Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K108
Antarctica New Zealand
PubMed
35637190
PubMed Central
PMC9151792
DOI
10.1038/s41467-022-30627-7
PII: 10.1038/s41467-022-30627-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Erebus volcano, Antarctica, with its persistent phonolite lava lake, is a classic example of an evolved, CO2-rich rift volcano. Seismic studies provide limited images of the magmatic system. Here we show using magnetotelluric data that a steep, melt-related conduit of low electrical resistivity originating in the upper mantle undergoes pronounced lateral re-orientation in the deep crust before reaching shallower magmatic storage and the summit lava lake. The lateral turn represents a structural fault-valve controlling episodic flow of magma and CO2 vapour, which replenish and heat the high level phonolite differentiation zone. This magmatic valve lies within an inferred, east-west structural trend forming part of an accommodation zone across the southern termination of the Terror Rift, providing a dilatant magma pathway. Unlike H2O-rich subduction arc volcanoes, CO2-dominated Erebus geophysically shows continuous magmatic structure to shallow crustal depths of < 1 km, as the melt does not experience decompression-related volatile supersaturation and viscous stalling.
1st Light Mountain Guides Chamonix France
Institute of Geophysics Czech Academy of Science Prague Czech Republic
New Mexico Institute of Mining and Technology Socorro NM USA
Numeric Resources LLC Salt Lake City UT USA
Tokyo Institute of Technology Volcanic Fluid Research Centre Tokyo Japan
United States Geological Survey Denver CO USA
University of Alberta Department of Physics Edmonton AB Canada
University of Canterbury Gateway Antarctica Christchurch New Zealand
University of Hawaii at Manoa Hawaii Institute of Geophysics and Planetology Honolulu HI USA
University of Lausanne Department of Earth Science Lausanne Switzerland
University of Utah Energy and Geoscience Institute Salt Lake City UT USA
Zobrazit více v PubMed
DasGupta R, Hirschmann MM, Smith ND. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 2007;48:2093–2124.
Foley SF, Fischer TP. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 2017;10:897–902.
Kyle PR, Moore JA, Thirlwall MF. Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J. Petrol. 1992;33:849–875.
Kelly PJ, Kyle PR, Dunbar NW, Sims KWW. Geochemistry and mineralogy of the phonolite lava lake, Erebus, Antarctica:1972-2004 and comparison with older lavas. J. Volc. Geoth. Res. 2008;177:589–605.
Self, S., Gertisser, R., Thordarson, T., Rampino, M. R., & Wolff, J. A. Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys. Res. Lett. 31, 10.1029/2004GL020925 (2004).
Webster JD, Goldoff B, Sintoni MF, Shimizu N, De Vivo B. C-O-H-Cl-S-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J. Petrol. 2014;55:2217–2248.
Dostal J. Rare earth element deposits of alkaline igneous rocks. Resources. 2017;6:12.
Iacovino K, Oppenheimer C, Scaillet B, Kyle P. Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island, Antarctica. J. Petrol. 2016;57:93–118.
Owens L, Kyle PR, Sharp Z, Campbell A. Origin of low oxygen isotopic compositions in alkalic lavas from Erebus volcano, Antarctica. Geochim. Cosmochim. Acta. 2021;308:310–325.
Oppenheimer C, et al. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet. Sci. Lett. 2011;306:261–271.
Moussallam Y, Oppenheimer C, Scaillet B, Kyle P. Experimental phase equilibrium constraints on the phonolite magmatic system of Erebus volcano. Antarctica. J. Petrol. 2013;54:1285–1307.
Rasmussen DJ, et al. Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions. J. Petrol. 2017;58:841–861.
Storti, F., Balestrieri, M. L., Balsamo, F., & Rossetti, F. Structural and thermochronological constraints to the evolution of the West Antarctic Rift System in central Victoria Land. Tectonics27, 10.1029/2006TC002066 (2008).
Sauli, C. et al. Neogene development of the Terror Rift, Western Ross Sea, Antarctica. Geochem. Geophys. Geosys. 22, 10.1029/2020GC009076 (2021).
Wilson T. Cenozoic structural segmentation of the Transantarctic Mountains rift flank in southern Victoria Land. Glob. Planet. Change. 1999;23:105–127.
Aitken ARA, Wilson GS, Jordan T, Tinto K, Blakemore H. Flexural controls on late Neogene basin evolution in southern McMurdo Sound, Antarctica. Glob. Planet. Change. 2012;80–81:99–112.
