Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35640380
PubMed Central
PMC9157258
DOI
10.1016/j.redox.2022.102343
PII: S2213-2317(22)00115-X
Knihovny.cz E-zdroje
- Klíčová slova
- Cysteine oxidative modifications, Developmental biology, Hematopoiesis, Leukemia, Protein translation, Redox proteomics,
- MeSH
- cystein metabolismus MeSH
- hematopoéza MeSH
- myši MeSH
- oxidace-redukce MeSH
- proteom * metabolismus MeSH
- proteomika * MeSH
- sulfhydrylové sloučeniny MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- proteom * MeSH
- sulfhydrylové sloučeniny MeSH
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Lund Stem Cell Center Division of Molecular Hematology Lund University Lund Sweden
Zobrazit více v PubMed
Weissman I.L., Shizuru J.A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–3553. PubMed PMC
Jassinskaja M., et al. Comprehensive proteomic characterization of ontogenic changes in hematopoietic stem and progenitor cells. Cell Rep. 2017;21(11):3285–3297. PubMed
Mikkola H.K., Orkin S.H. vol. 133. 2006. pp. 3733–3744. (The Journey of Developing Hematopoietic Stem Cells. Development). 19. PubMed
Babovic S., Eaves C.J. Hierarchical organization of fetal and adult hematopoietic stem cells. Exp. Cell Res. 2014;329(2):185–191. PubMed
Pietras E.M., Passegue E. Linking HSCs to their youth. Nat. Cell Biol. 2013;15(8):885–887. PubMed
Ema H., Nakauchi H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood. 2000;95(7):2284–2288. PubMed
Morrison S.J., et al. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A. 1995;92(22):10302–10306. PubMed PMC
Bowie M.B., et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 2006;116(10):2808–2816. PubMed PMC
Pietras E.M., Warr M.R., Passegue E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011;195(5):709–720. PubMed PMC
Manesia J.K., et al. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Res. 2015;15(3):715–721. PubMed
Sattler M., et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 1999;93(9):2928–2935. PubMed
Carlos-Wallace F.M., et al. Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. Am. J. Epidemiol. 2016;183(1):1–14. PubMed PMC
Kantner H.P., et al. ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia. 2013;15(11):1292–1300. PubMed PMC
Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24(10):R453–R462. PubMed PMC
Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013;113(7):4633–4679. PubMed PMC
Ludin A., et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxidants Redox Signal. 2014;21(11):1605–1619. PubMed PMC
Prieto-Bermejo R., et al. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. J. Exp. Clin. Cancer Res. 2018;37(1):125. PubMed PMC
Alcock L.J., Perkins M.V., Chalker J.M. Chemical methods for mapping cysteine oxidation. Chem. Soc. Rev. 2018;47(1):231–268. PubMed
Topf U., et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat. Commun. 2018;9(1):324. PubMed PMC
Vajrychova M., et al. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biol. 2019;24 PubMed PMC
van der Reest J., et al. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun. 2018;9(1):1581. PubMed PMC
Xiao H., et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell. 2020;180(5):968–983 e24. PubMed PMC
Guo J., et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat. Protoc. 2014;9(1):64–75. PubMed PMC
Duan J., et al. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol. 2020;36 PubMed PMC
Walasek M.A., van Os R., de Haan G. Hematopoietic stem cell expansion: challenges and opportunities. Ann. N. Y. Acad. Sci. 2012;1266:138–150. PubMed
Ito K., Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 2014;15(4):243–256. PubMed PMC
Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056–3063. PubMed PMC
Pajares M., et al. Redox control of protein degradation. Redox Biol. 2015;6:409–420. PubMed PMC
Bindea G., et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093. PubMed PMC
Shirwany N.A., Zou M.H. AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 2014;19:447–474. PubMed PMC
Almeida A., Moncada S., Bolanos J.P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 2004;6(1):45–51. PubMed
Zmijewski J.W., et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 2010;285(43):33154–33164. PubMed PMC
Martinez-Ruiz A., et al. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc. Natl. Acad. Sci. U. S. A. 2005;102(24):8525–8530. PubMed PMC
Yi W., et al. Protein S-nitrosylation regulates proteostasis and viability of hematopoietic stem cell during regeneration. Cell Rep. 2021;34(13) PubMed PMC
Yang U., et al. The functional role of UBA1 cysteine-278 in ubiquitination. Biochem. Biophys. Res. Commun. 2012;427(3):587–592. PubMed
Yoshimura S.H., et al. Intermolecular disulfide bonds between nucleoporins regulate karyopherin-dependent nuclear transport. J. Cell Sci. 2013;126(Pt 14):3141–3150. PubMed
Zhang X., et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135(6):1017–1027. PubMed
Valasek L.S., et al. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res. 2017;45(19):10948–10968. PubMed PMC
Hinnebusch A.G. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 2006;31(10):553–562. PubMed
Lee A.S., Kranzusch P.J., Cate J.H. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522(7554):111–114. PubMed PMC
Shah M., et al. A transcript-specific eIF3 complex mediates global translational control of energy metabolism. Cell Rep. 2016;16(7):1891–1902. PubMed PMC
Smith T.F., et al. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 1999;24(5):181–185. PubMed
Brina D., et al. Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle. 2011;10(20):3441–3446. PubMed
Gandin V., et al. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature. 2008;455(7213):684–688. PubMed PMC
Pulos-Holmes M.C., et al. Repression of ferritin light chain translation by human eIF3. Elife. 2019;8 PubMed PMC
Wilker P.R., et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat. Immunol. 2008;9(6):603–612. PubMed PMC
Schleich S., et al. DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature. 2014;512(7513):208–212. PubMed PMC
Ahmed Y.L., et al. DENR-MCTS1 heterodimerization and tRNA recruitment are required for translation reinitiation. PLoS Biol. 2018;16(6) PubMed PMC
