Scalable MXene and PEDOT-CNT Nanocoatings for Fibre-Reinforced Composite De-Icing

. 2022 May 14 ; 15 (10) : . [epub] 20220514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35629562

Grantová podpora
777810 European Commission

In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite. The flexibility and electrical sensitivity of the coatings are studied under three-point bending. Additionally, the influence of ambient temperature on coating's electrical resistance is investigated. Finally, thermal imaging and Joule heating are analysed with high-accuracy infrared cameras. Under the same power density, the increase in average temperature is 84% higher for MXenes and 117% for PEDOT-CNT, when compared with fibre-based coatings. Furthermore, both nanocoatings result in up to three times faster de-icing. These easily processable nanocoatings offer fast and efficient de-icing for large composite structures such as wind turbine blades without adding any significant weight.

Zobrazit více v PubMed

Lydia M., Kumar S.S., Selvakumar A.I., Prem G.E. A Comprehensive Review on Wind Turbine Power Curve Modeling Techniques. Renew. Sustain. Energy Rev. 2014;30:452–460. doi: 10.1016/j.rser.2013.10.030. DOI

Dalili N., Edrisy A., Carriveau R. A Review of Surface Engineering Issues Critical to Wind Turbine Performance. Renew. Sustain. Energy Rev. 2009;13:428–438. doi: 10.1016/j.rser.2007.11.009. DOI

Wang L., Kolios A., Liu X., Venetsanos D., Rui C. Reliability of Offshore Wind Turbine Support Structures: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2022;161:112250. doi: 10.1016/j.rser.2022.112250. DOI

Jin J.Y., Virk M.S. Study of Ice Accretion and Icing Effects on Aerodynamic Characteristics of DU96 Wind Turbine Blade Profile. Cold Reg. Sci. Technol. 2019;160:119–127. doi: 10.1016/j.coldregions.2019.01.011. DOI

Stoyanov D.B., Nixon J.D. Alternative Operational Strategies for Wind Turbines in Cold Climates. Renew. Energy. 2020;145:2694–2706. doi: 10.1016/j.renene.2019.08.023. DOI

Li F., Cui H., Su H., Ma Z., Zhu Y., Zhang Y. Icing Condition Prediction of Wind Turbine Blade by Using Artificial Neural Network Based on Modal Frequency. Cold Reg. Sci. Technol. 2022;194:103467. doi: 10.1016/j.coldregions.2021.103467. DOI

Pérez M.A., Pernas-Sánchez J., Artero-Guerrero J.A., Serra-López R. High-Velocity Ice Impact Damage Quantification in Composite Laminates Using a Frequency Domain-Based Correlation Approach. Mech. Syst. Signal Process. 2021;147:107124. doi: 10.1016/j.ymssp.2020.107124. DOI

Mishnaevsky L., Jr., Johansen N.F., Fraisse A., Fæster S., Jensen T., Bendixen B. Technologies of Wind Turbine Blade Repair: Practical Comparison. Energies. 2022;15:1767. doi: 10.3390/en15051767. DOI

Brassard J.-D., Laforte J.-L., Blackburn C., Perron J., Sarkar D.K. Silicone Based Superhydrophobic Coating Efficient to Reduce Ice Adhesion and Accumulation on Aluminum under Offshore Arctic Conditions. Ocean Eng. 2017;144:135–141. doi: 10.1016/j.oceaneng.2017.08.022. DOI

Fakorede O., Feger Z., Ibrahim H., Ilinca A., Perron J., Masson C. Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis. Renew. Sustain. Energy Rev. 2016;65:662–675. doi: 10.1016/j.rser.2016.06.080. DOI

Parent O., Ilinca A. Anti-Icing and de-Icing Techniques for Wind Turbines: Critical Review. Cold Reg. Sci. Technol. 2011;65:88–96. doi: 10.1016/j.coldregions.2010.01.005. DOI

Madi E., Pope K., Huang W., Iqbal T. A Review of Integrating Ice Detection and Mitigation for Wind Turbine Blades. Renew. Sustain. Energy Rev. 2019;103:269–281. doi: 10.1016/j.rser.2018.12.019. DOI

Boopathi K., Mishnaevsky L., Jr., Sumantraa B., Premkumar S.A., Thamodharan K., Balaraman K. Failure Mechanisms of Wind Turbine Blades in India: Climatic, Regional, and Seasonal Variability. Wind Energy. 2022;25:968–979. doi: 10.1002/we.2706. DOI

Xu B., Lu F., Song G. Experimental Study on Anti-Icing and Deicing for Model Wind Turbine Blades with Continuous Carbon Fiber Sheets. J. Cold Reg. Eng. 2018;32:04017024. doi: 10.1061/(ASCE)CR.1943-5495.0000150. DOI

Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI

Stankevich S., Bulderberga O., Tarasovs S., Zeleniakiene D., Omastova M., Aniskevich A. Electrical Conductivity of Glass Fiber-Reinforced Plastic with Nanomodified Matrix for Damage Diagnostic. Materials. 2021;14:4485. doi: 10.3390/ma14164485. PubMed DOI PMC

Shimpi P., Aniskevich A., Zeleniakiene D. Improved Method of Manufacturing Carbon Nanotube Infused Multifunctional 3D Woven Composites. J. Compos. Mater. 2022;56:479–489. doi: 10.1177/00219983211055823. DOI

Lee T., Min S.H., Gu M., Jung Y.K., Lee W., Lee J.U., Seong D.G., Kim B. Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: Synthesis and Applications. Chem. Mater. 2015;27:3785–3796. doi: 10.1021/acs.chemmater.5b00491. DOI