Behrendt J, et al. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys. Tectonics. 1996;15:660–676.
Curewitz D, Karson JA. Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J. Volc. Geotherm. Res. 1997;79:149–168.
Faulds, J. E., & Varga, R. J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes: in, Accommodation zones and transfer zones. The regional segmentation of the Basin and Range province. ed. by Faulds, J. E., & J. H. Stewart. Geol. Soc. of Amer. Spec. Pap. 323, 1–46 (1998).
Martin, A., Cooper, A. F., Price, R., Kyle, P., & Gamble, J. Erebus Volcanic Province II. Petrology. In: J. L. Smellie, K. S. Panter, A. Geyer (Eds.), Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-Up. Geol. Soc. Lon. Mem. 55, 447-489 (2021).
Esser RP, Kyle PR, McIntosh WC. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: volcano evolution. Bull. Volc. 2004;66:671–686.
Parmelee DEF, Kyle PR, Kurz MD, Marrero SM, Phillips FM. A new Holocene eruptive history of Erebus volcano, Antarctica using cosmogenic 3He and 36Cl exposure ages. Quat. Geochronol. 2015;30:114–131.
Chaput J, Zandomeneghi Z, Aster RC, Knox H, Kyle PR. Imaging of Erebus volcano using body wave seismic interferometry of Strombolian eruption coda. Geophys. Res. Lett. 2012;39:L07304.
Zandomeneghi D, et al. Internal structure of Erebus volcano, Antarctica imaged by high-resolution active-source seismic tomography and coda interferometry. J. Geophys. Res. 2013;118:1067–1078.
Blondel T, Chaput J, Derode A, Campillo M, Aubry A. Matrix approach of seismic imaging: application to the Erebus volcano, Antarctica. J. Geophys. Res. 2018;123:10936–10950.
Knox HA, Chaput JA, Aster RC, Kyle PR. Multiyear shallow conduit changes observed with lava lake eruption seismograms at Erebus volcano, Antarctica. J. Geophys. Res. 2018;123:3178–3196.
Lawrence JF, et al. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions surface waves, and gravity: implications for uplift models. Geochem. Geophys. Geosys. 2006;7:Q10011.
Finotello M, Nyblade A, Julia J, Wiens D, Anandakrishnan S. Crustal Vp–Vs ratios and thickness for Ross Island and the Transantarctic Mountain front, Antarctica. Geophys. J. Int. 2011;185:85–92.
Brenn G, Hansen S, Park Y. Variable thermal loading and flexural uplift along the Transantarctic Mountains, Antarctica. Geology. 2017;45:463–466.
Hill GJ. On the use of electromagnetics for earth imaging of the polar regions. Surv. Geophys. 2020;41:5–45.
Wannamaker P, et al. Uplift of the central transantarctic mountains. Nat. Commun. 2017;8:1–11. PubMed PMC
Caldwell TG, Bibby HM, Brown C. The magnetotelluric phase tensor. Geophys. J. Int. 2004;158:457–469.
Bibby HM, Caldwell TG, Brown C. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys. J. Int. 2005;163:915–930.
Booker JR. The magnetotelluric phase tensor: a critical review. Surv. Geophys. 2014;35:7–40.
Hill GJ, et al. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat. Geosci. 2009;2:785–789.
Kordy M, Wannamaker P, Maris V, Cherkaev E, Hill G. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: Forward problem and parameter Jacobians. Geophys. J. Int. 2016;204:74–93.
Yoshino T, Katsura T. Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu. Rev. Earth Planet. Sci. 2013;41:605–628.
Filloux, J. H. Instrumentation and experimental methods for oceanic studies. In Geomagnetism, Vol. 1 (ed. Jacobs, J. A.) 143–248 (Academic Press, 1987).
Kordy M, Wannamaker P, Maris V, Cherkaev E, Hill G. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers—part II: direct data-space inverse solution. Geophys. J. Int. 2016;204:94–110.
LeMasurier WE. Neogene extension and basin deepening in the West Antarctic rift inferred from comparisons with the East African rift and other analogs. Geology. 2008;36:247–250.
Moore J, et al. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am. J. Sci. 2008;308:1–48.
Ogawa, Y., Ichiki, M., Kanda, W., Mishina, M., & Asamori, K. Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan. Earth Planets Space66, 10.1186/s40623-014-0158-y (2014).
