A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35630477
PubMed Central
PMC9144716
DOI
10.3390/microorganisms10051035
PII: microorganisms10051035
Knihovny.cz E-zdroje
- Klíčová slova
- Acaryochloris, chlorophyll d, cyanobacteria, near infrared, shark bay, stromatolite,
- Publikační typ
- časopisecké články MeSH
The genus Acaryochloris is unique among phototrophic organisms due to the dominance of chlorophyll d in its photosynthetic reaction centres and light-harvesting proteins. This allows Acaryochloris to capture light energy for photosynthesis over an extended spectrum of up to ~760 nm in the near infra-red (NIR) spectrum. Acaryochloris sp. has been reported in a variety of ecological niches, ranging from polar to tropical shallow aquatic sites. Here, we report a new Acarychloris strain isolated from an NIR-enriched stratified microbial layer 4-6 mm under the surface of stromatolite mats located in the Hamelin Pool of Shark Bay, Western Australia. Pigment analysis by spectrometry/fluorometry, flow cytometry and spectral confocal microscopy identifies unique patterns in pigment content that likely reflect niche adaption. For example, unlike the original A. marina species (type strain MBIC11017), this new strain, Acarychloris LARK001, shows little change in the chlorophyll d/a ratio in response to changes in light wavelength, displays a different Fv/Fm response and lacks detectable levels of phycocyanin. Indeed, 16S rRNA analysis supports the identity of the A. marina LARK001 strain as close to but distinct from from the A. marina HICR111A strain first isolated from Heron Island and previously found on the Great Barrier Reef under coral rubble on the reef flat. Taken together, A. marina LARK001 is a new cyanobacterial strain adapted to the stromatolite mats in Shark Bay.
Australian Centre for Astrobiology University of New South Wales Sydney 2052 Australia
Climate Change Cluster University of Technology Sydney Sydney 2007 Australia
School of Earth and Planetary Sciences Curtin University Perth 6102 Australia
School of Life Sciences University of Technology Sydney Sydney 2007 Australia
School of Mathematical and Physical Sciences University of Technology Sydney Sydney 2007 Australia
School of Medical Sciences University of New South Wales Sydney 2052 Australia
Zobrazit více v PubMed
Holt A. Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll a and chlorophyll d. Can. J. Bot. 1961;39:327–331. doi: 10.1139/b61-026. DOI
Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., Miyachi S. Chlorophyll d as a major pigment. Nature. 1996;383:402. doi: 10.1038/383402a0. DOI
Miyashita H., Ikemoto H., Kurano N., Miyachi S., Chihara M. Acaryochloris marina gen. et sp. Nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J. Phycol. 2003;39:1247–1253. doi: 10.1111/j.0022-3646.2003.03-158.x. DOI
Kühl M., Chen M., Ralph P.J., Schreiber U., Larkum A.W. Ecology: A niche for cyanobacteria containing chlorophyll d. Nature. 2005;433:820. doi: 10.1038/433820a. PubMed DOI
Larkum A.W., Kühl M. Chlorophyll d: The puzzle resolved. Trends Plant Sci. 2005;10:355–357. doi: 10.1016/j.tplants.2005.06.005. PubMed DOI
Murakami A., Miyashita H., Iseki M., Adachi K., Mimuro M. Chlorophyll d in an epiphytic cyanobacterium of red algae. Science. 2004;303:1633. doi: 10.1126/science.1095459. PubMed DOI
Miller S.R., Augustine S., Olson T.L., Blankenship R.E., Selker J., Wood A.M. Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc. Natl. Acad. Sci. USA. 2005;102:850–855. doi: 10.1073/pnas.0405667102. PubMed DOI PMC
Mohr R., Voss B., Schliep M., Kurz T., Maldener I., Adams D.G., Larkum A.D., Chen M., Hess W.R. A new chlorophyll d-containing cyanobacterium: Evidence for niche adaptation in the genus Acaryochloris. ISME J. 2010;4:1456–1469. doi: 10.1038/ismej.2010.67. PubMed DOI
Larkum A.W., Chen M., Li Y., Schliep M., Trampe E., West J., Salih A., Kühl M. A Novel Epiphytic Chlorophyll d-containing Cyanobacterium Isolated from a Mangrove-associated Red Alga. J. Phycol. 2012;48:1320–1327. doi: 10.1111/j.1529-8817.2012.01233.x. PubMed DOI
Behrendt L., Larkum A.W., Norman A., Qvortrup K., Chen M., Ralph P., Sorensen S.J., Trampe E., Kühl M. Endolithic chlorophyll d-containing phototrophs. ISME J. 2011;5:1072–1076. doi: 10.1038/ismej.2010.195. PubMed DOI PMC
Goh F., Allen M.A., Leuko S., Kawaguchi T., Decho A.W., Burns B.P., Neilan B.A. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 2009;3:383–396. doi: 10.1038/ismej.2008.114. PubMed DOI
Loughlin P., Lin Y., Chen M. Chlorophyll d and Acaryochloris marina: Current status. Photosynth. Res. 2013;116:277–293. doi: 10.1007/s11120-013-9829-y. PubMed DOI
