Morphological Transformation in Polymer Composite Materials Filled with Carbon Nanoparticles: Part 1-SEM and XRD Investigations

. 2022 May 14 ; 15 (10) : . [epub] 20220514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35629560

Grantová podpora
Peter the Great St. Petersburg Polytechnic University under the strategic academic leadership program 'Priority 2030' of the Russian Federation.

HDPE-based nanocomposite fibers have been extruded from a melt and drawn up to draw ratio DR = 8. Two kinds of carbon nanodiscs (original ones and those exposed to additional annealing) have been used as fillers. Obtained nanocomposite fibers have been investigated with the help of different experimental methods: rheology, SEM and WAXS. It has been demonstrated that the annealed carbon nanodiscs possess a nucleation ability that finally leads to strong transformation of the material morphology.

Zobrazit více v PubMed

Higgins T.D., Bryant G.M. Influence of melt spinning variables on the tensile properties of high density polyethylene fibers. J. Appl. Polym. Sci. 1964;8:2399–2425. doi: 10.1002/app.1964.070080530. DOI

D’Amato M., Dorigato A., Fambri L., Pegoretti A. High performance polyethylene nanocomposite fibers. Express Polym. Lett. 2012;6:954–964. doi: 10.3144/expresspolymlett.2012.101. DOI

Fakirov S. Oriented Polymer Materials. Huthig & Wepf; Basel, Switzerland: 1996. p. 512.

Pennings A.J., Smook J., de Boer J., Gogolewski S., van Hutten P.F. Process of preparation and properties of ultra-high strength polyethylene fibers. Pure Appl. Chem. 1983;55:777–798. doi: 10.1351/pac198355050777. DOI

Holmes D.R., Miller R.G., Palmer R.P., Bunn C.W. Crossed amorphous and crystalline chain orientation in polythene film. Nature. 1953;171:1104–1106. doi: 10.1038/1711104b0. PubMed DOI

Keller A. Unusual orientation phenomena in polyethylene interpreted in terms of the morphology. J. Polym. Sci. 1955;15:31–49. doi: 10.1002/pol.1955.120157904. DOI

Keller A., Machin M.J. Oriented crystallization in polymers. J. Macromol. Sci. Part B. 2006;1:41–91. doi: 10.1080/00222346708212739. DOI

Keith H.D., Padden F.J. The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J. Polym. Sci. 1959;39:101–122. doi: 10.1002/pol.1959.1203913509. DOI

Hendus H. Reihenstruktur und Röntgen-Kleinwinkelinterferenz von Polyäthylen. Kolloid-Z. Z. Polym. 1973;251:779–781. doi: 10.1007/BF01499108. DOI

Gerasimov V.I., Tsvankin D.Y. X-ray study of extruded polyethylene films. Polym. Sci. USSR. 1970;12:2944–2960. doi: 10.1016/0032-3950(70)90442-9. DOI

Dees J.R., Spruiell J.E. Structure development during melt spinning of linear polyethylene fibers. J. Appl. Polym. Sci. 1974;18:1053–1078. doi: 10.1002/app.1974.070180408. DOI

Aggarwal S.L., Tilley G.P., Sweeting O.J. Orientation in extruded polyethylene films. J. Appl. Polym. Sci. 1959;1:91–100. doi: 10.1002/app.1959.070010115. DOI

Kobayashi K., Nagasawa T. Crystallization of sheared polymer melts. J. Macromol. Sci. Part B Phys. 2006;4:331–345. doi: 10.1080/00222347008212506. DOI

Lin L., Argon A.S. Structure and plastic deformation of polyethylene. J. Mater. Sci. 1994;29:294–323. doi: 10.1007/BF01162485. DOI

Lindenmeyer P.H., Lustig S. Crystallite orientation in extruded polyethylene film. J. Appl. Polym. Sci. 1965;9:227–240. doi: 10.1002/app.1965.070090121. DOI

Peterlin A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971;6:490–508. doi: 10.1007/BF00550305. DOI

Mackley M.R., Keller A. Flow induced crystallization of polyethylene melts. Polymer. 1973;14:16–20. doi: 10.1016/0032-3861(73)90073-6. DOI

Maxfield J., Mandelkern L. Crystallinity, supermolecular structure, and thermodynamic properties of linear polyethylene fractions. Macromolecules. 1977;10:1141–1153. doi: 10.1021/ma60059a046. DOI

Stern T., Marom G., Wachtel E. Origin, morphology and crystallography of transcrystallinity in polyethylene-based single-polymer composites. Compos. Part A Appl. Sci. Manuf. 1997;28:437–444. doi: 10.1016/S1359-835X(96)00142-X. DOI

Desper C.R. Structure and properties of extruded polyethylene film. J. Appl. Polym. Sci. 1969;13:169–191. doi: 10.1002/app.1969.070130117. DOI

Sekiguchi Y., Takarada W., Kikutani T. Structure and properties of melt-spun fibers of polyethylene blended with cellulose fibers. AIP Conf. Proc. 2017;1914:130004.

