Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37007792
PubMed Central
PMC10050682
DOI
10.3389/fmed.2023.1073313
Knihovny.cz E-zdroje
- Klíčová slova
- biomedical semantics, electronic health records, formal ontologies, natural language processing, precision medicine, terminologies,
- Publikační typ
- časopisecké články MeSH
This paper provides an overview of current linguistic and ontological challenges which have to be met in order to provide full support to the transformation of health ecosystems in order to meet precision medicine (5 PM) standards. It highlights both standardization and interoperability aspects regarding formal, controlled representations of clinical and research data, requirements for smart support to produce and encode content in a way that humans and machines can understand and process it. Starting from the current text-centered communication practices in healthcare and biomedical research, it addresses the state of the art in information extraction using natural language processing (NLP). An important aspect of the language-centered perspective of managing health data is the integration of heterogeneous data sources, employing different natural languages and different terminologies. This is where biomedical ontologies, in the sense of formal, interchangeable representations of types of domain entities come into play. The paper discusses the state of the art of biomedical ontologies, addresses their importance for standardization and interoperability and sheds light to current misconceptions and shortcomings. Finally, the paper points out next steps and possible synergies of both the field of NLP and the area of Applied Ontology and Semantic Web to foster data interoperability for 5 PM.
1st Medical Faculty Charles University Prague Prague Czechia
eHealth Competence Center Bavaria Deggendorf Institute of Technology Deggendorf Germany
Zobrazit více v PubMed
Blobel B, Oemig F, Ruotsalainen P, Lopez DM. Transformation of health and social care systems-an interdisciplinary approach toward a foundational architecture. Front Med. (2022) 9:802487. doi: 10.3389/fmed.2022.802487, PMID: PubMed DOI PMC
Rebstock M, Fengel J, Paulheim H. Ontologies-based business integration. Springer Science & Business Media (2008). doi: 10.1007/978-3-540-75230-1 DOI
Blobel B. Challenges and solutions for designing and managing pHealth ecosystems. Front Med. (2019) 6:83. doi: 10.3389/fmed.2019.00083 PubMed DOI PMC
Blobel B, Ruotsalainen P, Brochhausen M. Autonomous systems and artificial intelligence - hype or prerequisite for P5 medicine? Stud Health Technol Inform. (2021) 285:3–14. doi: 10.3233/SHTI210567, PMID: PubMed DOI
International Organization for Standardization (n.d.) ISO 23903:2021-health informatics-interoperability and integration reference architecture - model and framework. Available at: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/73/77337.html (Accessed February 17, 2022).
International Organization for Standardization (n.d.) ISO/IEC 10746-1:1998. Information technology — open distributed processing — reference model: overview - Part 1 1998.
International Organization for Standardization (n.d.) ISO/IEC 10746-2:2009. Information technology — open distributed processing — Reference model: Foundations — Part 2 2009.
International Organization for Standardization (n.d.) ISO/IEC 10746-3:2009. Information technology — open distributed processing — Reference model: Architecture — Part 3 2009.
Borgo S, Galton A, Kutz O, Borgo S, Galton A, Kutz O. Foundational ontologies in action. Appl Ontol. (2022) 17:1–16. doi: 10.3233/AO-220265 DOI
International Organization for Standardization (n.d.) ISO/IEC 21838:2021 (part 1 and part 2). Available at: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/19/71954.html (Accessed September 20, 2022).
Blobel B, Ruotsalainen P, Giacomini M. Standards and principles to enable interoperability and integration of 5P medicine ecosystems. Stud Health Technol Inform. IOS Press; (2022):3–19. PubMed
Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PRO, Bernstam EV, et al. . Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. (2013) 51:S30–7. doi: 10.1097/MLR.0b013e31829b1dbd, PMID: PubMed DOI PMC
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. (1997) 9:1735–80. doi: 10.1162/neco.1997.9.8.1735 PubMed DOI
Wilkinson MD, Dumontier M, IjJ A, Appleton G, Axton M, Baak A, et al. . The FAIR guiding principles for scientific data management and stewardship. Sci Data. (2016) 3:160018. doi: 10.1038/sdata.2016.18, PMID: PubMed DOI PMC
Dalianis H. Clinical text mining. Cham: Springer International Publishing; (2018).
