Scalable MXene and PEDOT-CNT Nanocoatings for Fibre-Reinforced Composite De-Icing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
777810
European Commission
PubMed
35629562
PubMed Central
PMC9144452
DOI
10.3390/ma15103535
PII: ma15103535
Knihovny.cz E-zdroje
- Klíčová slova
- MXenes, PEDOT-CNT, de-icing, fibre-reinforced composites, nanocoatings, thermal imaging,
- Publikační typ
- časopisecké články MeSH
In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite. The flexibility and electrical sensitivity of the coatings are studied under three-point bending. Additionally, the influence of ambient temperature on coating's electrical resistance is investigated. Finally, thermal imaging and Joule heating are analysed with high-accuracy infrared cameras. Under the same power density, the increase in average temperature is 84% higher for MXenes and 117% for PEDOT-CNT, when compared with fibre-based coatings. Furthermore, both nanocoatings result in up to three times faster de-icing. These easily processable nanocoatings offer fast and efficient de-icing for large composite structures such as wind turbine blades without adding any significant weight.
Institute for Mechanics of Materials University of Latvia Jelgavas Str 3 LV 1004 Riga Latvia
Polymer Institute Slovak Academy of Sciences Dubravska cesta 9 845 41 Bratislava Slovakia
Zobrazit více v PubMed
Lydia M., Kumar S.S., Selvakumar A.I., Prem G.E. A Comprehensive Review on Wind Turbine Power Curve Modeling Techniques. Renew. Sustain. Energy Rev. 2014;30:452–460. doi: 10.1016/j.rser.2013.10.030. DOI
Dalili N., Edrisy A., Carriveau R. A Review of Surface Engineering Issues Critical to Wind Turbine Performance. Renew. Sustain. Energy Rev. 2009;13:428–438. doi: 10.1016/j.rser.2007.11.009. DOI
Wang L., Kolios A., Liu X., Venetsanos D., Rui C. Reliability of Offshore Wind Turbine Support Structures: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2022;161:112250. doi: 10.1016/j.rser.2022.112250. DOI
Jin J.Y., Virk M.S. Study of Ice Accretion and Icing Effects on Aerodynamic Characteristics of DU96 Wind Turbine Blade Profile. Cold Reg. Sci. Technol. 2019;160:119–127. doi: 10.1016/j.coldregions.2019.01.011. DOI
Stoyanov D.B., Nixon J.D. Alternative Operational Strategies for Wind Turbines in Cold Climates. Renew. Energy. 2020;145:2694–2706. doi: 10.1016/j.renene.2019.08.023. DOI
Li F., Cui H., Su H., Ma Z., Zhu Y., Zhang Y. Icing Condition Prediction of Wind Turbine Blade by Using Artificial Neural Network Based on Modal Frequency. Cold Reg. Sci. Technol. 2022;194:103467. doi: 10.1016/j.coldregions.2021.103467. DOI
Pérez M.A., Pernas-Sánchez J., Artero-Guerrero J.A., Serra-López R. High-Velocity Ice Impact Damage Quantification in Composite Laminates Using a Frequency Domain-Based Correlation Approach. Mech. Syst. Signal Process. 2021;147:107124. doi: 10.1016/j.ymssp.2020.107124. DOI
Mishnaevsky L., Jr., Johansen N.F., Fraisse A., Fæster S., Jensen T., Bendixen B. Technologies of Wind Turbine Blade Repair: Practical Comparison. Energies. 2022;15:1767. doi: 10.3390/en15051767. DOI