De los Rios A., Grube M., Sancho L.G., Ascaso C. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol. Ecol. 2007;59:386–395. doi: 10.1111/j.1574-6941.2006.00256.x. PubMed DOI
Airs R.L., Temperton B., Sambles C., Farnham G., Skill S.C., Llewellyn C.A. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett. 2014;588:3770–3777. doi: 10.1016/j.febslet.2014.08.026. PubMed DOI
Averina S., Velichko N., Senatskaya E., Pinevich A. Far-red light photoadaptations in aquatic cyanobacteria. Hydrobiologia. 2018;813:1–17. doi: 10.1007/s10750-018-3519-x. DOI
Ho M.Y., Bryant D.A. Global Transcriptional Profiling of the Cyanobacterium Chlorogloeopsis fritschii PCC 9212 in Far-Red Light: Insights into the Regulation of Chlorophyll d Synthesis. Front. Microbiol. 2019;10:465. doi: 10.3389/fmicb.2019.00465. PubMed DOI PMC
Ho M.Y., Shen G., Canniffe D.P., Zhao C., Bryant D.A. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science. 2016;353:aaf9178. doi: 10.1126/science.aaf9178. PubMed DOI
Ho M.Y., Soulier N.T., Canniffe D.P., Shen G., Bryant D.A. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Curr. Opin. Plant Biol. 2017;37:24–33. doi: 10.1016/j.pbi.2017.03.006. PubMed DOI
Miyashita H., Ohkubo S., Komatsu H., Sorimachi Y., Fukayama D., Fujinuma D., Akutsu S., Kobayashi M. Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, isolated from Lake Biwa. J. Phys. Chem. Biophys. 2014;4:1. doi: 10.4172/2161-0398.1000149. DOI
Nürnberg D.J., Morton J., Santabarbara S., Telfer A., Joliot P., Antonaru L.A., Ruban A.V., Cardona T., Krausz E., Boussac A., et al. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science. 2018;360:1210–1213. doi: 10.1126/science.aar8313. PubMed DOI
McNamara C.J., Perry T.D., Bearce K.A., Hernandez-Duque G., Mitchell R. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb. Ecol. 2006;51:51–64. doi: 10.1007/s00248-005-0200-5. PubMed DOI
Partensky F., Six C., Ratin M., Garczarek L., Vaulot D., Probert I., Calteau A., Gourvil P., Marie D., Grebert T., et al. A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle. Sci. Rep. 2018;8:9142. doi: 10.1038/s41598-018-27542-7. PubMed DOI PMC
Swingley W.D., Chen M., Cheung P.C., Conrad A.L., Dejesa L.C., Hao J., Honchak B.M., Karbach L.E., Kurdoglu A., Lahiri S., et al. Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc. Natl. Acad. Sci. USA. 2008;105:2005–2010. doi: 10.1073/pnas.0709772105. PubMed DOI PMC
Fisher A., Wangpraseurt D., Larkum A.W.D., Johnson M., Kuhl M., Chen M., Wong H.L., Burns B.P. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. FEMS Microbiol. Ecol. 2019;95:fiy219. doi: 10.1093/femsec/fiy219. PubMed DOI
Ruvindy R., White III R.A., Neilan B.A., Burns B.P. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 2016;10:183–196. doi: 10.1038/ismej.2015.87. PubMed DOI PMC
Wong H.L., Smith D.-L., Visscher P.T., Burns B.P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 2015;5:15607. doi: 10.1038/srep15607. PubMed DOI PMC
Wong H.L., Visscher P.T., White III R.A., Smith D.-L., Patterson M.M., Burns B.P. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 2017;7:1–12. doi: 10.1038/srep46160. PubMed DOI PMC
Wong H.L., White R.A., Visscher P.T., Charlesworth J.C., Vázquez-Campos X., Burns B.P. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 2018;12:2619–2639. doi: 10.1038/s41396-018-0208-8. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Herdean A., Hall C.C., Pham L.L., Macdonald Miller S., Pernice M., Ralph P.J. Action Spectra and Excitation Emission Matrices reveal the broad range of usable photosynthetic active radiation for Phaeodactylum tricornutum. Biochim. Biophys. Acta Bioenerg. 2021;1862:148461. doi: 10.1016/j.bbabio.2021.148461. PubMed DOI
Van Heukelem L., Thomas C.S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A. 2001;910:31–49. doi: 10.1016/S0378-4347(00)00603-4. PubMed DOI
Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Letunic I., Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC
Hill R., Schreiber U., Gademann R., Larkum A., Kühl M., Ralph P. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar. Biol. 2004;144:633–640. doi: 10.1007/s00227-003-1226-1. DOI
Soo R.M., Skennerton C.T., Sekiguchi Y., Imelfort M., Paech S.J., Dennis P.G., Steen J.A., Parks D.H., Tyson G.W., Hugenholtz P. An expanded genomic representation of the phylum cyanobacteria. Genome Biol. Evol. 2014;6:1031–1045. doi: 10.1093/gbe/evu073. PubMed DOI PMC
Suosaari E.P., Reid R.P., Playford P.E., Foster J.S., Stolz J.F., Casaburi G., Hagan P.D., Chirayath V., Macintyre I.G., Planavsky N.J., et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 2016;6:20557. doi: 10.1038/srep20557. PubMed DOI PMC