Schulz S, Daumke P, Romacker M, López-García P. Representing oncology in datasets: standard or custom biomedical terminology? Inform Med Unlocked. (2019) 15:100186. doi: 10.1016/j.imu.2019.100186 DOI
Hirsch JA, Nicola G, McGinty G, Liu RW, Barr RM, Chittle MD, et al. . ICD-10: history and context. Am J Neuroradiol. (2016) 37:596–9. doi: 10.3174/ajnr.A4696, PMID: PubMed DOI PMC
Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. (1999) 20:109–17. doi: 10.2165/00002018-199920020-00002 PubMed DOI
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. (2008) 83:610–5. doi: 10.1016/j.ajhg.2008.09.017, PMID: PubMed DOI PMC
McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R, et al. . LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin Chem. (2003) 49:624–33. doi: 10.1373/49.4.624, PMID: PubMed DOI
WHOCC - Home (n.d.) Available at: https://www.whocc.no/ (Accessed January 23, 2023).
Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R. Normalized names for clinical drugs: RxNorm at 6 years. J Am Med Inform Assoc. (2011) 18:441–8. doi: 10.1136/amiajnl-2011-000116, PMID: PubMed DOI PMC
Gaudet-Blavignac C, Foufi V, Bjelogrlic M, Lovis C. Use of the systematized nomenclature of medicine clinical terms (SNOMED CT) for processing free text in health care: systematic scoping review. J Med Internet Res. (2021) 23:e24594. doi: 10.2196/24594, PMID: PubMed DOI PMC
Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. (2000) 88:265–6. PubMed PMC
Jing X. The unified medical language system at 30 years and how it is used and published: systematic review and content analysis. JMIR Med Inform. (2021) 9:e20675. doi: 10.2196/20675, PMID: PubMed DOI PMC
Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. . Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. EHealth-Enabled Health. (2015) 2015:574–8. doi: 10.3233/978-1-61499-564-7-574 PubMed DOI PMC
Hahn U, Oleynik M. Medical information extraction in the age of deep learning. Yearb Med Inform. (2020) 29:208–20. doi: 10.1055/s-0040-1702001, PMID: PubMed DOI PMC
Schulz S, Fix S, Klügl P, Bachmayer T, Hartz T, Richter M, et al. . Comparative evaluation of automated information extraction from pathology reports in three German cancer registries. GMS Med Inform Biom Epidemiol. (2021) 17:Doc01. doi: 10.3205/mibe000215 DOI
Saripalle R, Runyan C, Russell M. Using HL7 FHIR to achieve interoperability in patient health record. J Biomed Inform. (2019) 94:103188. doi: 10.1016/j.jbi.2019.103188, PMID: PubMed DOI
Daumke P, Heitmann KU, Heckmann S, Martínez-Costa C, Schulz S. Clinical text mining on FHIR. Stud Health Technol Inform. (2019) 264:83–7. doi: 10.3233/SHTI190188, PMID: PubMed DOI
Luo Y-F, Henry S, Wang Y, Shen F, Uzuner O, Rumshisky A. The 2019 n2c2/UMass Lowell shared task on clinical concept normalization. J Am Med Inform Assoc. (2020) 27:1529–e1. doi: 10.1093/jamia/ocaa106, PMID: PubMed DOI PMC
Frantzi K, Ananiadou S, Mima H. Automatic recognition of multi-word terms: the C-value/NC-value method. Int J Digit Libr. (2000) 3:115–30. doi: 10.1007/s007999900023 DOI
Kageura K, Umino B. Methods of automatic term recognition: a review. Terminol Int J Theor Appl Issues Spec Commun. (1996) 3:259–89. doi: 10.1075/term.3.2.03kag DOI
Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. . Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. (2010) 17:507–13. doi: 10.1136/jamia.2009.001560, PMID: PubMed DOI PMC
Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. (2010) 17:229–36. doi: 10.1136/jamia.2009.002733, PMID: PubMed DOI PMC
Coden A, Savova G, Sominsky I, Tanenblatt M, Masanz J, Schuler K, et al. . Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model. J Biomed Inform. (2009) 42:937–49. doi: 10.1016/j.jbi.2008.12.005, PMID: PubMed DOI
Pustejovsky J, Castano JM, Ingria R, Sauri R, Gaizauskas RJ, Setzer A, et al. . TimeML: robust specification of event and temporal expressions in text. New Dir Quest Ans. (2003) 3:28–34.
Strötgen J, Gertz M. (2010) “HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions.” in Proc. 5th Int. workshop semantic Eval., Uppsala, Sweden: Association for Computational Linguistics. p. 321–324.
Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 challenge. J Am Med Inform Assoc. (2013) 20:806–13. doi: 10.1136/amiajnl-2013-001628, PMID: PubMed DOI PMC
Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. (2001) 34:301–10. doi: 10.1006/jbin.2001.1029, PMID: PubMed DOI
Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform. (2009) 42:839–51. doi: 10.1016/j.jbi.2009.05.002, PMID: PubMed DOI PMC
Chapman WW, Hilert D, Velupillai S, Kvist M, Skeppstedt M, Chapman BE, et al. . Extending the NegEx lexicon for multiple languages. Stud Health Technol Inform. (2013) 192:677–81. doi: 10.3233/978-1-61499-289-9-677 PubMed DOI PMC
Skeppstedt M. Negation detection in Swedish clinical text: an adaption of NegEx to Swedish. J Biomed Semant. (2011) 2:S3. doi: 10.1186/2041-1480-2-S3-S3, PMID: PubMed DOI PMC
Cotik V, Roller R, Xu F, Uszkoreit H, Budde K, Schmidt D. (2016) “Negation detection in clinical reports written in German.” in Proc. Fifth Workshop Build. Eval. Resour. Biomed. Text Min. BioTxtM2016, Osaka, Japan: The COLING 2016 Organizing Committee. p. 115–124.
Wu S, Miller T, Masanz J, Coarr M, Halgrim S, Carrell D, et al. . Negation’s not solved: generalizability versus Optimizability in clinical natural language processing. PLoS One. (2014) 9:e112774. doi: 10.1371/journal.pone.0112774, PMID: PubMed DOI PMC
Ferrucci D, Lally A. UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat Lang Eng. (2004) 10:327–48. doi: 10.1017/S1351324904003523 DOI
De Castilho RE, Gurevych I. “A broad-coverage collection of portable NLP components for building shareable analysis pipelines” in Proceedings of the Workshop on Open Infrastructures and Analysis Frameworks for HLT. (2014) 1–11. doi: 10.3115/v1/W14-5201 DOI
Ogren P, Bethard S. (2009) “Building test suites for UIMA components.” in Proc. Workshop Softw. Eng. Test. Qual. Assur. Nat. Lang. Process. SETQA-NLP 2009, Boulder, Colorado: Association for Computational Linguistics. p. 1–4.
Vasiliev Y. Natural language processing with python and spaCy: A practical introduction No Starch Press; (2020).
Kocaman V, Talby D. Spark NLP: natural language understanding at scale. Softw Impacts. (2021) 8:100058. doi: 10.1016/j.simpa.2021.100058 DOI
Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. . Transformers: State-of-the-art natural language processing. InProceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations. (2020) 38–45. doi: 10.18653/v1/2020.emnlp-demos.6 DOI
Gulli A, Kapoor A, Pal S. Deep learning with TensorFlow 2 and Keras: regression, ConvNets, GANs In: . RNNs, NLP, and more with TensorFlow 2 and the Keras API. 2nd Edn. Packt Publishing Ltd; (2019)
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. . PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Proces Syst. (2019) 32
Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. . Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. (2020) 27:457–70. doi: 10.1093/jamia/ocz200, PMID: PubMed DOI PMC
Devlin J, Chang M-W, Lee K, Toutanova K. (2019) “BERT: Pre-training of deep bidirectional transformers for language understanding.” Proc. 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Vol. 1 Long Short Pap., Minneapolis, Minnesota: Association for Computational Linguistics. p. 4171–86. doi:10.18653/v1/N19-1423.
Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. . Language Models are Few-Shot Learners. Adv Neural Inf Proces Syst. (2020) 33:1877–901.
Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. . (2018) “Deep contextualized word representations.” in Proc. 2018 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Vol. 1 Long Pap., New Orleans, Louisiana: Association for Computational Linguistics. p. 2227–2237.
Mikolov T, Chen K, Corrado G, Dean J. (2013) Efficient estimation of word representations in vector space.
Pennington J, Socher R, Manning C. (2014) “GloVe: Global Vectors for Word Representation.” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014, p. 1532–1543.
Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput Linguist. (2017) 5:135–46. doi: 10.1162/tacl_a_00051 DOI
Peng Y, Yan S, Lu Z. (2019). “Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets.” in Proc. 18th BioNLP Workshop Shar. Task, Florence, Italy: Association for Computational Linguistics. p. 58–65.
Alsentzer E, Murphy J, Boag W, Weng W-H, Jindi D, Naumann T, et al. . Publicly available clinical BERT Embeddings In: . Proc. 2nd Clin. Nat. Lang. Process. Workshop. Minneapolis, Minnesota, USA: Association for Computational Linguistics; (2019). 72–8.
Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than English: opportunities and challenges. J Biomed Semant. (2018) 9:12. doi: 10.1186/s13326-018-0179-8, PMID: PubMed DOI PMC
Vogel M, Kaisers W, Wassmuth R, Mayatepek E. Analysis of documentation speed using web-based medical speech recognition technology: randomized controlled trial. J Med Internet Res. (2015) 17:e5072. doi: 10.2196/jmir.5072, PMID: PubMed DOI PMC
Zuchowski M, Göller A. Speech recognition for medical documentation: an analysis of time, cost efficiency and acceptance in a clinical setting. Br J Healthc Manag. (2022) 28:30–6. doi: 10.12968/bjhc.2021.0074 DOI
Gruber TR. A translation approach to portable ontologies. Knowledge Axquisition. (1993) 5:199–220. doi: 10.1006/knac.1993.1008 DOI
Borst WN. Construction of engineering ontologies for knowledge sharing and reuse. Enschede: Centre for Telematics and Information Technology (CTIT) (1997).
Studer R, Benjamins R, Fensel D. Knowledge engineering: principles and methods. Data Knowl Eng. (1998) 25:161–97. doi: 10.1016/S0169-023X(97)00056-6 DOI
Smith B, Brochhausen M. Putting biomedical ontologies to work. Methods Inf Med. (2010) 49:135–40. doi: 10.3414/ME9302, PMID: PubMed DOI PMC
Hofweber T. (2004) Logic and ontology.
Utecht J, Brochhausen M, Judkins J, Schneider J, Boyce RD. Formalizing evidence type definitions for drug-drug interaction studies to improve evidence base curation. Stud Health Technol Inform. (2017) 245:960–4.doi: 10.3233/978-1-61499-830-3-960 PubMed DOI PMC
Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF, editors. The description logic handbook: Theory, implementation and applications. 2nd ed. Cambridge: Cambridge University Press; (2007).
Hitzler P, Krötsch M, Parsia B, Patel-Schneider PF, Rudolph S. OWL 2 web ontology language primer. W3C recommendation. Second ed (2009) 27:123.
Isaac AHJCA, Summers E. SKOS simple knowledge organization system primer. Boston, MA: W3C; (2009).
Cyganiak R, Wood D, Lanthaler M. (n.d) RDF 1.1 concepts and abstract syntax.
Powers S. Practical RDF. Sebastopol/CA: O’Reilly; (2003).
The OBO (n.d.) Foundry. Available at: https://obofoundry.org/ (Accessed September 13, 2022).
Overview (n.d.) Available at: https://obofoundry.org/principles/fp-000-summary.html (Accessed September 13, 2022).
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. . The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. (2007) 25:1251–5. doi: 10.1038/nbt1346, PMID: PubMed DOI PMC
Jackson R, Matentzoglu N, Overton JA, Vita R, Balhoff JP, Buttigieg PL, et al. . OBO Foundry in 2021: operationalizing open data principles to evaluate ontologies. Database J Biol Databases Curation. (2021) 2021:baab069. doi: 10.1093/database/baab069, PMID: PubMed DOI PMC
Arp R, Smith B, Spear AD. Building ontologies with basic formal ontology The MIT Press; (2015).