Brassard J.-D., Laforte J.-L., Blackburn C., Perron J., Sarkar D.K. Silicone Based Superhydrophobic Coating Efficient to Reduce Ice Adhesion and Accumulation on Aluminum under Offshore Arctic Conditions. Ocean Eng. 2017;144:135–141. doi: 10.1016/j.oceaneng.2017.08.022. DOI
Fakorede O., Feger Z., Ibrahim H., Ilinca A., Perron J., Masson C. Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis. Renew. Sustain. Energy Rev. 2016;65:662–675. doi: 10.1016/j.rser.2016.06.080. DOI
Parent O., Ilinca A. Anti-Icing and de-Icing Techniques for Wind Turbines: Critical Review. Cold Reg. Sci. Technol. 2011;65:88–96. doi: 10.1016/j.coldregions.2010.01.005. DOI
Madi E., Pope K., Huang W., Iqbal T. A Review of Integrating Ice Detection and Mitigation for Wind Turbine Blades. Renew. Sustain. Energy Rev. 2019;103:269–281. doi: 10.1016/j.rser.2018.12.019. DOI
Boopathi K., Mishnaevsky L., Jr., Sumantraa B., Premkumar S.A., Thamodharan K., Balaraman K. Failure Mechanisms of Wind Turbine Blades in India: Climatic, Regional, and Seasonal Variability. Wind Energy. 2022;25:968–979. doi: 10.1002/we.2706. DOI
Xu B., Lu F., Song G. Experimental Study on Anti-Icing and Deicing for Model Wind Turbine Blades with Continuous Carbon Fiber Sheets. J. Cold Reg. Eng. 2018;32:04017024. doi: 10.1061/(ASCE)CR.1943-5495.0000150. DOI
Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI
Stankevich S., Bulderberga O., Tarasovs S., Zeleniakiene D., Omastova M., Aniskevich A. Electrical Conductivity of Glass Fiber-Reinforced Plastic with Nanomodified Matrix for Damage Diagnostic. Materials. 2021;14:4485. doi: 10.3390/ma14164485. PubMed DOI PMC
Shimpi P., Aniskevich A., Zeleniakiene D. Improved Method of Manufacturing Carbon Nanotube Infused Multifunctional 3D Woven Composites. J. Compos. Mater. 2022;56:479–489. doi: 10.1177/00219983211055823. DOI
Lee T., Min S.H., Gu M., Jung Y.K., Lee W., Lee J.U., Seong D.G., Kim B. Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: Synthesis and Applications. Chem. Mater. 2015;27:3785–3796. doi: 10.1021/acs.chemmater.5b00491. DOI
Shin H.-J., Jeon S.S., Im S.S. CNT/PEDOT Core/Shell Nanostructures as a Counter Electrode for Dye-Sensitized Solar Cells. Synth. Met. 2011;161:1284–1288. doi: 10.1016/j.synthmet.2011.04.024. DOI
Redondo O., Prolongo S.G., Campo M., Sbarufatti C., Giglio M. Anti-Icing and de-Icing Coatings Based Joule’s Heating of Graphene Nanoplatelets. Compos. Sci. Technol. 2018;164:65–73. doi: 10.1016/j.compscitech.2018.05.031. DOI
Karim N., Zhang M., Afroj S., Koncherry V., Potluri P., Novoselov K.S. Graphene-Based Surface Heater for de-Icing Applications. RSC Adv. 2018;8:16815–16823. doi: 10.1039/C8RA02567C. PubMed DOI PMC
Raji A.-R.O., Varadhachary T., Nan K., Wang T., Lin J., Ji Y., Genorio B., Zhu Y., Kittrell C., Tour J.M. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. ACS Appl. Mater. Interfaces. 2016;8:3551–3556. doi: 10.1021/acsami.5b11131. PubMed DOI
Yao X., Hawkins S.C., Falzon B.G. An Advanced Anti-Icing/de-Icing System Utilizing Highly Aligned Carbon Nanotube Webs. Carbon N. Y. 2018;136:130–138. doi: 10.1016/j.carbon.2018.04.039. DOI
Venkateshalu S., Grace A.N. MXenes—A New Class of 2D Layered Materials: Synthesis, Properties, Applications as Supercapacitor Electrode and Beyond. Appl. Mater. Today. 2020;18:100509. doi: 10.1016/j.apmt.2019.100509. DOI
