Morphological Transformation in Polymer Composite Materials Filled with Carbon Nanoparticles: Part 1-SEM and XRD Investigations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Peter the Great St. Petersburg Polytechnic University under the strategic academic leadership program 'Priority 2030' of the Russian Federation.
PubMed
35629560
PubMed Central
PMC9147559
DOI
10.3390/ma15103531
PII: ma15103531
Knihovny.cz E-zdroje
- Klíčová slova
- HDPE, SEM, WAXS, carbon nanodiscs, fibers, melt-extrusion, rheology, structure,
- Publikační typ
- časopisecké články MeSH
HDPE-based nanocomposite fibers have been extruded from a melt and drawn up to draw ratio DR = 8. Two kinds of carbon nanodiscs (original ones and those exposed to additional annealing) have been used as fillers. Obtained nanocomposite fibers have been investigated with the help of different experimental methods: rheology, SEM and WAXS. It has been demonstrated that the annealed carbon nanodiscs possess a nucleation ability that finally leads to strong transformation of the material morphology.
Zobrazit více v PubMed
Higgins T.D., Bryant G.M. Influence of melt spinning variables on the tensile properties of high density polyethylene fibers. J. Appl. Polym. Sci. 1964;8:2399–2425. doi: 10.1002/app.1964.070080530. DOI
D’Amato M., Dorigato A., Fambri L., Pegoretti A. High performance polyethylene nanocomposite fibers. Express Polym. Lett. 2012;6:954–964. doi: 10.3144/expresspolymlett.2012.101. DOI
Fakirov S. Oriented Polymer Materials. Huthig & Wepf; Basel, Switzerland: 1996. p. 512.
Pennings A.J., Smook J., de Boer J., Gogolewski S., van Hutten P.F. Process of preparation and properties of ultra-high strength polyethylene fibers. Pure Appl. Chem. 1983;55:777–798. doi: 10.1351/pac198355050777. DOI
Holmes D.R., Miller R.G., Palmer R.P., Bunn C.W. Crossed amorphous and crystalline chain orientation in polythene film. Nature. 1953;171:1104–1106. doi: 10.1038/1711104b0. PubMed DOI
Keller A. Unusual orientation phenomena in polyethylene interpreted in terms of the morphology. J. Polym. Sci. 1955;15:31–49. doi: 10.1002/pol.1955.120157904. DOI
Keller A., Machin M.J. Oriented crystallization in polymers. J. Macromol. Sci. Part B. 2006;1:41–91. doi: 10.1080/00222346708212739. DOI
Keith H.D., Padden F.J. The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J. Polym. Sci. 1959;39:101–122. doi: 10.1002/pol.1959.1203913509. DOI
Hendus H. Reihenstruktur und Röntgen-Kleinwinkelinterferenz von Polyäthylen. Kolloid-Z. Z. Polym. 1973;251:779–781. doi: 10.1007/BF01499108. DOI
Gerasimov V.I., Tsvankin D.Y. X-ray study of extruded polyethylene films. Polym. Sci. USSR. 1970;12:2944–2960. doi: 10.1016/0032-3950(70)90442-9. DOI
Dees J.R., Spruiell J.E. Structure development during melt spinning of linear polyethylene fibers. J. Appl. Polym. Sci. 1974;18:1053–1078. doi: 10.1002/app.1974.070180408. DOI
Aggarwal S.L., Tilley G.P., Sweeting O.J. Orientation in extruded polyethylene films. J. Appl. Polym. Sci. 1959;1:91–100. doi: 10.1002/app.1959.070010115. DOI
Kobayashi K., Nagasawa T. Crystallization of sheared polymer melts. J. Macromol. Sci. Part B Phys. 2006;4:331–345. doi: 10.1080/00222347008212506. DOI
Lin L., Argon A.S. Structure and plastic deformation of polyethylene. J. Mater. Sci. 1994;29:294–323. doi: 10.1007/BF01162485. DOI
Lindenmeyer P.H., Lustig S. Crystallite orientation in extruded polyethylene film. J. Appl. Polym. Sci. 1965;9:227–240. doi: 10.1002/app.1965.070090121. DOI
Peterlin A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971;6:490–508. doi: 10.1007/BF00550305. DOI
Mackley M.R., Keller A. Flow induced crystallization of polyethylene melts. Polymer. 1973;14:16–20. doi: 10.1016/0032-3861(73)90073-6. DOI
Maxfield J., Mandelkern L. Crystallinity, supermolecular structure, and thermodynamic properties of linear polyethylene fractions. Macromolecules. 1977;10:1141–1153. doi: 10.1021/ma60059a046. DOI
Stern T., Marom G., Wachtel E. Origin, morphology and crystallography of transcrystallinity in polyethylene-based single-polymer composites. Compos. Part A Appl. Sci. Manuf. 1997;28:437–444. doi: 10.1016/S1359-835X(96)00142-X. DOI
Desper C.R. Structure and properties of extruded polyethylene film. J. Appl. Polym. Sci. 1969;13:169–191. doi: 10.1002/app.1969.070130117. DOI
Sekiguchi Y., Takarada W., Kikutani T. Structure and properties of melt-spun fibers of polyethylene blended with cellulose fibers. AIP Conf. Proc. 2017;1914:130004.
