. One prerequisite to drive advancement in understanding that domain is the implementation of surgical biobanks. This paper focuses on the outcomes of patients with one of two diagnoses: post-traumatic arthritis and osteomyelitis. In creating surgical biobanks, currently, many obstacles must be overcome. Roadblocks exist around scoping of data that is to be collected, and the semantic integration of these data. In this paper, the generic component model and the Semantic Web technology stack are used to solve issues related to data integration. The results are twofold: (a) a scoping analysis of data and the ontologies required to harmonize and integrate it, and (b) resolution of common data integration issues in integrating data relevant to trauma surgery.
1st Medical Faculty Charles University 11636 Prague 1 Czech Republic
BioVentures LLC Little Rock AR 72205 USA
Department of Animal Sciences University of Florida Gainesville FL 32611 USA
Department of Surgery University of Arkansas for Medical Sciences Little Rock AR 72205 USA
eHealth Competence Center Bavaria Deggendorf Institute of Technology 94469 Deggendorf Germany
Emerging Pathogens Institute University of Florida Gainesville FL 32611 USA
Medical Faculty University of Regensburg 93053 Regensburg Germany
Zobrazit více v PubMed
Injuries and Violence Are Leading Causes of Death. [(accessed on 24 February 2022)];2021 Available online: https://www.cdc.gov/injury/wisqars/animated-leading-causes.html.
Janicova A., Relja B. Neutrophil Phenotypes and Functions in Trauma and Trauma-Related Sepsis. Shock Augusta Ga. 2021;56:16–29. doi: 10.1097/SHK.0000000000001695. PubMed DOI
Skelton J.K., Purcell R. Preclinical models for studying immune responses to traumatic injury. Immunology. 2021;162:377–388. doi: 10.1111/imm.13272. PubMed DOI PMC
Recknagel S., Bindl R., Brochhausen C., Göckelmann M., Wehner T., Schoengraf P., Huber-Lang M., Claes L., Ignatius A. Systemic inflammation induced by a thoracic trauma alters the cellular composition of the early fracture callus. J. Trauma Acute Care Surg. 2013;74:531–537. doi: 10.1097/TA.0b013e318278956d. PubMed DOI
Kerby J.D., Griffin R.L., MacLennan P., Rue L.W.I. Stress-Induced Hyperglycemia, Not Diabetic Hyperglycemia, Is Associated with Higher Mortality in Trauma. Ann. Surg. 2012;256:446–452. doi: 10.1097/SLA.0b013e3182654549. PubMed DOI
Yanik E.L., Keener J.D., Lin S.J., Colditz G.A., Wright R.W., Evanoff B.A., Jain N.B., Saccone N.L. Identification of a Novel Genetic Marker for Risk of Degenerative Rotator Cuff Disease Surgery in the UK Biobank. J. Bone Joint Surg. Am. 2021;103:1259–1267. doi: 10.2106/JBJS.20.01474. PubMed DOI PMC
Hojat A., Wei B., Olson M.G., Mao Q., Yong W.H. Procurement and Storage of Surgical Biospecimens. Methods Mol. Biol. Clifton NJ. 2019;1897:65–76. doi: 10.1007/978-1-4939-8935-5_7. PubMed DOI PMC
Spjuth O., Krestyaninova M., Hastings J., Shen H.-Y., Heikkinen J., Waldenberger M., Langhammer A., Ladenvall C., Esko T., Persson M.-Å., et al. Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research. Eur. J. Hum. Genet. EJHG. 2016;24:521–528. doi: 10.1038/ejhg.2015.165. PubMed DOI PMC
Blobel B., Ruotsalainen P., Oemig F. Why Interoperability at Data Level Is Not Sufficient for Enabling pHealth? Stud. Health Technol. Inform. 2020;273:3–20. doi: 10.3233/SHTI200611. PubMed DOI
Utecht J., Judkins J., Otte J.N., Colvin T., Rogers N., Rose R., Alvi M., Hicks A., Ball J., Bowman S.M., et al. OOSTT: A Resource for Analyzing the Organizational Structures of Trauma Centers and Trauma Systems. [(accessed on 4 May 2022)];CEUR Workshop Proc. 2016 1747 Available online: http://ceur-ws.org/Vol-1747/IT504_ICBO2016.pdf. PubMed PMC
Utecht J., Ball J., Bowman S.M., Dodd J., Judkins J., Maxson R.T., Nabaweesi R., Pradhan R., Sanddal N.D., Winchell R.J., et al. Development and validation of a controlled vocabulary: An OWL representation of organizational structures of trauma centers and trauma systems. Stud. Health Technol. Inform. 2019;264:403–407. doi: 10.3233/SHTI190252. PubMed DOI PMC
Brochhausen M., Ball J.W., Sanddal N.D., Dodd J., Braun N., Bost S., Utecht J., Winchell R.J., Sexton K.W. Collecting data on organizational structures of trauma centers: The CAFE web service, Trauma Surg. Acute Care Open. 2020;5:e000473. doi: 10.1136/tsaco-2020-000473. PubMed DOI PMC
Bradley N.L., Garraway N., Bell N., Lakha N., Hameed S.M. Data capture and communication during transfers to definitive care in an inclusive trauma system. Injury. 2017;48:1069–1073. doi: 10.1016/j.injury.2016.11.004. PubMed DOI
American College of Surgeons . Trauma Quality Improvement Program (TQIP) American College of Surgeons; Chicago, IL, USA: [(accessed on 15 February 2022)]. Available online: http://www.facs.org/quality-programs/trauma/tqp/center-programs/tqip.