Ceroni A., et al. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res. 2006;34:W177–W181. (Web Server issue) PubMed PMC
Ferre F., Clote P. Disulfide connectivity prediction using secondary structure information and diresidue frequencies. Bioinformatics. 2005;21(10):2336–2346. PubMed
Schleich S., et al. Identification of transcripts with short stuORFs as targets for DENR*MCTS1-dependent translation in human cells. Sci. Rep. 2017;7(1):3722. PubMed PMC
Okada T., et al. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity. 2000;13(6):817–827. PubMed
Lawson H., et al. JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Adv. 2021;5(3):889–899. PubMed PMC
Zhu Y.X., et al. The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades. J. Exp. Med. 2004;200(6):737–747. PubMed PMC
Ford A.M., et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363(6427):358–360. PubMed
Greaves M.F., et al. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–2333. PubMed
Hole P.S., Darley R.L., Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117(22):5816–5826. PubMed
Hasaart K.A.L., et al. Mutation accumulation and developmental lineages in normal and Down syndrome human fetal haematopoiesis. Sci. Rep. 2020;10(1):12991. PubMed PMC
Ugale A., et al. Hematopoietic stem cells are intrinsically protected against MLL-ENL-mediated transformation. Cell Rep. 2014;9(4):1246–1255. PubMed
Pan S., Berk B.C. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ. Res. 2007;100(2):213–219. PubMed
Guardia C.M., et al. Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology. 2014;24(5):428–441. PubMed PMC
Araki K., et al. Redox sensitivities of global cellular cysteine residues under reductive and oxidative stress. J. Proteome Res. 2016;15(8):2548–2559. PubMed
Garcia-Santamarina S., et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc. 2014;9(5):1131–1145. PubMed
Sigurdsson V., et al. Bile acids protect expanding hematopoietic stem cells from unfolded protein stress in fetal liver. Cell Stem Cell. 2016;18(4):522–532. PubMed
Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–388. PubMed PMC
Handy D.E., Loscalzo J. Redox regulation of mitochondrial function. Antioxidants Redox Signal. 2012;16(11):1323–1367. PubMed PMC
Hou T., et al. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res. 2019;29(9):754–766. PubMed PMC
D'Autreaux B., Toledano M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8(10):813–824. PubMed
Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–495. PubMed
Hoeller D., Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458(7237):438–444. PubMed
Barghout S.H., et al. Preclinical evaluation of the selective small-molecule UBA1 inhibitor, TAK-243, in acute myeloid leukemia. Leukemia. 2019;33(1):37–51. PubMed
Kriegenburg F., et al. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxidants Redox Signal. 2011;15(8):2265–2299. PubMed
Silva G.M., et al. Redox control of 20S proteasome gating. Antioxidants Redox Signal. 2012;16(11):1183–1194. PubMed PMC
Tariq M., et al. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc. Natl. Acad. Sci. U. S. A. 2009;106(4):1157–1162. PubMed PMC
Pollyea D.A., et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018;24(12):1859–1866. PubMed PMC
Kohli L., Passegue E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 2014;24(8):479–487. PubMed PMC
Jones C.L., et al. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood. 2019;134(4):389–394. PubMed PMC
Hagner P.R., et al. Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5' terminal oligopyrimidine tract. Oncogene. 2011;30(13):1531–1541. PubMed PMC
Khajuria R.K., et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell. 2018;173(1):90–103 e19. PubMed PMC
Lynch J.R., Wang J.Y. G protein-coupled receptor signaling in stem cells and cancer. Int. J. Mol. Sci. 2016;17(5) PubMed PMC
Zhang P., et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 2015;25(10):1093–1107. PubMed PMC
Meyer C., et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–284. PubMed PMC
Gunisova S., et al. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol. Rev. 2018;42(2):165–192. PubMed PMC
Jassinskaja M., et al. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep. 2021;34(12) PubMed
Attema J.L., et al. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene. 2009;28(22):2238–2243. PubMed
Wagner S., et al. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol. Cell Biol. 2014;34(16):3041–3052. PubMed PMC
Mohammed H., et al. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat. Protoc. 2016;11(2):316–326. PubMed
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26(12):1367–1372. PubMed
Tyanova S., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13(9):731–740. PubMed
Mi H., et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0) Nat. Protoc. 2019;14(3):703–721. PubMed PMC
Sherman B.T., et al. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinf. 2007;8:426. PubMed PMC
Supek F., et al. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7) PubMed PMC
Shannon P., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. PubMed PMC
Sun M.A., et al. RedoxDB--a curated database for experimentally verified protein oxidative modification. Bioinformatics. 2012;28(19):2551–2552. PubMed
Perez-Riverol Y., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. PubMed PMC
Gentleman R.C., et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. PubMed PMC
Sagliocco F.A., Moore P.A., Brown A.J. Polysome analysis. Methods Mol. Biol. 1996;53:297–311. PubMed
Guzzi N., et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173(5):1204–1216 e26. PubMed
Langmead B., et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. PubMed PMC
Dobin A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. PubMed PMC
Anders S., Pyl P.T., Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. PubMed PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Chothani S., et al. deltaTE: detection of translationally regulated genes by integrative analysis of ribo-seq and RNA-seq data. Curr. Protoc. Mol. Biol. 2019;129(1):e108. PubMed PMC
Subramanian A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102(43):15545–15550. PubMed PMC
Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213) PubMed