Hill GJ, et al. Structure of the Tongariro Volcanic system: insights from magnetotelluric imaging. Earth Planet. Sci. Lett. 2015;432:115–125.
Press, W., Teukolsky, A., Vetterling, T. & Flannery, P. Numerical Recipes in Fortran 77: The Art of Scientific Computing. 1003 (University of Cambridge Press, 1992).
Pommier, A. & Roberts, J. Understanding electrical signals from below Earth’s surface. EOS99, 10.1029/2018EO108517 (2018).
Pommier A, Gaillard F, Pichavant M, Scaillet B. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. J. Geophys. Res. 2008;113:B05205.
Manning CE. Fluids of the lower crust: deep is different. Annu. Rev. Earth Planet. Sci. 2018;46:67–97.
Sibson RH. Au-quartz mineralization near the base of the continental seismogenic zone. Geol. Soc. Lon. Spec. Publ. 2007;272:519 LP–519532.
Sibson RH. Earthquake rupturing in fluid-overpressured crust: how common? Pure Appl. Geophys. 2014;171:2867–2885.
Wannamaker PE, et al. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature. 2009;460:733–736. PubMed
Rowe CA, Aster RC, Kyle PR, Dibble RR, Schlue JW. Seismic and acoustic observations at Mount Erebus Volcano, Ross Island, Antarctica, 1994–1998. J. Volc. Geotherm. Res. 2000;101:105–128.
Plank T, Manning CE. Subducting carbon. Nature. 2019;574:343–352. PubMed
Panter KS, et al. Melt origin across a rifted continental margin: a case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. J. Petrol. 2018;59:517–558.
Phillips EH, et al. The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth Planet. Sci. Lett. 2018;498:38–53.
Ingham MR, et al. A magnetotelluric study of Mount Ruapehu volcano, New Zealand. Geophys. J. Int. 2009;179:887–904.
Bedrosian PA, Peacock JR, Bowles-Martinez E, Schultz A, Hill GJ. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nat. Geosci. 2018;11:865–870.
Hill, G. J. et al. Temporal magnetotellurics reveals mechanics of the 2012 Mount Tongariro, NZ, Eruption. Geophys. Res. Lett. 47, 10.1029/2019GL086429 (2020).
Ichiki M, et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth, Planets Space. 2021;73:30.
Rowlands DP, White RS, Haines AJ. Seismic tomography of the Tongariro Volcanic Centre, New Zealand. Geophys. J. Int. 2005;163:1180–1194.
Koulakov I, Shapiro N. Seismic tomography of volcanoes. Encycl. Earthq. Eng. 2015 doi: 10.1007/978-3-642-36197-5_51-1. DOI
Kiser E, et al. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology. 2016;44:411–414.
Ulberg, C. W. et al. Local Source Vp and Vs tomography in the Mount St. Helens region with the iMUSH Broadband Array. Geochem. Geophys. Geosys. 21, 10.1029/2019GC008888 (2020).
Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ. Why do mafic arc magmas contain ~4 wt% water on average? Earth Planet. Sci. Lett. 2013;364:168–179.
Rasmusesen DJ, Plank TA, Roman DC, Zimmer MM. Magmatic water content controls the pre-eruptive depth of arc magmas. Science. 2022;375:1169–1172. PubMed
Huber C, Townsend M, Degruyter W, Bachmann O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 2019 doi: 10.1038/s41561-019-0415-6. DOI
Chave, A. D. & Jones, A. G. The Magnetotelluric Method: Theory and Practice (Cambridge University Press, 2012).
Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat. Geosci. 2011;4:108–111.
Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosys. 15, 10.1002/2014G204 (2014).
Wannamaker PE, Stodt JA, Olsen SL. Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling. Geophys. Res. Lett. 1996;23:2983–2986.
Wannamaker PE, Stodt JA, Olsen SL, Pellerin L, Hall D. Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements. Geophys. J. Int. 2004;157:36–54.
Peacock, J. R. & Selway, K. Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica. J. Geophys. Res. 121, 10.1002/2015JB012677 (2016).
Wannamaker, P. E., Stodt, J. A., Hill, G. J., Maris V. & Kordy, M. A. Thermal regime and state of hydration of the Antarctic upper mantle from regional-scale electrical properties. Geol. Soc. Lon. Mem. 56, 14 10.1144/M56-2020-4 (2021).