American College of Surgeons . NTDS 2021 Data Dictionary. American College of Surgeons; Chicago, IL, USA: [(accessed on 15 February 2022)]. Available online: http://www.facs.org/quality-programs/trauma/tqp/center-programs/ntdb/ntds/data-dictionary.
Health Informatics—Interoperability and Integration Reference Architecture—Model and Framework. ISO; Geneva, Switzerland: [(accessed on 17 February 2022)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/73/77337.html.
Information Technology—Open distributed processing—Reference Model: Architecture—Part 3. ISO; Geneva, Switzerland: [(accessed on 10 March 2022)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/57/55724.html.
Blobel B. Standardization for Mastering Healthcare Transformation—Challenges and Solutions. Eur. J. Biomed. Inform. 2017;13:9–15. doi: 10.24105/ejbi.2017.13.1.3. DOI
Prior F.W., Clark K., Commean P., Freymann J., Jaffe C., Kirby J., Moore S., Smith K., Tarbox L., Vendt B., et al. TCIA: An information resource to enable open science; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Osaka, Japan. 3–7 July 2013; pp. 1282–1285. PubMed DOI PMC
Sharma A., Tarbox L., Kurc T., Bona J., Smith K., Kathiravelu P., Bremer E., Saltz J.H., Prior F. PRISM: A Platform for Imaging in Precision Medicine. JCO Clin. Cancer Inform. 2020;4:491–499. doi: 10.1200/CCI.20.00001. PubMed DOI PMC
Bona J.P., Prior F.W., Zozus M.N., Brochhausen M. Enhancing Clinical Data and Clinical Research Data with Biomedical Ontologies—Insights from the Knowledge Representation Perspective. Yearb. Med. Inform. 2019;28:140–151. doi: 10.1055/s-0039-1677912. PubMed DOI PMC
Brochhausen M., Bona J., Blobel B. The Role of Axiomatically-Rich Ontologies in Transforming Medical Data to Knowledge. Stud. Health Technol. Inform. 2018;249:38–49. PubMed
The Semantic Web Layer Cake. [(accessed on 16 February 2022)]. Available online: https://www.w3.org/2007/03/layerCake.svg.
