Transformation of Health and Social Care Systems-An Interdisciplinary Approach Toward a Foundational Architecture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35402446
PubMed Central
PMC8992002
DOI
10.3389/fmed.2022.802487
Knihovny.cz E-zdroje
- Klíčová slova
- 5P medicine, architecture, ecosystem, health transformation, integration, interoperability, knowledge representation and management, modeling,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: For realizing pervasive and ubiquitous health and social care services in a safe and high quality as well as efficient and effective way, health and social care systems have to meet new organizational, methodological, and technological paradigms. The resulting ecosystems are highly complex, highly distributed, and highly dynamic, following inter-organizational and even international approaches. Even though based on international, but domain-specific models and standards, achieving interoperability between such systems integrating multiple domains managed by multiple disciplines and their individually skilled actors is cumbersome. METHODS: Using the abstract presentation of any system by the universal type theory as well as universal logics and combining the resulting Barendregt Cube with parameters and the engineering approach of cognitive theories, systems theory, and good modeling best practices, this study argues for a generic reference architecture model moderating between the different perspectives and disciplines involved provide on that system. To represent architectural elements consistently, an aligned system of ontologies is used. RESULTS: The system-oriented, architecture-centric, and ontology-based generic reference model allows for re-engineering the existing and emerging knowledge representations, models, and standards, also considering the real-world business processes and the related development process of supporting IT systems for the sake of comprehensive systems integration and interoperability. The solution enables the analysis, design, and implementation of dynamic, interoperable multi-domain systems without requesting continuous revision of existing specifications.
1st Medical Faculty Charles University Prague Prague Czechia
eHealth Competence Center Bavaria Deggendorf Institute of Technology Deggendorf Germany
Faculty of Information Technology and Communication Sciences Tampere University Tampere Finland
IT Consulting in Healthcare Mülheim Germany
Medical Faculty University of Regensburg Regensburg Germany
Telematics Engineering Research Group University of Cauca Popayan Colombia
Zobrazit více v PubMed
Blobel B. Challenges and solutions for designing and managing phealth ecosystems. Front Med. (2019) 6:83. 10.3389/fmed.2019.00083 PubMed DOI PMC
Gates L. Why the Internet of Medical Things Is the Future of Healthcare. Tempe, AZ: Insight Enterprises Inc. (2021).
Menezes L. What is Holistic Medicine? Florida Medical Clinic Blog. (2020). Available online at: https://www.floridamedicalclinic.com (accessed October 20, 2021).
Scurfield A. The Power of Technology in Preventative Care. Congleton: Health Europa; (2021).
Lindahl S., Marincola F. Translational Medicine. Encyclopedia Britannica. Available online at: https://www.britannica.com (accessed October 20, 2021).
Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature. (2015) 526:336–42. 10.1038/nature15816 PubMed DOI PMC
Zeggini E, Gloyn AL, Barton AC, Wain LV. Translational genomics and precision medicine - moving from the lab to the clinic. Science. (2019) 365:1409–13. 10.1126/science.aax4588 PubMed DOI
Kapalla M. Healthcare information complexity and the role of informatics in predictive, preventive and personalized medicine. In: Niederlag W, Lemke HU, Rienhoff O. editors. Personalisierte Medizin & Informationstechnology. Dresden: Health Academy; (2010). p. 83–108.
Medspace: Medspace: Digital Health and Clinical Development - The Promise Challenges and Considerations for Integrating Wearable Biosensor Technologies into Clinical Studies. Framingham, MA: Fierce Biotech; (2021).
Pifer R. How Close Is Quantum Computing in Healthcare. (2021). Available online at: https://www.healthcaredive.com (accessed October 20, 2021).
Lorenz W-D. Quantencomputer: Arbeitsgebiet personalisierte Medizin. Krankenhaus. (2021) 4:35. Dietzenbach: Antares Computer Verlag GmbH.
Eck SH. Challenges in data storage and data management in a clinical diagnostic setting. J Lab Med. (2018) 42:219–24. 10.1515/labmed-2018-0054 DOI
Snowdon A. HIMSS Defines Digital Health for the Global Healthcare Industry. HIMSS Digital Health (2020). Available online at: https://www.himss.org/news/himss-defines-digital-health-global-healthcare-industry (accessed October 20, 2021).
Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J Prev Med. (2016) 50:398–401. 10.1016/j.amepre.2015.08.031 PubMed DOI PMC
Petrone J. MIT-Led Team Develops Genomics Platform to Support Heart Disease Treatment Decisions. New York, NY: Genomeweb; (2021).
Li X, Warren S, Pelekanou V, Wali V, Cesano A, Liu M, et al. . Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial. J Immunother Cancer. (2019) 7:88. 10.1186/s40425-019-0563-7 PubMed DOI PMC
IsoPlexis: Accelerating the Development of Curative Medicines with Functional Immune Profiling. New Rochelle, NY: GEN Publishing; (2021).
Su Y, Ko ME, Cheng H, Zhu R, Xue M, Wang J, et al. . Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun. (2020) 11:2345. 10.1038/s41467-020-15956-9 PubMed DOI PMC
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. (2019) 38:396. 10.1186/s13046-019-1396-4 PubMed DOI PMC
Ginsburg GS, Phillips KA. precision medicine: from science to value. Health Aff . (2018) 37:694–701. 10.1377/hlthaff.2017.1624 PubMed DOI PMC
Aitken M, Nass D. Digital Health Trends 2021: Innovation, Evidence, Regulation, and Adoption. IQVIA Institute, (2021). https://www.iqvia.com
Luppicini R (Ed.). Interdisciplinary Approaches to Digital Transformation and Innovation. Hershey, PA: IGI Global book series Advances in E-Business Research (AEBR) (2020). 10.4018/978-1-7998-1879-3 DOI
Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, Sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett. (2021) 21:7093–9. 10.1021/acs.nanolett.1c01039 PubMed DOI
Boulos MNK, Zhang P. Digital twins: from personalised medicine to precision public health. J Pers. Med. (2021) 11:745. 10.3390/jpm11080745 PubMed DOI PMC
Blobel B. Architectural approach to eHealth for enabling paradigm changes in health. Methods Inf Med. (2010) 49:123–34. 10.3414/ME9308 PubMed DOI
Niederlag W, Lemke HU, Rienhoff O. Personalized Medicine & Information Technology (in German). Dresden: Health Academy; (2010). PubMed
Blobel B. Translational medicine meets new technologies for enabling personalized care. Stud Health Technol Inform. (2013) 189:8–23. 10.3233/978-1-61499-268-4-8 PubMed DOI
Blobel B, Ruotsalainen P, Lopez DM, Oemig F. Requirements and solutions for personalized health systems. Stud Health Technol Inform. (2017) 237:3–21. PubMed
Blobel B, Ruotsalainen P, Oemig F. Why interoperability at data level is not sufficient for enabling pHealth? Stud Health Technol Inform. (2020) 273:3–20. 10.3233/978-1-61499-761-0-3 PubMed DOI
Object Management Group Inc. Available online at: http://www.omg.org (accessed 10 December 2015).
Oemig F, Blobel B. Natural Language processing supporting interoperability in healthcare. In: Biemann C, Mehler A. editors. Text Mining – From Ontology Learning to Automated Text Processing Applications, 137 – 156. Series Theory and Applications of Natural Language Processing. Heidelberg: Springer-Verlag GmbH; (2014). 10.1007/978-3-319-12655-5_7 DOI
Blobel B, Brochhausen M, Ruotsalainen P. Modeling the personal health ecosystem. Stud Health Technol Inform. (2018) 249:3–16. 10.3233/978-1-61499-868-6-3 PubMed DOI
Blobel B, Oemig F. The importance of architectures for interoperability. Stud Health Technol Inform. (2015) 211:18–56. 10.3233/978-1-61499-516-6-18 PubMed DOI
Blobel B. Knowledge representation and management enabling intelligent interoperability – principles and standards. Stud Health Technol Inform. (2013) 186:3–21. 10.3233/978-1-61499-240-0-3 PubMed DOI
Davenport TH, De Long DW, Beers MC. Successful Knowledge Management Projects. Sloan Management Review. Winter. Boston, MA: ABI/INFORM Global; (1998). p. 43–57.
Quine WV. From Stimulus to science. Cambridge, MA: Harvard University Press; (1995). 10.4159/9780674042476 DOI
Doerner H. Knowledge representation. ideas – aspects – formalisms. In: Grabowski J, Jantke KP, Thiele H. editors. Foundations of Artificial Intelligence. Berlin: Akademie-Verlag; (1989).