Otte JN, Beverley J, Ruttenberg A. BFO: Basic Formal Ontology. Appl Ontol. (2022) 17:17–43. doi: 10.3233/AO-220262 DOI
Schulz S, Stegwee R, Chronaki C. Standards in healthcare data In: Kubben P, Dumontier M, Dekker A, editors. Fundamentals of Clinical Data Science. Cham (CH): Springer; (2019). PubMed
Schulz S, Cornet R, Spackman K. Consolidating SNOMED CT’s ontological commitment. Appl Ontol. (2011) 6:1–11. doi: 10.3233/AO-2011-0084 DOI
Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, et al. . BioPortal: enhanced functionality via new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. (2011) 39:W541–5. doi: 10.1093/nar/gkr469, PMID: PubMed DOI PMC
Schulz S, Johansson I. Continua in biological systems. Monist. (2007) 90:499–522. doi: 10.5840/monist200790434 DOI
Bhardwaj R, Nambiar AR, Dutta D. A Study of Machine Learning in Healthcare. IEEE 41st Annu Comput Softw Appl Conf COMPSAC. (2017) 2:236–41. doi: 10.1109/COMPSAC.2017.164 DOI
Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. (2013) 20:117–21. doi: 10.1136/amiajnl-2012-001145, PMID: PubMed DOI PMC
López-García P, Kreuzthaler M, Schulz S, Scherr D, Daumke P, Markó K, et al. . SEMCARE: multilingual semantic search in semi-structured clinical data. Stud Health Technol Inform. (2016) 223:93–9.doi: 10.3233/978-1-61499-645-3-93 PubMed DOI
Miñarro-Giménez JA, Cornet R, Jaulent MC, Dewenter H, Thun S, Gøeg KR, et al. . Quantitative analysis of manual annotation of clinical text samples. Int J Med Inform. (2019) 123:37–48. doi: 10.1016/j.ijmedinf.2018.12.011, PMID: PubMed DOI
Graubner B. ICD-10-SGBV and ICD-l0-Diagnosenthesaurus - advantages and disadvantages as well as further development. Med Infobahn Eur. (2000):161–4. doi: 10.3233/978-1-60750-921-9-161 PubMed DOI
Hashemian Nik D, Kasáč Z, Goda Z, Semlitsch A, Schulz S. Building an experimental German user Interface terminology linked to SNOMED CT. Stud Health Technol Inform. (2019) 264:153–7. doi: 10.3233/SHTI190202, PMID: PubMed DOI
Huang C-C, Lu Z. Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief Bioinform. (2016) 17:132–44. doi: 10.1093/bib/bbv024, PMID: PubMed DOI PMC
Johnson AEW, Pollard TJ, Shen L, Lehman L-WH, Feng M, Ghassemi M, et al. . MIMIC-III, a freely accessible critical care database. Sci Data. (2016) 3:160035. doi: 10.1038/sdata.2016.35, PMID: PubMed DOI PMC
Johnson AEW, Bulgarelli L, Pollard TJ. Deidentification of free-text medical records using pre-trained bidirectional transformers. Proc ACM Conf Health Inference Learn. (2020) 2020:214–21. doi: 10.1145/3368555.3384455, PMID: PubMed DOI PMC
Alder S. (2021) De-identification of protected health information: how to anonymize PHI. HIPAA J. Available at: https://www.hipaajournal.com/de-identification-protected-health-information/ [Accessed June 1, 2022].
Kittner M, Lamping M, Rieke DT, Götze J, Bajwa B, Jelas I, et al. . Annotation and initial evaluation of a large annotated German oncological corpus. JAMIA Open. (2021) 4:ooab025. doi: 10.1093/jamiaopen/ooab025, PMID: PubMed DOI PMC
Lohr C, Buechel S, Hahn U. (2018) “Sharing Copies of Synthetic Clinical Corpora without Physical Distribution — A Case Study to Get Around IPRs and Privacy Constraints Featuring the German JSYNCC Corpus.” in Proc. Elev. Int. Conf. Lang. Resour. Eval. LREC , Miyazaki, Japan: European Language Resources Association (ELRA). 2018.
Hripcsak G, Wilcox A. Reference standards, judges, and comparison subjects: roles for experts in evaluating system performance. J Am Med Inform Assoc. (2002) 9:1–15. doi: 10.1136/jamia.2002.0090001, PMID: PubMed DOI PMC
Hripcsak G, Heitjan DF. Measuring agreement in medical informatics reliability studies. J Biomed Inform. (2002) 35:99–110. doi: 10.1016/s1532-0464(02)00500-2 PubMed DOI
Eugenio BD, Glass M. The kappa statistic: a second look. Comput Linguist. (2004) 30:95–101. doi: 10.1162/089120104773633402 DOI
Neves M, Ševa J. An extensive review of tools for manual annotation of documents. Brief Bioinform. (2021) 22:146–63. doi: 10.1093/bib/bbz130, PMID: PubMed DOI PMC
Bona J, Kemp AS, Cox C, Nolan TS, Pillai L, Das A, et al. . Semantic integration of multi-modal data and derived neuroimaging results using the platform for imaging in precision medicine (PRISM) in the Arkansas imaging Enterprise system (ARIES). Front Artif Intell. (2021) 4:649970. doi: 10.3389/frai.2021.649970, PMID: PubMed DOI PMC
de Mello BH, Rigo SJ, da Costa CA, da Rosa RR, Donida B, Bez MR, et al. . Semantic interoperability in health records standards: a systematic literature review. Heal Technol. (2022) 12:255–72. doi: 10.1007/s12553-022-00639-w, PMID: PubMed DOI PMC
Kaliyaperumal R, Wilkinson MD, Moreno PA, Benis N, Cornet R, Dos Santos VB, et al. . Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data. J Biomed Semant. (2022) 13:9. doi: 10.1186/s13326-022-00264-6, PMID: PubMed DOI PMC
Gaudet-Blavignac C, Raisaro JL, Touré V, Österle S, Crameri K, Lovis C. A national, semantic-driven, three-pillar strategy to enable health data secondary usage interoperability for research within the Swiss personalized health network: methodological study. JMIR Med Inform. (2021) 9:e27591. doi: 10.2196/27591, PMID: PubMed DOI PMC
Visweswaran S, Samayamuthu MJ, Morris M, Weber GM, MacFadden D, Trevvett P, et al. . Development of a coronavirus disease 2019 (COVID-19) application ontology for the accrual to clinical trials (ACT) network. JAMIA Open. (2021) 4:ooab036. doi: 10.1093/jamiaopen/ooab036, PMID: PubMed DOI PMC
Babcock S, Beverley J, Cowell LG, Smith B. The infectious disease ontology in the age of COVID-19. J Biomed Semant. (2021) 12:13. doi: 10.1186/s13326-021-00245-1, PMID: PubMed DOI PMC
Gandon F. A survey of the first 20 years of research on semantic web and linked data. Revue des Sci Tech l’Inform. (2018) 3–4:11–56.
Brachmann R, Levesque H. Knowledge representation and reasoning. San Francisco, CA: Morgan Kaufmann Publishers; (2004).
Lakemeyer G, Nebel B. Foundations of knowledge representation and reasoning. Found Knowl Represent Reason. (1994) 810:1–12.
Brochhausen M, Bona J, Blobel B. The role of axiomatically-rich ontologies in transforming medical data to knowledge. Stud Health Technol Inform. (2018) 249:38–49.doi: 10.3233/978-1-61499-868-6-38 PubMed DOI
Seerainer C, Sabutsch SW. eHealth terminology Management in Austria. Stud Health Technol Inform. (2016) 228:426–30. doi: 10.3233/978-1-61499-678-1-426 PubMed DOI
Chiang MF, Hwang JC, Yu AC, Casper DS, Cimino JJ, Starren JB. Reliability of SNOMED-CT coding by three physicians using two terminology browsers. AMIA Annu Symp Proc AMIA Symp. (2006) 2006:131–5. PubMed PMC
Andrews JE, Richesson RL, Krischer J. Variation of SNOMED CT coding of clinical research concepts among coding experts. J Am Med Inform Assoc. (2007) 14:497–506. doi: 10.1197/jamia.M2372, PMID: PubMed DOI PMC
Bodenreider O, Cornet R, Vreeman DJ. Recent developments in clinical terminologies — SNOMED CT, LOINC, and RxNorm. Yearb Med Inform. (2018) 27:129–39. doi: 10.1055/s-0038-1667077, PMID: PubMed DOI PMC
Chen Q, Leaman R, Allot A, Luo L, Wei C-H, Yan S, et al. . Artificial intelligence in action: addressing the COVID-19 pandemic with natural language processing. Annu Rev Biomed Data Sci. (2021) 4:313–39. doi: 10.1146/annurev-biodatasci-021821-061045, PMID: PubMed DOI
Landgrebe J, Smith B. (2022) Why machines will never rule the world: artificial intelligence without fear.
Ghazvinian A, Noy NF, Musen MA. How orthogonal are the OBO foundry ontologies? J Biomed Semant. (2011) 2:S2. doi: 10.1186/2041-1480-2-S2-S2, PMID: PubMed DOI PMC
Quesada-Martínez M, Duque-Ramos A, Iniesta-Moreno M, Fernández-Breis JT. Preliminary analysis of the OBO foundry ontologies and their evolution using OQuaRE. Stud Health Technol Inform. (2017) 235:426–30. doi: 10.3233/978-1-61499-753-5-426 PubMed DOI
Brochhausen M, Whorton JM, Zayas CE, Kimbrell MP, Bost SJ, Singh N, et al. . Assessing the need for semantic data integration for surgical biobanks-a knowledge representation perspective. J Pers Med. (2022) 12:757. doi: 10.3390/jpm12050757, PMID: PubMed DOI PMC
Brochhausen M, Bost SJ, Singh N, Brochhausen C, Blobel B. Understanding the gap between information models and realism-based ontologies using the generic component model. Stud Health Technol Inform. (2021) 285:159–64. doi: 10.3233/978-1-61499-753-5-426, PMID: PubMed DOI