Fatigue Analysis and Defect Size Evaluation of Filled NBR including Temperature Influence
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
854178
Austrian Research Promotion Agency
PubMed
35683046
PubMed Central
PMC9181821
DOI
10.3390/ma15113745
PII: ma15113745
Knihovny.cz E-resources
- Keywords
- J-integral, X-ray microtomography, defect size, fatigue, filled rubber, fracture mechanics, temperature,
- Publication type
- Journal Article MeSH
The fatigue behavior of a filled non-crystallizing elastomer was investigated on axisymmetric dumbbell specimens. By plotting relevant Wöhler curves, a power law behavior was found. In addition, temperature increases due to heat build-up were monitored. In order to distinguish between initiation and crack growth regimes, hysteresis curves, secant and dynamic moduli, dissipated and stored energies, and normalized minimum and maximum forces were analyzed. Even though indications related to material damaging were observed, a clear trend to recognize the initiation was not evident. Further details were revealed by considering a fracture mechanics. The analysis of the fracture surfaces evidenced the presence of three regions, associated to initiation, fatigue striation, and catastrophic failure. Additional fatigue tests were performed with samples in which a radial notch was introduced. This resulted in a reduction in lifetime by four orders of magnitude; nevertheless, the fracture surfaces revealed similar failure mechanisms. A fracture mechanics approach, which considered the effect of temperature, was adopted to calculate the critical defect size for fatigue, which was found to be approximately 9 μm. This value was then compared with the particle size distribution obtained through X-ray microcomputed tomography (μ-CT) of undamaged samples and it was found that the majority of the initial defects were indeed smaller than the calculated one. Finally, the evaluation of J-integral for both unnotched and notched dumbbells enabled the assessment of a geometry-independent correlation with fatigue life.
Institute of Physics of Materials Czech Academy of Sciences 61662 Brno Czech Republic
Polymer Competence Center Leoben GmbH Roseggerstrasse 12 8700 Leoben Austria
SCIOFLEX GmbH Opernring 1 R 748 1010 Wien Austria
Semperit Technische Produkte GmbH Triester Bundesstrasse 26 2632 Wimpassing Austria
See more in PubMed
Ellul M.D. Mechanical fatigue. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.
Mars W.V., Fatemi A. A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue. 2002;24:949–961. doi: 10.1016/S0142-1123(02)00008-7. DOI
Gent A.N., Lindley P.B., Thomas A.G. Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J. Appl. Polym. Sci. 1964;8:455–466. doi: 10.1002/app.1964.070080129. DOI
Lake G.J., Lindley P.B. Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber. J. Appl. Polym. Sci. 1964;8:707–721. doi: 10.1002/app.1964.070080212. DOI
Lake G.J., Lindley P.B. The mechanical fatigue limit for rubber. J. Appl. Polym. Sci. 1965;9:1233–1251. doi: 10.1002/app.1965.070090405. DOI
Fielding-Russell G.S., Rongone R.L. Fatiguing of rubber-rubber interfaces. Rubber Chem. Technol. 1983;56:838–844. doi: 10.5254/1.3538158. DOI
Young D.G. Dynamic property and fatigue crack propagation research on tire sidewall and model compounds. Rubber Chem. Technol. 1985;58:785–805. doi: 10.5254/1.3536093. DOI
Royo J. Fatigue testing of rubber materials and articles. Polym. Test. 1992;11:325–344. doi: 10.1016/0142-9418(92)90002-S. DOI
Lake G.J. Fatigue and fracture of elastomers. Rubber Chem. Technol. 1995;68:435–460. doi: 10.5254/1.3538750. DOI
Choi I.S., Roland C.M. Intrinsic defects and the failure properties of cis-1,4-polyisoprenes. Rubber Chem. Technol. 1996;69:591–599. doi: 10.5254/1.3538386. DOI
Mars W.V., Fatemi A. Fatigue crack nucleation and growth in filled natural rubber. Fatigue Fract. Eng. Mater. Struct. 2003;26:779–789. doi: 10.1046/j.1460-2695.2003.00678.x. DOI
Zarrin-Ghalami T., Fatemi A. Fatigue life predictions of rubber components: Applications to an automobile cradle mount. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012;227:691–703. doi: 10.1177/0954407012461863. DOI
Zarrin-Ghalami T., Fatemi A. Material deformation and fatigue behavior characterization for elastomeric component life predictions. Polym. Eng. Sci. 2012;52:1795–1805. doi: 10.1002/pen.23125. DOI
Kim H.J., Song M.W., Moon H.I., Kim H., Kim H.Y. Fatigue life prediction of a rubber material based on dynamic crack growth considering shear effect. Int.J. Automot. Technol. 2014;15:317–324. doi: 10.1007/s12239-014-0032-8. DOI
El Yaagoubi M., Juhre D., Meier J., Kröger N., Alshuth T., Giese U. Lifetime prediction of filled elastomers based on particle distribution and the J-integral evaluation. Int. J. Fatigue. 2018;112:341–354. doi: 10.1016/j.ijfatigue.2018.03.024. DOI
Gehrmann O., El Yaagoubi M., El Maanaoui H., Meier J. Lifetime prediction of simple shear loaded filled elastomers based on the probability distribution of particles. Polym. Test. 2019;75:229–236. doi: 10.1016/j.polymertesting.2019.02.025. DOI
Guo H., Li F., Wen S., Yang H., Zhang L. Characterization and Quantitative Analysis of Crack Precursor Size for Rubber Composites. Materials. 2019;12:3442. doi: 10.3390/ma12203442. PubMed DOI PMC
El Maanaoui H., Meier J. Lifetime prediction with temperature dependence for EPDM and NR elastomers based on fatigue crack growth mechanical measurements and filler distribution. Polymer. 2021;228:123909. doi: 10.1016/j.polymer.2021.123909. DOI
Andena L., Rink M., Frassine R., Corrieri R. A fracture mechanics approach for the prediction of the failure time of polybutene pipes. Eng. Fract. Mech. 2009;76:2666–2677. doi: 10.1016/j.engfracmech.2009.10.002. DOI
Le Cam J.-B., Huneau B., Verron E., Gornet L. Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules. 2004;37:5011–5017. doi: 10.1021/ma0495386. DOI
Mars W.V., Fatemi A. Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading. J. Mater. Sci. 2006;41:7324–7332. doi: 10.1007/s10853-006-0962-2. DOI
Saintier N., Cailletaud G., Piques R. Crack initiation and propagation under multiaxial fatigue in a natural rubber. Int. J. Fatigue. 2006;28:61–72. doi: 10.1016/j.ijfatigue.2005.03.006. DOI
Hainsworth S.V. An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers. Polym. Test. 2007;26:60–70. doi: 10.1016/j.polymertesting.2006.08.007. DOI
Le Cam J.-B., Toussaint E. The mechanism of fatigue crack growth in rubbers under severe loading: The Effect of Stress-Induced Crystallization. Macromolecules. 2010;43:4708–4714. doi: 10.1021/ma100042n. DOI
Weng G., Huang G., Lei H., Qu L., Nie Y., Wu J. Crack initiation and evolution in vulcanized natural rubber under high temperature fatigue. Polym. Degrad. Stab. 2011;96:2221–2228. doi: 10.1016/j.polymdegradstab.2011.09.004. DOI
Le Cam J.-B., Huneau B., Verron E. Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions. Int. J. Fatigue. 2013;52:82–94. doi: 10.1016/j.ijfatigue.2013.02.022. DOI
Le Cam J.-B., Huneau B., Verron E. Failure analysis of carbon black filled styrene butadiene rubber under fatigue loading conditions. Plast. Rubber Compos. 2014;43:187–191. doi: 10.1179/1743289814Y.0000000089. DOI
Huneau B., Masquelier I., Marco Y., Le Saux V., Noizet S., Schiel C., Charrier P. Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem. Technol. 2016;89:126–141. doi: 10.5254/rct.15.84809. DOI
Marco Y., Huneau B., Masquelier I., Le Saux V., Charrier P. Prediction of fatigue properties of natural rubber based on the descriptions of the cracks population and of the dissipated energy. Polym. Test. 2017;59:67–74. doi: 10.1016/j.polymertesting.2017.01.015. DOI
Federico C.E., Padmanathan H.R., Kotecky O., Rommel R., Rauchs G., Fleming Y., Addiego F., Westermann S. Cavitation Micro-mechanisms in Silica-Filled Styrene-Butadiene Rubber Upon Fatigue and Cyclic Tensile Testing. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.