Brown PC. A concept representation language (CRL). In: 12th IEEE International Conference on Semantic Computing. Laguna Hills, CA: IEEE; (2018). 10.1109/ICSC.2018.00010 DOI
Kamareddine F, Laan T, Nederpelt R. A Modern Perspective on Type Theory. New York, NY: Kluwer Academic Publishers; (2004).
Type Theory – Wikipedia. Available online at: https://en.wikipedia.org/wiki/Type_theory (accessed October 20, 2021).
PMBookProject . Type Theory Versus Set Theory. Available online at: http://planetmath.org/11typetheoryversussettheory (accessed October 20, 2021).
Bloe R, Kamareddine F, Nederpelt R. The barendregt cube with definitions and generalized reduction. Inform Comput. (1996) 126:123–43. 10.1006/inco.1996.0041 DOI
International Organisation for Standardisation . ISO/IEC 21838:2021 Information technology – Top-level ontologies (TLO). Geneva: ISO; (2021).
Dou D, McDermott D, Qi P. (2005) Ontology translation on the semantic web. In: Spaccapietra S, et al. editors. Journal on Data Semantics II. Lecture Notes in Computer Science, Vol. 3360. Berlin, Heidelberg: Springer; (2005). p. 35–57. 10.1007/978-3-540-30567-5_2 DOI
Brochhausen M, Blobel B. Architectural approach for providing relations in biomedical terminologies and ontologies. Stud Health Technol Inform. (2011). 169:739–43. 10.3233/978-1-60750-806-9-739 PubMed DOI
Blobel B, Brochhausen M, Gonzalez C, Lopez DM, Oemig F. A system-theoretical, architecture-based approach to ontology management. Stud Health Technol Inform. (2012) 180:1087–9. 10.3233/978-1-61499-101-4-1087 PubMed DOI
Brochhausen M, Bona J, Blobel B. The role of axiomatically-rich ontologies in transforming medical data to knowledge. Stud Health Technol Inform. (2018) 249:38–49. 10.3233/978-1-61499-868-6-38 PubMed DOI
International Organisation for Standardisation . ISO 23903:2021 Health Informatics – Interoperability and Integration Reference Architecture – Model and Framework. Geneva: ISO; (2021).
Blobel B. Assessment of middleware concepts using a generic component model. In: Proceedings of the Conference “Toward An Electronic Health Record Europe '97”. London: Newton: Medical Records Institute; (1997). p. 221–8.
Blobel B. Application of the component paradigm for analysis and design of advanced health system architectures. Int J Med Inform. (2000) 60:281–301. 10.1016/S1386-5056(00)00104-0 PubMed DOI
Blobel B. Interoperable healthcare information system components for continuity of care. Br J Healthc Comput Inform Manag. (2003) 20:22–4.
Oemig F, Blobel B. Harmonizing the semantics of technical terms by the generic component model. Stud Health Technol Inform. (2010) 155:115–21. 10.3233/978-1-60750-563-1-115 PubMed DOI
Blobel B, Gonzalez C, Oemig F, Lopez DM, Nykänen P, Ruotsalainen P. The role of architecture and ontology for interoperability. Stud Health Technol Inform. (2010) 155:33–9. 10.3233/978-1-60750-563-1-33 PubMed DOI
International Organisation for Standardisation . ISO/IEC 10746:2009 Information technology – Open Distributed Processing – Reference Model. Geneva: ISO; (2009).
Rational Software . Rational Unified Process – Best Practices for Software Development Teams. Lexington: Rational Software; (1998).
International Organisation for Standardisation . ISO/IEC 19510:2013 Information technology — Object Management Group Business Process Model and Notation. Geneva: ISO; (2013).
Object Management Group . Unified Modeling Language (UML). OMG, Milford (2017). Available online at: www.omg.org/spec/UML (accessed October 20, 2021).
International Organisation for Standardisation . ISO 13606:2019 Health Informatics – Electronic Health Record Communication. Geneva: ISO; (1998).
International Organisation for Standardisation . ISO 12967:2020 Health informatics – Service architecture (HISA). Geneva: ISO; (2020).
International Organisation for Standardisation . ISO 13940:2015 Health Informatics – System of Concepts to Support Continuity of Care. Geneva: ISO; (2015).
openEHR Foundation . Available online at: www.openEHR.org (accessed 10 December 2015).
