A NLP Pipeline for the Automatic Extraction of a Complete Microorganism's Picture from Microbiological Notes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36143209
PubMed Central
PMC9504513
DOI
10.3390/jpm12091424
PII: jpm12091424
Knihovny.cz E-zdroje
- Klíčová slova
- hospital-acquired infections, information extraction, international coding system, laboratory information systems, natural language processing,
- Publikační typ
- časopisecké články MeSH
The Italian "Istituto Superiore di Sanità" (ISS) identifies hospital-acquired infections (HAIs) as the most frequent and serious complications in healthcare. HAIs constitute a real health emergency and, therefore, require decisive action from both local and national health organizations. Information about the causative microorganisms of HAIs is obtained from the results of microbiological cultures of specimens collected from infected body sites, but microorganisms' names are sometimes reported only in the notes field of the culture reports. The objective of our work was to build a NLP-based pipeline for the automatic information extraction from the notes of microbiological culture reports. We analyzed a sample composed of 499 texts of notes extracted from 1 month of anonymized laboratory referral. First, our system filtered texts in order to remove nonmeaningful sentences. Thereafter, it correctly extracted all the microorganisms' names according to the expert's labels and linked them to a set of very important metadata such as the translations into national/international vocabularies and standard definitions. As the major result of our pipeline, the system extracts a complete picture of the microorganism.
1st Medical Faculty Charles University Prague 12800 Prague Czech Republic
Department of Health Sciences University of Genoa 16132 Genoa Italy
Department of Infectious Diseases AUSL Pescara 65124 Pescara Italy
eHealth Competence Center Bavaria Deggendorf Institute of Technology 94469 Deggendorf Germany
Healthropy Corso Italia 15 6 17100 Savona Italy
HL7 Europe 1000 Brussels Belgium
Infectious Diseases Unit IRCCS San Martino Polyclinic Hospital 16132 Genoa Italy
Medical Faculty University of Regensburg 93053 Regensburg Germany
Zobrazit více v PubMed
[(accessed on 25 August 2022)]. Available online: https://www.epicentro.iss.it/
Angela R. Healthcare–associated infections: A public health problem. Niger. Med. J. Niger. Med. Assoc. 2012;53:59. PubMed PMC
Huys G., Cnockaert M., Bartie K., Oanh D., Phuong N., Somsiri T., Chinabut S., Yussoff F., Shariff M., Giacomini M., et al. Intra- and interlaboratory performance of antibiotic disk-diffusion-susceptibility testing of bacterial control strains of relevance for monitoring aquaculture environments. Dis. Aquat. Org. 2005;66:197–204. doi: 10.3354/dao066197. PubMed DOI
Adamu J.Y., Raufu A.I., Chimaroke F.C., Ameh J.A. Antimicrobial susceptibility testing of Staphylococcus aureus isolated from apparently healthy humans and animals in Maiduguri, Nigeria. Int. J. Biomed. Health Sci. 2021;6:4.
Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Basak S., Singh P., Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016;2016:1–5. doi: 10.1155/2016/4065603. PubMed DOI PMC
Organisation for Economic Co-operation and Development, European Centre for Disease Prevention and Control . Antimicrobial Resistance—Tackling the Burden in the European Union—Briefing Note for EU/ EEA Countries. OECD; Paris, France: 2019. [(accessed on 25 August 2022)]. Available online: https://www.oecd.org/health/health-systems/AMR-Tackling-the-Burden-in-the-EU-OECD-ECDC-Briefing-Note-2019.Pdf.