Farahbakhsh N., Roodposhti P.S., Ayoub A., Venditti R.A., Jur J.S. Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.41857. DOI

Fambri L., Dabrowska I., Pegoretti A., Ceccato R. Melt spinning and drawing of polyethylene nanocomposite fibers with organically modified hydrotalcite. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40277. DOI

Gleeson S.E., Kim S., Yu T., Marcolongo M., Li C.Y. Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs. Polymer. 2020;202:122644. doi: 10.1016/j.polymer.2020.122644. DOI

Bin Y., Wang H. Crystallization in Multiphase Polymer Systems. Elsevier; Amsterdam, The Netherlands: 2018. Transcrystallization in polymer composites and nanocomposites; pp. 341–365.

Ning N., Luo F., Wang K., Zhang Q., Chen F., Du R., An C., Pan B., Fu Q. Molecular weight dependence of hybrid shish kebab structure in injection molded bar of polyethylene/inorganic whisker composites. J. Phys. Chem. B. 2008;112:14140–14148. doi: 10.1021/jp8056515. PubMed DOI

Mai F., Wang K., Yao M., Deng H., Chen F., Fu Q. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J. Phys. Chem. B. 2010;114:10693–10702. doi: 10.1021/jp1019944. PubMed DOI

Sulong A.B., Park J.H. Fabrication of Carbon Nanotubes Reinforced Polyethylene Fibers by Melt Spinning: Process Optimization and Mechanical Strength Characterization. Adv. Mater. Res. 2007;26–28:289–292.

Sulong A.B., Park J., Azhari C.H., Jusoff K. Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos. Part B Eng. 2011;42:11–17. doi: 10.1016/j.compositesb.2010.09.014. DOI

Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;85:240–251. doi: 10.1002/jbm.b.30942. PubMed DOI

Bassett D.C., Olley R.H. On the lamellar morphology of isotactic polypropylene spherulites. Polymer. 1984;25:935–943. doi: 10.1016/0032-3861(84)90076-4. DOI

Ivan’kova E., Kasatkin I., Moskalyuk O., Yudin V., Kenny J.M. Structural aspects of mechanical properties of iPP-based composites. I. Composite iPP fibers with VGCF nanofiller. J. Appl. Polym. Sci. 2015:132. doi: 10.1002/app.41865. DOI

Marikhin V.A., Myasnikova L.P., Novak I.I., Suchkov V.A., Tukhvatullina M.S. Molecular orientation in microfibrils and strength of oriented polyethylene. Polym. Sci. USSR. 1972;14:2865–2870. doi: 10.1016/0032-3950(72)90216-X. DOI

Marikhin V.A., Myasnikova L.P., Pel’tsbauer Z. Formation of kink bands during orientation drawing of linear polyethylene. Polym. Sci. USSR. 1981;23:2295–2304. doi: 10.1016/0032-3950(81)90256-2. DOI

Gann L.A., Marikhin V.A., Myasnikova L.P., Budtov V.P., Myasnikov G.D. Effect of temperature on the orientational drawing of polyethylenes of different molecular weight. Polym. Sci. USSR. 1988;30:567–571. doi: 10.1016/0032-3950(88)90092-5. DOI

Bershtein V.A., Yegorov V.M., Marikhin V.A., Myasnikova L.P. Relationship between the melting cooperativity parameter, structure and strength of ultra-oriented polyethylene. Polym. Sci. USSR. 1990;32:2500–2508. doi: 10.1016/0032-3950(90)90426-7. DOI

Marikhin V.A., Myasnikova L.P. Heterogeneity of structure and mechanical properties of polymers. Makromol. Chemie. Macromol. Symp. 1991;41:209–227. doi: 10.1002/masy.19910410117. DOI

Ivan’kova E., Vasilieva V., Myasnikova L., Marikhin V., Henning S., Michler G.H. Comparison of structure formation upon drawing of gel-cast and melt-crystallised UHMWPE films. E-Polymers. 2002;2 doi: 10.1515/epoly.2002.2.1.605. DOI

Sui G., Zhong W.H., Ren X., Wang X.Q., Yang X.P. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater. Chem. Phys. 2009;115:404–412. doi: 10.1016/j.matchemphys.2008.12.016. DOI

Katayama K., Nakamura K., Amano T. Structural formation during melt spinning process. Kolloid-Z. Z. Polym. 1968;226:125–134. doi: 10.1007/BF02086256. DOI

Haggenmueller R., Fischer J.E., Winey K.I. Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules. 2006;39:2964–2971. doi: 10.1021/ma0527698. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace