Transcriptional and post-transcriptional regulation of young genes in plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35676681
PubMed Central
PMC9178820
DOI
10.1186/s12915-022-01339-7
PII: 10.1186/s12915-022-01339-7
Knihovny.cz E-zdroje
- Klíčová slova
- Abiotic stress, Evolutionary capacitance, Nonsense-mediated RNA decay, Open chromatin, Orphan genes, Young genes,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- chromatin genetika metabolismus MeSH
- počátek transkripce MeSH
- proteiny huseníčku * genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostliny metabolismus MeSH
- rýže (rod) * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- proteiny huseníčku * MeSH
BACKGROUND: New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. RESULTS: We performed a protein-based homology search across the tree of life to determine the evolutionary age of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. CONCLUSIONS: These data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.
Zobrazit více v PubMed
Dujon B. The yeast genome project: what did we learn? Trends Genet. 1996;12(7):263–270. doi: 10.1016/0168-9525(96)10027-5. PubMed DOI
Fischer D, Eisenberg D. Finding families for genomic ORFans. Bioinformatics. 1999;15(9):759–762. doi: 10.1093/bioinformatics/15.9.759. PubMed DOI
Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang CJ, et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet. 2018;50(2):285. doi: 10.1038/s41588-018-0040-0. PubMed DOI
Arendsee ZW, Li L, Wurtele ES. Coming of age: orphan genes in plants. Trends Plant Sci. 2014;19(11):698–708. doi: 10.1016/j.tplants.2014.07.003. PubMed DOI
Rodelsperger C, Prabh N, Sommer RJ. New gene origin and deep taxon phylogenomics: opportunities and challenges. Trends Genet. 2019;35(12):914–922. doi: 10.1016/j.tig.2019.08.007. PubMed DOI
Tautz D, Domazet-Loso T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12(10):692–702. doi: 10.1038/nrg3053. PubMed DOI
Van Oss SB, Carvunis AR. De novo gene birth. Plos Genet. 2019;15:5. PubMed PMC
Schlotterer C. Genes from scratch - the evolutionary fate of de novo genes. Trends Genet. 2015;31(4):215–219. doi: 10.1016/j.tig.2015.02.007. PubMed DOI PMC
Cai JJ, Petrov DA. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol. 2010;2:393–409. doi: 10.1093/gbe/evq019. PubMed DOI PMC
Wolf YI, Novichkov PS, Karev GP, Koonin EV, Lipman DJ. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. P Natl Acad Sci USA. 2009;106(18):7273–7280. doi: 10.1073/pnas.0901808106. PubMed DOI PMC
Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve slowly. P Natl Acad Sci USA. 2005;102(40):14338–14343. doi: 10.1073/pnas.0504070102. PubMed DOI PMC
Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell. 2008;134(2):341–352. doi: 10.1016/j.cell.2008.05.042. PubMed DOI PMC
Palmieri N, Kosiol C, Schlotterer C. The life cycle of Drosophila orphan genes. Elife. 2014;3:e01311. PubMed PMC
Werner MS, Sieriebriennikov B, Prabh N, Loschko T, Lanz C, Sommer RJ. Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res. 2018;28(11):1675–1687. doi: 10.1101/gr.234872.118. PubMed DOI PMC
Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. Bmc Evol Biol. 2011;11:47. PubMed PMC
Majic P, Payne JL. Enhancers facilitate the birth of de novo genes and gene integration into regulatory networks. Mol Biol Evol. 2020;37(4):1165–1178. doi: 10.1093/molbev/msz300. PubMed DOI PMC
Vinckenbosch N, Dupanloup I, Kaessmann H. Evolutionary fate of retroposed gene copies in the human genome. P Natl Acad Sci USA. 2006;103(9):3220–3225. doi: 10.1073/pnas.0511307103. PubMed DOI PMC
Cui X, Lv Y, Chen ML, Nikoloski Z, Twell D, Zhang DB. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol Plant. 2015;8(6):935–945. doi: 10.1016/j.molp.2014.12.008. PubMed DOI
Arendsee Z, Li J, Singh U, Seetharam A, Dorman K, Wurtele ES. phylostratr: a framework for phylostratigraphy. Bioinformatics. 2019;35(19):3617–3627. doi: 10.1093/bioinformatics/btz171. PubMed DOI
Zhang JY, Zhou Q. On the regulatory evolution of new genes throughout their life history. Mol Biol Evol. 2019;36(1):15–27. doi: 10.1093/molbev/msy206. PubMed DOI