Centers for Disease Control and Prevention. [(accessed on 25 August 2022)];2019 Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
Timsit J.-F., Ruppé E., Barbier F., Tabah A., Bassetti M. Bloodstream infections in critically ill patients: An expert statement. Intensive Care Med. 2020;46:266–284. doi: 10.1007/s00134-020-05950-6. PubMed DOI PMC
Giacobbe D.R., Roberts J.A., Abdul-Aziz M.H., de Montmollin E., Timsit J.F., Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: A contemporary, multidisciplinary ESGCIP perspective. Expert Rev. Anti Infect. 2022;20:963–979. doi: 10.1080/14787210.2022.2063838. PubMed DOI
Bassetti M., Poulakou G., Ruppe E., Bouza E., Van Hal S.J., Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med. 2017;43:1464–1475. doi: 10.1007/s00134-017-4878-x. PubMed DOI
Costa D., Martins P., Loureiro L., Matos A.J.F. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health. 2013;10:278–294. doi: 10.3390/ijerph10010278. PubMed DOI PMC
Saud B., Paudel G., Khichaju S., Bajracharya D., Dhungana G., Awasthi M.S., Shrestha V. Multidrug-Resistant Bacteria from Raw Meat of Buffalo and Chicken, Nepal. Vet. Med. Int. 2019;2019:7960268. doi: 10.1155/2019/7960268. PubMed DOI PMC
Rahman M., Husna A., Elshabrawy H.A., Alam J., Runa N.Y., Badruzzaman A.T.M., Banu N.A., Al Mamun M., Paul B., Das S., et al. Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat. Sci. Rep. 2020;10:21999. doi: 10.1038/s41598-020-78367-2. PubMed DOI PMC
Jeżak K., Kozajda A. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine—review. Environ. Sci. Pollut. Res. 2021;29:9533–9559. doi: 10.1007/s11356-021-17773-z. PubMed DOI PMC
Huys G., Bartie K., Cnockaert M., Oanh D.T.H., Phuong N.T., Somsiri T., Chinabut S., Yusoff F.M., Shariff M., Giacomini M., et al. Biodiversity of chloramphenicol-resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Res. Microbiol. 2007;158:228–235. doi: 10.1016/j.resmic.2006.12.011. PubMed DOI
Pham T.T.H., Rossi P., Dinh H.D.K., Pham N.T.A., Tran P.A., Ho T.T.K.M., Dinh Q.T., De Alencastro L.F. Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam) J. Environ. Manag. 2018;214:149–156. doi: 10.1016/j.jenvman.2018.02.089. PubMed DOI
Higuera-Llantén S., Vásquez-Ponce F., Barrientos-Espinoza B., Mardones F., Marshall S.H., Olivares-Pacheco J. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE. 2018;13:e0203641. doi: 10.1371/journal.pone.0203641. PubMed DOI PMC
Grimson W., Brender J., Grimson J., Groth T., Hermanson B., Yearworth M., Wade V. Specifying an open clinical laboratory information system. Comput. Methods Programs Biomed. 1996;50:95–109. doi: 10.1016/0169-2607(96)01739-R. PubMed DOI
Aller R.D. Software standards and the laboratory information system. Am. J. Clin. Pathol. 1996;105:S48–S53. PubMed
Gazzarata R., Monteverde M.E., Vio E., Saccavini C., Gubian L., Borgo I., Giacomini M. A Terminology Service Compliant to CTS2 to Manage Semantics within the Regional HIE. Eur. J. Biomed. Inform. 2017;13 doi: 10.24105/ejbi.2017.13.1.7. DOI
[(accessed on 25 August 2022)]. Available online: https://www.omg.org/
[(accessed on 25 August 2022)]. Available online: https://www.hl7.org/
Matheny M.E., Fitzhenry F., Speroff T., Hathaway J., Murff H.J., Brown S.H., Fielstein E.M., Dittus R.S., Elkin P.L. Detection of blood culture bacterial contamination using natural language processing. AMIA Annu. Symp. Proc. AMIA Symp. 2009;2009:411–415. PubMed PMC
Maganti N., Tan H., Niziol L.M., Amin S., Hou A., Singh K., Ballouz D., Woodward M.A. Natural Language Processing to Quantify Microbial Keratitis Measurements. Ophthalmology. 2019;126:1722–1724. doi: 10.1016/j.ophtha.2019.06.003. PubMed DOI PMC
Fu S., Wyles C.C., Osmon D.R., Carvour M.L., Sagheb E., Ramazanian T., Kremers W.K., Lewallen D.G., Berry D.J., Sohn S., et al. Automated Detection of Periprosthetic Joint Infections and Data Elements Using Natural Language Processing. J. Arthroplast. 2020;36:688–692. doi: 10.1016/j.arth.2020.07.076. PubMed DOI PMC
Gazzarata R., Monteverde M.E., Bonetto M., Savini V., Polilli E., Corridoni S., Costantini A., Santoleri F., Rapacchiale G., Palmieri D., et al. A SOA based solution for MDRO surveillance and improved antibiotic pre-scription in the Abruzzo region. pHealth. 2019;2019:49–54. PubMed
Mora S., Attene J., Gazzarata R., Parruti G., Giacomini M. A NLP Pipeline for the Automatic Extraction of Microorganisms Names from Microbiological Notes. Stud. Health Technol. Inform. 2021:153–158. doi: 10.3233/shti210589. PubMed DOI
Pandas. [(accessed on 25 August 2022)]. Available online: https://pandas.pydata.org/
Steven B. NLTK: The natural language toolkit; Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions; Sydney, Australia. 17-21 July 2006.