Zeleniakiene D., Monastyreckis G., Aniskevich A., Griskevicius P. Deformation and Failure of MXene Nanosheets. Materials. 2020;13:1253. doi: 10.3390/ma13051253. PubMed DOI PMC
Zhang J., Kong N., Uzun S., Levitt A., Seyedin S., Lynch P.A., Qin S., Han M., Yang W., Liu J., et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020;32:2001093. doi: 10.1002/adma.202001093. PubMed DOI
Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Kilikevicius S., Kvietkaite S., Mishnaevsky L., Jr., Omastová M., Aniskevich A., Zeleniakiene D. Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis. Polymers. 2021;13:1013. doi: 10.3390/polym13071013. PubMed DOI PMC
Zukiene K., Monastyreckis G., Kilikevicius S., Procházka M., Micusik M., Omastová M., Aniskevich A., Zeleniakiene D. Wettability of MXene and Its Interfacial Adhesion with Epoxy Resin. Mater. Chem. Phys. 2021;257:123820. doi: 10.1016/j.matchemphys.2020.123820. DOI
Shimpi P., Omastova M., Aniskevich A., Zeleniakiene D. In Situ Deformation Monitoring of 3D Woven Composite T-Profile Using MXene Nanoparticles. Materials. 2022;15:2730. doi: 10.3390/ma15082730. PubMed DOI PMC
Yang W., Liu J.-J., Wang L.-L., Wang W., Yuen A.C.Y., Yuen Y., Peng S., Yu B., Lu H.-D., Yeoh G.H., et al. Multifunctional MXene/Natural Rubber Composite Films with Exceptional Flexibility and Durability. Compos. Part B. 2020;188:107875. doi: 10.1016/j.compositesb.2020.107875. DOI
Zhao M.-Q., Trainor N., Ren C.E., Torelli M., Anasori B., Gogotsi Y. Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures. Adv. Mater. Technol. 2019;4:1800639. doi: 10.1002/admt.201800639. DOI
Jia X., Shen B., Zhang L., Zheng W. Waterproof MXene-Decorated Wood-Pulp Fabrics for High-Efficiency Electromagnetic Interference Shielding and Joule Heating. Compos. Part B. 2020;198:108250. doi: 10.1016/j.compositesb.2020.108250. DOI
Li L., Cao Y., Liu X., Wang J., Yang Y., Wang W. Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Appl. Mater. Interfaces. 2022;12:27350–27360. doi: 10.1021/acsami.0c05692. PubMed DOI
Knotek P., Tichý L. Atomic Force Microscopy and Atomic Force Acoustic Microscopy Characterization of Photo-Induced Changes in Some Ge–As–S Amorphous Films. Thin Solid Film. 2009;517:1831–1834. doi: 10.1016/j.tsf.2008.09.041. DOI
Borysiuk V.N., Mochalin V.N., Gogotsi Y. Bending Rigidity of Two-Dimensional Titanium Carbide (MXene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018;143:418–424. doi: 10.1016/j.commatsci.2017.11.028. DOI
Lipatov A., Lu H., Alhabeb M., Anasori B., Gruverman A., Gogotsi Y., Sinitskii A. Elastic Properties of 2D Ti3C2Tx MXene Monolayers and Bilayers. Sci. Adv. 2018;4:1–7. doi: 10.1126/sciadv.aat0491. PubMed DOI PMC
Hassan G., Bae J., Hassan A., Ali S., Hyun C., Choi Y. Ink-Jet Printed Stretchable Strain Sensor Based on Graphene/ZnO Composite on Micro-Random Ridged PDMS Substrate. Compos. Part A. 2018;107:519–528. doi: 10.1016/j.compositesa.2018.01.031. DOI
Monastyreckis G., Stepura A., Soyka Y., Maltanava H., Poznyak S.K., Omastová M., Aniskevich A., Zeleniakiene D. Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles. Sensors. 2021;21:2378. doi: 10.3390/s21072378. PubMed DOI PMC