Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35676624
PubMed Central
PMC9178827
DOI
10.1186/s12870-022-03667-w
PII: 10.1186/s12870-022-03667-w
Knihovny.cz E-zdroje
- Klíčová slova
- Drought, gene expression, gibberellins, plant hormones, wheat,
- MeSH
- gibereliny metabolismus MeSH
- hormony metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- listy rostlin metabolismus MeSH
- období sucha MeSH
- pšenice * metabolismus MeSH
- semenáček * metabolismus MeSH
- voda metabolismus MeSH
- zeatin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gibereliny MeSH
- hormony MeSH
- voda MeSH
- zeatin MeSH
BACKGROUND: Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS: After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS: Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Zobrazit více v PubMed
FAO. http://www.fao.org/faostat/en/#data/QC. Accessed 22 Mar 2022.
Baloch MJ, Dunwell J, Khan NU, Jatoi WA, Khakhwani AA, Vessar NF, et al. Morpho-physiological characterization of spring wheat genotypes under drought stress. Int J Agric Biol. 2013;15:945–950.
Daryanto S, Wang LX, Jacinthe PA. Global synthesis of drought effects on maize and wheat production. PLoS One. 2016;11:e0156362. doi: 10.1371/journal.pone.0156362. PubMed DOI PMC
Zhang JM, Zhang SQ, Cheng M, Jiang H, Zhang XY, Peng CH, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839. doi: 10.3390/ijerph15050839. PubMed DOI PMC
Dai AG. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3:52–58. doi: 10.1038/nclimate1633. DOI
Trenberth KE, Dai AG, van der Schrier G, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nat Clim Chang. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI
Khadka K, Earl HJ, Raizada MN, Navabi A. A physio-morphological trait-based approach for breeding drought tolerant wheat. Front Plant Sci. 2020;11(715):26. PubMed PMC
Nemeskeri E, Helyes L. Physiological responses of selected vegetable crop species to water stress. Agronomy-Basel. 2019;9:447. doi: 10.3390/agronomy9080447. DOI
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K. Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front Plant Sci. 2020;11:556972. doi: 10.3389/fpls.2020.556972. PubMed DOI PMC
Chen DD, Richardson T, Chai SC, McIntyre CL, Rae AL, Xue GP. Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant Cell Physiol. 2016;57:2076–2090. doi: 10.1093/pcp/pcw126. PubMed DOI
Saidi A, Ookawa T, Hirasawa T. Responses of root growth to moderate soil water deficit in wheat seedlings. Plant Prod Sci. 2010;13:261–268. doi: 10.1626/pps.13.261. DOI
Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, et al. Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot. 2004;55:2343–2351. doi: 10.1093/jxb/erh276. PubMed DOI
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217:67–75. doi: 10.1242/jeb.089938. PubMed DOI
Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997;11:3194–3205. doi: 10.1101/gad.11.23.3194. PubMed DOI PMC
de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, et al. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008;451:480–U411. doi: 10.1038/nature06520. PubMed DOI
Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008;451:475–U479. doi: 10.1038/nature06448. PubMed DOI PMC
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, et al. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell. 2014;26:2920–2938. doi: 10.1105/tpc.114.125690. PubMed DOI PMC
Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–1151. doi: 10.1242/dev.087650. PubMed DOI
Sun TP. Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol. 2010;154:567–570. doi: 10.1104/pp.110.161554. PubMed DOI PMC
Chandler PM, Harding CA. Overgrowth' mutants in barley and wheat: new alleles and phenotypes of the 'Green revolution. Della gene J Exp Bot. 2013;64:1603–1613. doi: 10.1093/jxb/ert022. PubMed DOI PMC
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell. 2001;13:999–1010. doi: 10.1105/tpc.13.5.999. PubMed DOI PMC