Li ZW, Chen X, Wu Q, Hagmann J, Han TS, Zou YP, et al. On the origin of de novo genes in Arabidopsis thaliana populations. Genome Biol Evol. 2016;8(7):2190–2202. doi: 10.1093/gbe/evw164. PubMed DOI PMC
Zhu B, Zhang WL, Zhang T, Liu B, Jiang JM. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures. Plant Cell. 2015;27(9):2415–2426. doi: 10.1105/tpc.15.00537. PubMed DOI PMC
Sun J, He N, Niu L, Huang Y, Shen W, Zhang Y, et al. Global quantitative mapping of enhancers in rice by STARR-seq. Genomics Proteomics Bioinformatics. 2019;17(2):140–153. doi: 10.1016/j.gpb.2018.11.003. PubMed DOI PMC
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455. doi: 10.1038/nature12787. PubMed DOI PMC
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13(9):613–626. doi: 10.1038/nrg3207. PubMed DOI
Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al. Enhancer evolution across 20 mammalian species. Cell. 2015;160(3):554–566. doi: 10.1016/j.cell.2015.01.006. PubMed DOI PMC
Prud’homme B, Gompel N, Carroll SB. Emerging principles of regulatory evolution. P Natl Acad Sci USA. 2007;104:8605–8612. doi: 10.1073/pnas.0700488104. PubMed DOI PMC
Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, et al. Proto-genes and de novo gene birth. Nature. 2012;487(7407):370–374. doi: 10.1038/nature11184. PubMed DOI PMC
Santos ME, Le Bouquin A, Crumiere AJJ, Khila A. Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science. 2017;358(6361):386–389. doi: 10.1126/science.aan2748. PubMed DOI
Chen SD, Krinsky BH, Long MY. New genes as drivers of phenotypic evolution. Nat Rev Genet. 2013;14(9):645–660. doi: 10.1038/nrg3521. PubMed DOI PMC
Yang HW, He BZ, Ma HJ, Tsaur SC, Ma CY, Wu Y, et al. Expression profile and gene age jointly shaped the genome-wide distribution of premature termination codons in a Drosophila melanogaster population. Mol Biol Evol. 2015;32(1):216–228. doi: 10.1093/molbev/msu299. PubMed DOI PMC
He F, Jacobson A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015;49:339–366. doi: 10.1146/annurev-genet-112414-054639. PubMed DOI PMC
Lloyd JPB. The evolution and diversity of the nonsense-mediated mRNA decay pathway. F1000Res. 2018;7:1299. doi: 10.12688/f1000research.15872.1. PubMed DOI PMC
Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo WB, Zhang RX, et al. Nonsense-mediated RNA decay factor UPF1 is critical for posttranscriptional and translational gene regulation in Arabidopsis. Plant Cell. 2020;32(9):2725–2741. doi: 10.1105/tpc.20.00244. PubMed DOI PMC
Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res. 2012;40(12):5615–5624. doi: 10.1093/nar/gks195. PubMed DOI PMC
Chantarachot T, Sorenson RS, Hummel M, Ke HY, Kettenburg AT, Chen DN, et al. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Nat Plants. 2020;6(6):675. doi: 10.1038/s41477-020-0681-8. PubMed DOI
Raxwal VK, Riha K. Nonsense mediated RNA decay and evolutionary capacitance. Biochim Biophys Acta. 2016;1859(12):1538–1543. doi: 10.1016/j.bbagrm.2016.09.001. PubMed DOI
Hug N, Longman D, Caceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016;44(4):1483–1495. doi: 10.1093/nar/gkw010. PubMed DOI PMC
Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A, et al. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. J Exp Bot. 2020;71(17):5280–5293. doi: 10.1093/jxb/eraa286. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–U54. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. PubMed PMC
Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. Bmc Bioinformatics. 2010;11:237. PubMed PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–527. doi: 10.1038/nbt.3519. PubMed DOI
Guo WB, Tzioutziou NA, Stephen G, Milne I, Calixto CPG, Waugh R, et al. 3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. Rna Biol. 2021;18(11):1574–1587. doi: 10.1080/15476286.2020.1858253. PubMed DOI PMC
Sorenson RS, Deshotel MJ, Johnson K, Adler FR, Sieburth LE. Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. P Natl Acad Sci USA. 2018;115(7):E1485–E1E94. doi: 10.1073/pnas.1712312115. PubMed DOI PMC
Raxwal VK, Singh S, Agarwal M, Riha K. Landscape of open chromatin regions in Rice upon exposure to abiotic stresses. 2022.
Fang Y, Wang X, Wang L, Pan X, Xiao J, Wang XE, et al. Functional characterization of open chromatin in bidirectional promoters of rice. Sci Rep. 2016;6:32088. PubMed PMC