Farahbakhsh N., Roodposhti P.S., Ayoub A., Venditti R.A., Jur J.S. Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.41857. DOI
Fambri L., Dabrowska I., Pegoretti A., Ceccato R. Melt spinning and drawing of polyethylene nanocomposite fibers with organically modified hydrotalcite. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40277. DOI
Gleeson S.E., Kim S., Yu T., Marcolongo M., Li C.Y. Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs. Polymer. 2020;202:122644. doi: 10.1016/j.polymer.2020.122644. DOI
Bin Y., Wang H. Crystallization in Multiphase Polymer Systems. Elsevier; Amsterdam, The Netherlands: 2018. Transcrystallization in polymer composites and nanocomposites; pp. 341–365.
Ning N., Luo F., Wang K., Zhang Q., Chen F., Du R., An C., Pan B., Fu Q. Molecular weight dependence of hybrid shish kebab structure in injection molded bar of polyethylene/inorganic whisker composites. J. Phys. Chem. B. 2008;112:14140–14148. doi: 10.1021/jp8056515. PubMed DOI
Mai F., Wang K., Yao M., Deng H., Chen F., Fu Q. Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J. Phys. Chem. B. 2010;114:10693–10702. doi: 10.1021/jp1019944. PubMed DOI
Sulong A.B., Park J.H. Fabrication of Carbon Nanotubes Reinforced Polyethylene Fibers by Melt Spinning: Process Optimization and Mechanical Strength Characterization. Adv. Mater. Res. 2007;26–28:289–292.
Sulong A.B., Park J., Azhari C.H., Jusoff K. Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos. Part B Eng. 2011;42:11–17. doi: 10.1016/j.compositesb.2010.09.014. DOI
Slouf M., Synkova H., Baldrian J., Marek A., Kovarova J., Schmidt P., Dorschner H., Stephan M., Gohs U. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;85:240–251. doi: 10.1002/jbm.b.30942. PubMed DOI
Bassett D.C., Olley R.H. On the lamellar morphology of isotactic polypropylene spherulites. Polymer. 1984;25:935–943. doi: 10.1016/0032-3861(84)90076-4. DOI
Ivan’kova E., Kasatkin I., Moskalyuk O., Yudin V., Kenny J.M. Structural aspects of mechanical properties of iPP-based composites. I. Composite iPP fibers with VGCF nanofiller. J. Appl. Polym. Sci. 2015:132. doi: 10.1002/app.41865. DOI
Marikhin V.A., Myasnikova L.P., Novak I.I., Suchkov V.A., Tukhvatullina M.S. Molecular orientation in microfibrils and strength of oriented polyethylene. Polym. Sci. USSR. 1972;14:2865–2870. doi: 10.1016/0032-3950(72)90216-X. DOI
Marikhin V.A., Myasnikova L.P., Pel’tsbauer Z. Formation of kink bands during orientation drawing of linear polyethylene. Polym. Sci. USSR. 1981;23:2295–2304. doi: 10.1016/0032-3950(81)90256-2. DOI
Gann L.A., Marikhin V.A., Myasnikova L.P., Budtov V.P., Myasnikov G.D. Effect of temperature on the orientational drawing of polyethylenes of different molecular weight. Polym. Sci. USSR. 1988;30:567–571. doi: 10.1016/0032-3950(88)90092-5. DOI
Bershtein V.A., Yegorov V.M., Marikhin V.A., Myasnikova L.P. Relationship between the melting cooperativity parameter, structure and strength of ultra-oriented polyethylene. Polym. Sci. USSR. 1990;32:2500–2508. doi: 10.1016/0032-3950(90)90426-7. DOI
Marikhin V.A., Myasnikova L.P. Heterogeneity of structure and mechanical properties of polymers. Makromol. Chemie. Macromol. Symp. 1991;41:209–227. doi: 10.1002/masy.19910410117. DOI
Ivan’kova E., Vasilieva V., Myasnikova L., Marikhin V., Henning S., Michler G.H. Comparison of structure formation upon drawing of gel-cast and melt-crystallised UHMWPE films. E-Polymers. 2002;2 doi: 10.1515/epoly.2002.2.1.605. DOI
Sui G., Zhong W.H., Ren X., Wang X.Q., Yang X.P. Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Mater. Chem. Phys. 2009;115:404–412. doi: 10.1016/j.matchemphys.2008.12.016. DOI
Katayama K., Nakamura K., Amano T. Structural formation during melt spinning process. Kolloid-Z. Z. Polym. 1968;226:125–134. doi: 10.1007/BF02086256. DOI
Haggenmueller R., Fischer J.E., Winey K.I. Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules. 2006;39:2964–2971. doi: 10.1021/ma0527698. DOI