Honnibal M., Montani I. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. Appear. 2017;7:411–420.
Van Rossum G. The Python Library Reference, Release 3.8.2. Python Software Foundation; Fredericksburg, Virginia: 2020.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Waskom M.L. seaborn: Statistical data visualization. J. Open Source Softw. 2021;6:3021. doi: 10.21105/joss.03021. DOI
Hunter J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
[(accessed on 25 August 2022)]. Available online: https://github.com/seatgeek/thefuzz.
Ghosh S., Dasgupta A., Swetapadma A. A Study on Support Vector Machine based Linear and Non-Linear Pattern Classification; Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), IEEE; Palladam, India. 21–22 February 2019; pp. 24–28. DOI
Chapelle O., Haffner P., Vapnik V. Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 1999;10:1055–1064. doi: 10.1109/72.788646. PubMed DOI
Kleinbaum D.G., Dietz K., Gail M., Klein M., Klein M. Logistic Regression. Springer; New York, NY, USA: 2002.
Leo B. Random forests. Mach. Learn. 2001;45:5–32.
Linnaeus C. Systema naturae. Stockh. Holmiae (Laurentii Salvii) 1758;10:551.
Mondain V., Secondo G., Guttmann R., Ferrea G., Dusi A., Giacomini M., Courjon J., Pradier C. A toolkit for the management of infection or colonization by extended-spectrum beta-lactamase producing Enterobacteriaceae in Italy: Implementation and outcome of a European project. Eur. J. Clin. Microbiol. 2018;37:987–992. doi: 10.1007/s10096-018-3202-1. PubMed DOI
Interoperability and Integration Reference Architecture–Model and Framework. ISO; Geneva, Switzerland: 2021.
Chomsky Hierarchy in Theory of Computation. [(accessed on 25 August 2022)]. Available online: https://www.geeksforgeeks.org/chomsky-hierarchy-in-theory-of-computation/
Krogstie J. Business Information Systems Utilizing the Future Internet. Data Knowl. Eng. 2011;90:1–18. doi: 10.1007/978-3-642-24511-4_1. DOI
Aamodt A., Nygård M. Different roles and mutual dependencies of data, information, and knowledge—An AI perspective on their integration. Data Knowl. Eng. 1995;16:191–222. doi: 10.1016/0169-023X(95)00017-M. DOI
Information Technology–Top-Level Ontologies (TLO) ISO; Geneva, Switzerland: 2021.
Blobel B., Ruotsalainen P., Oemig F. pHealth. Volume 273. IOS Press; Amsterdam, The Netherlands: 2020. Why Interoperability at Data Level Is Not Sufficient for Enabling pHealth? pp. 3–20. PubMed DOI
Blobel B., Oemig F., Ruotsalainen P., Lopez D.M. Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture. Front. Med. 2022;9:802487. doi: 10.3389/fmed.2022.802487. PubMed DOI PMC