Smith B., Ceusters W. Ontological realism: A methodology for coordinated evolution of scientific ontologies. Appl. Ontol. 2010;5:139–188. doi: 10.3233/AO-2010-0079. PubMed DOI PMC
Hogan W.R., Hanna J., Joseph E., Brochhausen M. Towards a Consistent and Scientifically Accurate Drug Ontology. CEUR Workshop Proc. 2013;1060:68–73. PubMed PMC
Ceusters W.M., Spackman K.A., Smith B. Would SNOMED CT benefit from realism-based ontology evolution? AMIA Annu. Symp. Proc. AMIA Symp. 2007;2007:105–109. PubMed PMC
Lin Y., Xiang Z., He Y. Brucellosis Ontology (IDOBRU) as an extension of the Infectious Disease Ontology. J. Biomed. Semant. 2011;2:9. doi: 10.1186/2041-1480-2-9. PubMed DOI PMC
Grenon P., Smith B., Goldberg L. Biodynamic ontology: Applying BFO in the biomedical domain. Stud. Health Technol. Inform. 2004;102:20–38. PubMed
Resource Description Framework (RDF) Primer. [(accessed on 16 February 2022)]. Available online: https://www.w3.org/TR/rdf11-concepts/
OWL 2 Web Ontology Language Primer (Second Edition) [(accessed on 16 February 2022)]. Available online: https://www.w3.org/TR/owl2-primer/
Jackson R., Matentzoglu N., Overton J.A., Vita R., Balhoff J.P., Buttigieg P.L., Carbon S., Courtot M., Diehl A.D., Dooley D.M., et al. OBO Foundry in 2021: Operationalizing open data principles to evaluate ontologies. Database J. Biol. Databases Curation. 2021;2021:baab069. doi: 10.1093/database/baab069. PubMed DOI PMC
Smith B., Ashburner M., Rosse C., Bard J., Bug W., Ceusters W., Goldberg L.J., Eilbeck K., Ireland A., Mungall C.J., et al. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 2007;25:1251–1255. doi: 10.1038/nbt1346. PubMed DOI PMC
Uribe G.A., Blobel B., López D.M., Schulz S. A generic architecture for an adaptive, interoperable and intelligent type 2 diabetes mellitus care system. Stud. Health Technol. Inform. 2015;211:121–131. PubMed
Hicks A., Hanna J., Welch D., Brochhausen M., Hogan W.R. The ontology of medically related social entities: Recent developments. J. Biomed. Semant. 2016;7:47. doi: 10.1186/s13326-016-0087-8. PubMed DOI PMC
American College of Surgeons and Committee on Trauma . Resources for Optimal Care of the Injured Patient. American College of Surgeons; Chicago, IL, USA: 2014.
EAST Practice Management Guidelines. [(accessed on 15 February 2022)]. Available online: https://www.east.org/education-career-development/practice-management-guidelines.
Brochhausen M., Zheng J., Birtwell D., Williams H., Masci A.M., Ellis H.J., Stoeckert C.J. OBIB-a novel ontology for biobanking. J. Biomed. Semant. 2016;7:23. doi: 10.1186/s13326-016-0068-y. PubMed DOI PMC
Bandrowski A., Brinkman R., Brochhausen M., Brush M.H., Bug B., Chibucos M.C., Clancy K., Courtot M., Derom D., Dumontier M., et al. The Ontology for Biomedical Investigations. PLoS ONE. 2016;11:e0154556. doi: 10.1371/journal.pone.0154556. PubMed DOI PMC
Brochhausen M., Bost S.J., Singh N., Brochhausen C., Blobel B. Understanding the Gap between Information Models and Realism-Based Ontologies Using the Generic Component Model. Stud. Health Technol. Inform. 2021;285:159–164. doi: 10.3233/SHTI210590. PubMed DOI
Ontobee: OGMS. [(accessed on 31 December 2021)]. Available online: http://www.ontobee.org/ontology/OGMS?iri=http://purl.obolibrary.org/obo/OGMS_0000029.
Information Artifact Ontology (IAO) The Foundry, OBO. [(accessed on 4 May 2022)]. Available online: https://obofoundry.org/ontology/iao.html.
Jackson R.C., Balhoff J.P., Douglass E., Harris N.L., Mungall C.J., Overton J.A. ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinform. 2019;20:407. doi: 10.1186/s12859-019-3002-3. PubMed DOI PMC
HL7, HL7 Standards Product Brief—HL7 Version 3 Domain Analysis Model: Composite Security and Privacy, Release 1|HL7 International. [(accessed on 17 February 2022)]. Available online: http://www.hl7.org/implement/standards/product_brief.cfm?product_id=536.
ISO: Health Informatics—Electronic Health Record Communication—Part 1: Reference Model. ISO; Geneva, Switzerland: [(accessed on 10 March 2022)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/78/67868.html.
ISO: Health Informatics—Service Architecture (HISA)—Part 1: Enterprise Viewpoint. ISO; Geneva, Switzerland: [(accessed on 10 March 2022)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/10/71037.html.
Health Informatics—System of Concepts to Support Continuity of Care. ISO; Geneva, Switzerland: [(accessed on 17 February 2022)]. Available online: https://www.iso.org/obp/ui/#iso:std:iso:13940:ed-1:v1:en.
OpenFoundation, EHR. [(accessed on 16 February 2022)]. Available online: https://www.openehr.org/
ISO: Health Informatics—Clinical Information Models—Characteristics, Structures, and Requirements. ISO; Geneva, Switzerland: [(accessed on 17 February 2022)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/94/79498.html.
HL7 International HL7 Fast Healthcare Interoperability Resources (FHIR) [(accessed on 16 February 2022)]. Available online: http://www.hl7.org/fhir/
The Representational Challenge of Integration and Interoperability in Transformed Health Ecosystems