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011;157:1820–1831. doi: 10.1104/pp.111.183657. PubMed DOI PMC
Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999;400:256–261. doi: 10.1038/22307. PubMed DOI
Van de Velde K, Thomas SG, Heyse F, Kaspar R, Van der Straeten D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Mol Plant. 2021;14:679–687. doi: 10.1016/j.molp.2021.01.002. PubMed DOI
Hedden P. The genes of the green revolution. Trends Genet. 2003;19:5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI
Kocheva K, Nenova V, Karceva T, Petrov P, Börner A, Misheva S. Changes in water status, membrane stability and antioxidant capacity of wheat seedlings carrying different Rht-B1 dwarfing alleles under drought stress. J Agron Crop Sci. 2014;200:86–91. doi: 10.1111/jac.12047. DOI
Achard P, Renou JP, Berthome R, Harberd NP, Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008;18:656–660. doi: 10.1016/j.cub.2008.04.034. PubMed DOI
Skirycz A, Inze D. More from less: plant growth under limited water. Curr Opin Biotechnol. 2010;21:197–203. doi: 10.1016/j.copbio.2010.03.002. PubMed DOI
Nir I, Shohat H, Panizel I, Olszewski N, Aharoni A, Weiss D. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. Plant Cell. 2017;29:3186–3197. doi: 10.1105/tpc.17.00542. PubMed DOI PMC
Shohat H, Illouz-Eliaz N, Kanno Y, Seo M, Weiss D. The tomato DELLA protein procera promotes abscisic acid responses in guard cells by upregulating an abscisic acid transporter. Plant Physiol. 2020;184:518–528. doi: 10.1104/pp.20.00485. PubMed DOI PMC
Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007;144:1240–1246. doi: 10.1104/pp.107.100370. PubMed DOI PMC
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20:2117–2129. doi: 10.1105/tpc.108.058941. PubMed DOI PMC
Wild M, Daviere JM, Cheminant S, Regnault T, Baumberger N, Heintz D, et al. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell. 2012;24:3307–3319. doi: 10.1105/tpc.112.101428. PubMed DOI PMC
Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020;61:1832–1849. doi: 10.1093/pcp/pcaa092. PubMed DOI PMC
Lange T, Kramer C, Lange MJP. The class III gibberellin 2-oxidases AtGA2ox9 and AtGA2ox10 contribute to cold stress tolerance and fertility. Plant Physiol. 2020;184:478–486. doi: 10.1104/pp.20.00594. PubMed DOI PMC
Lee DJ, Zeevaart JAD. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol. 2005;138:243–254. doi: 10.1104/pp.104.056499. PubMed DOI PMC
Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell. 2003;15:151–163. doi: 10.1105/tpc.005975. PubMed DOI PMC
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A. 1999;96:4698–4703. doi: 10.1073/pnas.96.8.4698. PubMed DOI PMC
Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 2008;56:613–626. doi: 10.1111/j.1365-313X.2008.03627.x. PubMed DOI
Lange MJP, Lange T. Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown. Nat Plants. 2015;1:14025. doi: 10.1038/nplants.2014.25. PubMed DOI
Pearce S, Huttly AK, Prosser IM, Li YD, Vaughan SP, Gallova B, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol. 2015;15:130. doi: 10.1186/s12870-015-0520-7. PubMed DOI PMC
Tanimoto E. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Ann Bot. 2012;110:373–381. doi: 10.1093/aob/mcs049. PubMed DOI PMC
Coelho M, Colebrook EH, Lloyd DPA, Webster CP, Mooney SJ, Phillips AL, et al. The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat. Plant Soil. 2013;371:81–94. doi: 10.1007/s11104-013-1662-8. DOI
Inada S, Shimmen T. Regulation of elongation growth by gibberellin in root segments of Lemna minor. Plant Cell Physiol. 2000;41:932–939. doi: 10.1093/pcp/pcd018. PubMed DOI
McKim SM. How plants grow up. J Integr Plant Biol. 2019;61:257–277. doi: 10.1111/jipb.12786. PubMed DOI
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, et al. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res. 2018;25:33103–33118. doi: 10.1007/s11356-018-3364-5. PubMed DOI