International Organisation for Standardisation . ISO 13972:2015 Health Informatics - Detailed Clinical Models – Characteristics and Processes. Geneva: ISO; (2015).
HL7, International . Clinical Information Modeling Initiative (CIMI). Available online at: https://www.hl7.org/Special/Committees/cimi (accessed October 20, 2021).
International Organisation for Standardisation . ISO/HL7 21731:2014 Health Informatics - HL7 version 3 - Reference Information Model - Release 4. Geneva: ISO; (2014).
HL7, International . HL7 v2 Standards. Available online at: http://www.hl7.org/implement/standards (accessed October 20, 2021).
HL7, International . FHIR Methodology Process. Available online at: https://wiki.hl7.org/FHIR_Methodology_Process (accessed October 20, 2021).
HL7, International . HL7 Fast Healthcare Interoperability Resources (FHIR). Available online at: http://www.hl7.org/fhir/ (accessed October 20, 2021).
International Organisation for Standardisation . ISO 22600:2014 Health Informatics – Privilege Management and Access Control (Part1–3). Geneva: ISO; (2014).
Oemig F, Blobel B. A formal analysis of HL7 Version 2.x. Stud Health Technol Inform. (2011) 169:704–8. 10.3233/978-1-60750-806-9-704 PubMed DOI
Oemig F, Blobel B. A communication standards ontology using basic formal ontologies. Stud Health Technol Inform. (2010) 156:105–13. 10.3233/978-1-60750-565-5-105 PubMed DOI
Oemig F. Entwicklung einer ontologiebasierten Architektur zur Sicherung semantischer Interoperabilität zwischen Kommunikationsstandards im Gesundheitswesen (Inaugural-Dissertation; ). Universität Regensburg, Medizinische Fakultät, Regensburg, Germany: (2011).
Uribe GA, López DM, Blobel B. An architecture-centric and ontology-based approach to cross-domain interoperability of health information systems for diabetes care. In: Gallón AR, García JCY, Ramirez-Gonzalez G. editors. Memorias del VII Congreso Iberoamericano de Telemática CITA2015. Popayan, Colombia: ResearchAndInnovationBook; (2015). p. 241–4.
Uribe GA, Blobel B, López DM, Schulz S. A generic architecture for an adaptive, interoperable and intelligent type 2 diabetes mellitus care system. Stud Health Technol Inform. (2015) 211:121–31. 10.3233/978-1-61499-516-6-121 PubMed DOI
Uribe GA, Blobel B, López DM, Ruiz AA. Specializing architectures for the type 2 diabetes mellitus care use cases with a focus on process management. Stud Health Technol Inform. (2015) 211:132–42. 10.3233/978-1-61499-516-6-132 PubMed DOI
Uribe G. An Architecture-Centric and Ontology-Based Approach to Cross-Domain Interoperability of Health Information Systems for Diabetes Care (PhD Thesis). University of Cauca, Electronics and Telecommunication Engineering Faculty, Popayan, Colombia: (2015).
International Organisation for Standardisation . ISO 21298:2017 Health Informatics – Functional and Structural Roles. Geneva: ISO; (2017).
HL7 International . HL7 Version 3 Domain Analysis Model: Composite Security and Privacy, Release 1. Ann Arbor, MI.
HL7 International . ANSI/HL7 Privacy and Security Logical Data Model, Release 1. Ann Arbor, MI.
Adel E, El-Sappagh S, Elmody M, Bakarat S, Kwak KS. A fuzzy ontological infrastructure for semantic interoperability in distributed electronic health record. Intell Autom Soft Comput. (2020) 26:237–50. 10.31209/2019.100000151 DOI
Blobel B, Oemig F, López DM. Why do we need and how can we realize a multi-disciplinary approach to health informatics? Stud Health Technol Inform. (2015) 210:100–4. 10.3233/978-1-61499-512-8-100 PubMed DOI
The Representational Challenge of Integration and Interoperability in Transformed Health Ecosystems
Designing and Managing Advanced, Intelligent and Ethical Health and Social Care Ecosystems
Multidimensional Machine Learning Model to Calculate a COVID-19 Vulnerability Index
Reinforcing Health Data Sharing through Data Democratization
Modeling digital health systems to foster interoperability