Shin H.-J., Jeon S.S., Im S.S. CNT/PEDOT Core/Shell Nanostructures as a Counter Electrode for Dye-Sensitized Solar Cells. Synth. Met. 2011;161:1284–1288. doi: 10.1016/j.synthmet.2011.04.024. DOI

Redondo O., Prolongo S.G., Campo M., Sbarufatti C., Giglio M. Anti-Icing and de-Icing Coatings Based Joule’s Heating of Graphene Nanoplatelets. Compos. Sci. Technol. 2018;164:65–73. doi: 10.1016/j.compscitech.2018.05.031. DOI

Karim N., Zhang M., Afroj S., Koncherry V., Potluri P., Novoselov K.S. Graphene-Based Surface Heater for de-Icing Applications. RSC Adv. 2018;8:16815–16823. doi: 10.1039/C8RA02567C. PubMed DOI PMC

Raji A.-R.O., Varadhachary T., Nan K., Wang T., Lin J., Ji Y., Genorio B., Zhu Y., Kittrell C., Tour J.M. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. ACS Appl. Mater. Interfaces. 2016;8:3551–3556. doi: 10.1021/acsami.5b11131. PubMed DOI

Yao X., Hawkins S.C., Falzon B.G. An Advanced Anti-Icing/de-Icing System Utilizing Highly Aligned Carbon Nanotube Webs. Carbon N. Y. 2018;136:130–138. doi: 10.1016/j.carbon.2018.04.039. DOI

Venkateshalu S., Grace A.N. MXenes—A New Class of 2D Layered Materials: Synthesis, Properties, Applications as Supercapacitor Electrode and Beyond. Appl. Mater. Today. 2020;18:100509. doi: 10.1016/j.apmt.2019.100509. DOI

Zeleniakiene D., Monastyreckis G., Aniskevich A., Griskevicius P. Deformation and Failure of MXene Nanosheets. Materials. 2020;13:1253. doi: 10.3390/ma13051253. PubMed DOI PMC

Zhang J., Kong N., Uzun S., Levitt A., Seyedin S., Lynch P.A., Qin S., Han M., Yang W., Liu J., et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020;32:2001093. doi: 10.1002/adma.202001093. PubMed DOI

Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

Kilikevicius S., Kvietkaite S., Mishnaevsky L., Jr., Omastová M., Aniskevich A., Zeleniakiene D. Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis. Polymers. 2021;13:1013. doi: 10.3390/polym13071013. PubMed DOI PMC

Zukiene K., Monastyreckis G., Kilikevicius S., Procházka M., Micusik M., Omastová M., Aniskevich A., Zeleniakiene D. Wettability of MXene and Its Interfacial Adhesion with Epoxy Resin. Mater. Chem. Phys. 2021;257:123820. doi: 10.1016/j.matchemphys.2020.123820. DOI

Shimpi P., Omastova M., Aniskevich A., Zeleniakiene D. In Situ Deformation Monitoring of 3D Woven Composite T-Profile Using MXene Nanoparticles. Materials. 2022;15:2730. doi: 10.3390/ma15082730. PubMed DOI PMC

Yang W., Liu J.-J., Wang L.-L., Wang W., Yuen A.C.Y., Yuen Y., Peng S., Yu B., Lu H.-D., Yeoh G.H., et al. Multifunctional MXene/Natural Rubber Composite Films with Exceptional Flexibility and Durability. Compos. Part B. 2020;188:107875. doi: 10.1016/j.compositesb.2020.107875. DOI

Zhao M.-Q., Trainor N., Ren C.E., Torelli M., Anasori B., Gogotsi Y. Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures. Adv. Mater. Technol. 2019;4:1800639. doi: 10.1002/admt.201800639. DOI

Jia X., Shen B., Zhang L., Zheng W. Waterproof MXene-Decorated Wood-Pulp Fabrics for High-Efficiency Electromagnetic Interference Shielding and Joule Heating. Compos. Part B. 2020;198:108250. doi: 10.1016/j.compositesb.2020.108250. DOI

Li L., Cao Y., Liu X., Wang J., Yang Y., Wang W. Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Appl. Mater. Interfaces. 2022;12:27350–27360. doi: 10.1021/acsami.0c05692. PubMed DOI

Knotek P., Tichý L. Atomic Force Microscopy and Atomic Force Acoustic Microscopy Characterization of Photo-Induced Changes in Some Ge–As–S Amorphous Films. Thin Solid Film. 2009;517:1831–1834. doi: 10.1016/j.tsf.2008.09.041. DOI

Borysiuk V.N., Mochalin V.N., Gogotsi Y. Bending Rigidity of Two-Dimensional Titanium Carbide (MXene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018;143:418–424. doi: 10.1016/j.commatsci.2017.11.028. DOI

Lipatov A., Lu H., Alhabeb M., Anasori B., Gruverman A., Gogotsi Y., Sinitskii A. Elastic Properties of 2D Ti3C2Tx MXene Monolayers and Bilayers. Sci. Adv. 2018;4:1–7. doi: 10.1126/sciadv.aat0491. PubMed DOI PMC

Hassan G., Bae J., Hassan A., Ali S., Hyun C., Choi Y. Ink-Jet Printed Stretchable Strain Sensor Based on Graphene/ZnO Composite on Micro-Random Ridged PDMS Substrate. Compos. Part A. 2018;107:519–528. doi: 10.1016/j.compositesa.2018.01.031. DOI

Monastyreckis G., Stepura A., Soyka Y., Maltanava H., Poznyak S.K., Omastová M., Aniskevich A., Zeleniakiene D. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles. Sensors. 2021;21:2378. doi: 10.3390/s21072378. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...