Marco Y., Le Saux V., Calloch S., Charrier P. X-ray computed μ-tomography: A tool for the characterization of fatigue defect population in a polychloroprene rubber. Procedia Eng. 2010;2:2131–2140. doi: 10.1016/j.proeng.2010.03.229. DOI
Le Saux V., Marco Y., Calloch S., Charrier P. Evaluation of the fatigue defect population in an elastomer using X-ray computed micro-tomography. Polym. Eng. Sci. 2011;51:1253–1263. doi: 10.1002/pen.21872. DOI
Euchler E., Bernhardt R., Schneider K., Heinrich G., Tada T., Wießner S., Stommel M. Cavitation in Rubber Vulcanizates Subjected to Constrained Tensile Deformation. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.
Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Effect of mechanical loading history on fatigue crack growth of non-crystallizing rubber. Eng. Fract. Mech. 2021;257:108010. doi: 10.1016/j.engfracmech.2021.108010. DOI
Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber. Int. J. Fatigue. 2021;144:106050. doi: 10.1016/j.ijfatigue.2020.106050. DOI
ISO; Geneva, Switzerland: 2015. Polyethylene (PE) Materials for Piping Systems—Determination of Resistance to Slow Crack Growth under Cyclic Loading-Cracked Round Bar Test Method, 2015, 23.040.20 Plastics Pipes; 23.040.45 Plastics fittings (18489)
Moroni G., Petrò S. A Discussion on Performance Verification of 3D X-Ray Computed Tomography Systems. Procedia CIRP. 2018;75:125–130. doi: 10.1016/j.procir.2018.04.064. DOI
Tagliabue S., Andena L., Nacucchi M., de Pascalis F. An image-based approach for structure investigation and 3D numerical modelling of polymeric foams. J. Polym. Res. 2021;28:75. doi: 10.1007/s10965-021-02438-9. DOI
Otsu N. A threshold selection method from gray-level histograms. IEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI
Andena L., Caimmi F., Leonardi L., Nacucchi M., de Pascalis F. Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study. J. Cell. Plast. 2019;55:49–72. doi: 10.1177/0021955X18806794. DOI
Najman L., Schmitt M. Watershed of a continuous function. Signal. Process. 1994;38:99–112. doi: 10.1016/0165-1684(94)90059-0. DOI
ANSYS Inc. ANSYS Help Release 2022 R1. [(accessed on 31 January 2022)]. Available online: https://ansyshelp.ansys.com.
Wöhler A. Wöhler’s experiments on the strength of metals. Engineering. 1867;4:160–161.
ASTM International; West Conshohocken, PA, USA: 2015. Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data.
Ruellan B., Le Cam J.-B., Jeanneau I., Canévet F., Mortier F., Robin E. Fatigue of natural rubber under different temperatures. Int. J. Fatigue. 2019;124:544–557. doi: 10.1016/j.ijfatigue.2018.10.009. DOI
Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Impact of temperature on the fatigue and crack growth behavior of rubbers. Procedia Struct. Integr. 2018;13:642–647. doi: 10.1016/j.prostr.2018.12.106. DOI
Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Heat build-up of rubbers during cyclic loading; Proceedings of the 11th European Conference on Constitutive Models for Rubber (ECCMR 2019); Nantes, France. 25–27 June 2019.
Gent A.N., Scott K.W. Dynamic mechanical properties. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.
Ferry J.D. Viscoelastic Properties of Polymers. 3rd ed. Wiley; New York, NY, USA: Chichester, UK: 1980.
Hertzberg R.W., Manson J.A. Fatigue of Engineering Plastics. Academic Press; New York, NY, USA: London, UK: 1980.
Alshuth T., Abraham F., Jerrams S. Parameter Dependence and Prediction of Fatigue Properties of Elastomer Products. Rubber Chem. Technol. 2002;75:635–642. doi: 10.5254/1.3544990. DOI
Kim W. Fatigue life estimation of an engine rubber mount. Int. J. Fatigue. 2004;26:553–560. doi: 10.1016/j.ijfatigue.2003.08.025. DOI
Abraham F., Alshuth T., Jerrams S. The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers. Mater. Des. 2005;26:239–245. doi: 10.1016/j.matdes.2004.02.020. DOI
Kim J., Jeong H. A study on the material properties and fatigue life of natural rubber with different carbon blacks. Int. J. Fatigue. 2005;27:263–272. doi: 10.1016/j.ijfatigue.2004.07.002. DOI
Kim H., Kim H.-Y. Numerical life prediction method for fatigue failure of rubber-like material under repeated loading condition. J. Mech. Sci. Technol. 2006;20:473–481. doi: 10.1007/BF02916478. DOI
Woo C.S., Kim W.D. Fatigue lifetime prediction methodology of rubber components. In: de Wilde W., Brebbia C.A., editors. High Performance Structures and Materials IV, Proceedings of the HPSM 2008, Algarve, Portugal, 13–15 May 2008. WIT Press; Southampton, UK: 2008. pp. 285–293.