Wei HB, Jing YF, Zhang L, Kong DX. Phytohormones and their crosstalk in regulating stomatal development and patterning. J Exp Bot. 2021;72:2356–2370. doi: 10.1093/jxb/erab034. PubMed DOI
Toyomasu T, Kagahara T, Hirose Y, Usui M, Abe S, Okada K, et al. Cloning and characterization of cDNAs encoding ent-copalyl diphosphate synthases in wheat: insight into the evolution of rice phytoalexin biosynthetic genes. Biosci Biotechnol Biochem. 2009;73:772–775. doi: 10.1271/bbb.80781. PubMed DOI
Wu YS, Zhou K, Toyomasu T, Sugawara C, Oku M, Abe S, et al. Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry. 2012;84:40–46. doi: 10.1016/j.phytochem.2012.08.022. PubMed DOI PMC
Han FM, Zhu BG. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Gene. 2011;473:23–35. doi: 10.1016/j.gene.2010.10.010. PubMed DOI
Li A, Yang W, Lou X, Liu D, Sun J, Guo X, et al. Novel natural allelic variations at the Rht-1 loci in wheat. J Integr Plant Biol. 2013;55:1026–1037. doi: 10.1111/jipb.12103. PubMed DOI
Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science. 2003;299:1896–1898. doi: 10.1126/science.1081077. PubMed DOI
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, et al. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 2006;142:54–62. doi: 10.1104/pp.106.085811. PubMed DOI PMC
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A. 2006;103:16598–16603. doi: 10.1073/pnas.0603522103. PubMed DOI PMC
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI
Tezuka D, Matsuura H, Saburi W, Mori H, Imai R. A ubiquitously expressed UDP-glucosyltransferase, UGT74J1, controls basal salicylic acid levels in rice. Plants-Basel. 2021;10:1875. doi: 10.3390/plants10091875. PubMed DOI PMC
Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, et al. Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J. 2009;57:463–472. doi: 10.1111/j.1365-313X.2008.03697.x. PubMed DOI
Sharp RE, Davies WJ. Meeting at the 1988 annual Conf of the Soc for experimental biology: Apr 1988. Lancaster Univ, Lancaster, England; 1989. Regulation of growth and development of plants growing with a restricted supply of water; pp. 71–93.
Khalil AM, Murchie EH, Mooney SJ. Quantifying the influence of water deficit on root and shoot growth in wheat using X-ray computed tomography. AoB Plants. 2020;12:plaa036. doi: 10.1093/aobpla/plaa036. PubMed DOI PMC
Shohat H, Cheriker H, Kilambi HV, Eliaz NI, Blum S, Amsellem Z, et al. Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term 'drought avoidance' responses in tomato. New Phytol. 2021;232:1985–1998. doi: 10.1111/nph.17709. PubMed DOI
Li YD, Shan XH, Jiang ZL, Zhao L, Jin FX. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. Plant Physiol Biochem. 2021;166:621–633. doi: 10.1016/j.plaphy.2021.06.043. PubMed DOI
Wang YX, Du FP, Wang J, Li YB, Zhang Y, Zhao XQ, et al. Molecular dissection of the gene OsGA2ox8 conferring osmotic stress tolerance in rice. Int J Mol Sci. 2021;22:9107. doi: 10.3390/ijms22179107. PubMed DOI PMC
Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Van Lijsebettens M, Kamiya Y, et al. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr Biol. 2012;22:1183–1187. doi: 10.1016/j.cub.2012.04.065. PubMed DOI
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27:325–333. doi: 10.1046/j.1365-313x.2001.01096.x. PubMed DOI
Jung C, Nguyen NH, Cheong JJ. Transcriptional regulation of protein phosphatase 2C genes to modulate abscisic acid signaling. Int J Mol Sci. 2020;21:9517. doi: 10.3390/ijms21249517. PubMed DOI PMC
Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. The Arabidopsis cytochrome P450CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656. doi: 10.1038/sj.emboj.7600121. PubMed DOI PMC
Son S, Chitnis VR, Liu AH, Gao F, Nguyen TN, Ayele BT. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta. 2016;244:429–447. doi: 10.1007/s00425-016-2518-2. PubMed DOI
Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol. 2000;42:833–845. doi: 10.1023/A:1006448428401. PubMed DOI
Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, et al. CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J. 2006;46:171–182. doi: 10.1111/j.1365-313X.2006.02683.x. PubMed DOI
Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, Wankhede DP, et al. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics. 2020;21:676. doi: 10.1186/s12864-020-07083-y. PubMed DOI PMC
Zhao H, Nie K, Zhou H, Yan X, Zhan Q, Zheng Y, et al. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol. 2020;228:596–608. doi: 10.1111/nph.16713. PubMed DOI
Li WQ, Herrera-Estrella L, Tran LSP. The yin-yang of cytokinin homeostasis and drought acclimation/adaptation. Trends Plant Sci. 2016;21:548–550. doi: 10.1016/j.tplants.2016.05.006. PubMed DOI
Werner T, Nehnevajova E, Kollmer I, Novak O, Strnad M, Kramer U, et al. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22:3905–3920. doi: 10.1105/tpc.109.072694. PubMed DOI PMC
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 2011;23:2169–2183. doi: 10.1105/tpc.111.087395. PubMed DOI PMC
Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 2017;90:61–78. doi: 10.1111/tpj.13468. PubMed DOI
Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Schafer M, Brutting C, Meza-Canales ID, Grosskinsky DK, Vankova R, Baldwin IT, et al. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot. 2017;68:2455. PubMed PMC
de Ollas C, Dodd IC. Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol Biol. 2016;91:641–650. doi: 10.1007/s11103-016-0503-6. PubMed DOI PMC
Munoz-Espinoza VA, Lopez-Climent MF, Casaretto JA, Gomez-Cadenas A. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci. 2015;6:997. doi: 10.3389/fpls.2015.00997. PubMed DOI PMC
Wang J, Song L, Gong X, Xu J, Li M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci. 2020;21:1446. doi: 10.3390/ijms21041446. PubMed DOI PMC
De Ollas C, Arbona V, Gomez-Cadenas A, Dodd IC. Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. J Exp Bot. 2018;69:2103–2116. doi: 10.1093/jxb/ery045. PubMed DOI PMC
Sade N, Galkin E, Moshelion M. Measuring Arabidopsis, tomato and barley leaf relative water content (RWC) Bioprotocol. 2015;5:e1451.
Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. In: Sunkar R, editor. Plant stress tolerance methods in molecular biology (methods and protocols), vol. 639. Humana Press; 2010. pp. 317–331. PubMed
Simonian MH, Smith JA. Spectrophotometric and colorimetric determination of protein concentration. Curr Protocols Mol Biol. 2006;76:10–11. doi: 10.1002/0471142727.mb1001as76. PubMed DOI
Dhindsa RS, Plumbdhindsa P, Thorpe TA. Leaf senescence - correlated with increased levels of membrane-permeability and lipid-peroxidation, and decreased levels of superoxide-dismutase and catalase. J Exp Bot. 1981;32:93–101. doi: 10.1093/jxb/32.1.93. DOI
Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI
Šimura J, Antoniadi I, Siroka J, Tarkowska D, Strnad M, Ljung K, et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Dudziak K, Sozoniuk M, Szczerba H, Kuzdralinski A, Kowalczyk K, Borner A, et al. Identification of stable reference genes for qPCR studies in common wheat (Triticum aestivum L.) seedlings under short-term drought stress. Plant Methods. 2020;16:58. doi: 10.1186/s13007-020-00601-9. PubMed DOI PMC
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47. doi: 10.1093/nar/gkz114. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Kolde R. Pheatmap: pretty Heatmaps. R package version 1.0.12. 2019.
Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Blighe K, Rana S, Lewis M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.4.0. 2019.
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Highlights in gibberellin research: A tale of the dwarf and the slender