Woo C.-S., Kim W.-D., Kwon J.-D. A study on the material properties and fatigue life prediction of natural rubber component. Mater. Sci. Eng. A. 2008;483-484:376–381. doi: 10.1016/j.msea.2006.09.189. DOI
Woo C.-S., Kim W.-D., Lee S.-H., Choi B.-I., Park H.-S. Fatigue life prediction of vulcanized natural rubber subjected to heat-aging. Procedia Eng. 2009;1:9–12. doi: 10.1016/j.proeng.2009.06.004. DOI
Abraham F., Alshuth T., Jerrams S. Dependence on mean stress and stress amplitude of fatigue life of EPDM elastomers. Plast. Rubber Compos. 2013;30:421–425. doi: 10.1179/146580101101541822. DOI
El Yaagoubi M., Juhre D., Meier J., Alshuth T., Giese U. Tearing energy and path-dependent J-integral evaluation considering stress softening for carbon black reinforced elastomers. Eng. Fract. Mech. 2018;190:259–272. doi: 10.1016/j.engfracmech.2017.12.029. DOI
El Yaagoubi M., El Maanaoui H., Meier J. New fatigue test sample: Lifetime prediction of carbon black filled elastomers based on the probability distribution of particles. Polymer. 2020;208:122973. doi: 10.1016/j.polymer.2020.122973. DOI
Meier J., Robin S., Ludwig M., El Yaagoubi M. Influence of Filler Induced Cracks on the Statistical Lifetime of Rubber: A Review. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.
Zahnt B.A. Ph.D. Thesis. Montanuniversität Leoben; Leoben, Austria: 2003. Ermüdungsverhalten von Diskontinuierlich Glasfaserverstärkten Kunststoffen—Charakterisierungsmethoden, Werkstoffgesetze und Struktur-Eigenschafts-Beziehungen.
Pinter G., Ladstätter E., Billinger W., Lang R.W. Characterisation of the tensile fatigue behaviour of RTM-laminates by isocyclic stress–strain-diagrams. Int. J. Fatigue. 2006;28:1277–1283. doi: 10.1016/j.ijfatigue.2006.02.012. DOI
Berer M., Major Z., Pinter G., Constantinescu D.M., Marsavina L. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime. Mech. Time-Depend. Mater. 2014;18:663–684. doi: 10.1007/s11043-013-9211-7. DOI
Tong X., Chen X., Xu J., Zheng Y., Zhi S. The heat build-up of a polymer matrix composite under cyclic loading: Experimental assessment and numerical simulation. Int. J. Fatigue. 2018;116:323–333. doi: 10.1016/j.ijfatigue.2018.06.040. DOI
Gent A.N. Elasticity. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.
Arbeiter F., Schrittesser B., Frank A., Berer M., Pinter G. Cyclic tests on cracked round bars as a quick tool to assess the long term behaviour of thermoplastics and elastomers. Polym. Test. 2015;45:83–92. doi: 10.1016/j.polymertesting.2015.05.008. DOI
Wang C., Stiller T., Hausberger A., Pinter G., Grün F., Schwarz T. Correlation of Tribological Behavior and Fatigue Properties of Filled and Unfilled TPUs. Lubricants. 2019;7:60. doi: 10.3390/lubricants7070060. DOI
Wang C., Hausberger A., Berer M., Pinter G., Grün F., Schwarz T. An investigation of fretting behavior of thermoplastic polyurethane for mechanical seal application. Polym. Test. 2018;72:271–284. doi: 10.1016/j.polymertesting.2018.10.037. DOI
Frank A., Freimann W., Pinter G., Lang R.W. A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades. Eng. Fract. Mech. 2009;76:2780–2787. doi: 10.1016/j.engfracmech.2009.06.009. DOI
Greensmith H.W. Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension. J. Appl. Polym. Sci. 1963;7:993–1002. doi: 10.1002/app.1963.070070316. DOI
Scibetta M., Chaouadi R., Van Walle E. Fracture toughness analysis of circumferentially-cracked round bars. Int. J. Fract. 2000;104:145–168. doi: 10.1023/A:1007625612644. DOI