• This record comes from PubMed

Fatigue Analysis and Defect Size Evaluation of Filled NBR including Temperature Influence

. 2022 May 24 ; 15 (11) : . [epub] 20220524

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
854178 Austrian Research Promotion Agency

The fatigue behavior of a filled non-crystallizing elastomer was investigated on axisymmetric dumbbell specimens. By plotting relevant Wöhler curves, a power law behavior was found. In addition, temperature increases due to heat build-up were monitored. In order to distinguish between initiation and crack growth regimes, hysteresis curves, secant and dynamic moduli, dissipated and stored energies, and normalized minimum and maximum forces were analyzed. Even though indications related to material damaging were observed, a clear trend to recognize the initiation was not evident. Further details were revealed by considering a fracture mechanics. The analysis of the fracture surfaces evidenced the presence of three regions, associated to initiation, fatigue striation, and catastrophic failure. Additional fatigue tests were performed with samples in which a radial notch was introduced. This resulted in a reduction in lifetime by four orders of magnitude; nevertheless, the fracture surfaces revealed similar failure mechanisms. A fracture mechanics approach, which considered the effect of temperature, was adopted to calculate the critical defect size for fatigue, which was found to be approximately 9 μm. This value was then compared with the particle size distribution obtained through X-ray microcomputed tomography (μ-CT) of undamaged samples and it was found that the majority of the initial defects were indeed smaller than the calculated one. Finally, the evaluation of J-integral for both unnotched and notched dumbbells enabled the assessment of a geometry-independent correlation with fatigue life.

See more in PubMed

Ellul M.D. Mechanical fatigue. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.

Mars W.V., Fatemi A. A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue. 2002;24:949–961. doi: 10.1016/S0142-1123(02)00008-7. DOI

Gent A.N., Lindley P.B., Thomas A.G. Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. J. Appl. Polym. Sci. 1964;8:455–466. doi: 10.1002/app.1964.070080129. DOI

Lake G.J., Lindley P.B. Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber. J. Appl. Polym. Sci. 1964;8:707–721. doi: 10.1002/app.1964.070080212. DOI

Lake G.J., Lindley P.B. The mechanical fatigue limit for rubber. J. Appl. Polym. Sci. 1965;9:1233–1251. doi: 10.1002/app.1965.070090405. DOI

Fielding-Russell G.S., Rongone R.L. Fatiguing of rubber-rubber interfaces. Rubber Chem. Technol. 1983;56:838–844. doi: 10.5254/1.3538158. DOI

Young D.G. Dynamic property and fatigue crack propagation research on tire sidewall and model compounds. Rubber Chem. Technol. 1985;58:785–805. doi: 10.5254/1.3536093. DOI

Royo J. Fatigue testing of rubber materials and articles. Polym. Test. 1992;11:325–344. doi: 10.1016/0142-9418(92)90002-S. DOI

Lake G.J. Fatigue and fracture of elastomers. Rubber Chem. Technol. 1995;68:435–460. doi: 10.5254/1.3538750. DOI

Choi I.S., Roland C.M. Intrinsic defects and the failure properties of cis-1,4-polyisoprenes. Rubber Chem. Technol. 1996;69:591–599. doi: 10.5254/1.3538386. DOI

Mars W.V., Fatemi A. Fatigue crack nucleation and growth in filled natural rubber. Fatigue Fract. Eng. Mater. Struct. 2003;26:779–789. doi: 10.1046/j.1460-2695.2003.00678.x. DOI

Zarrin-Ghalami T., Fatemi A. Fatigue life predictions of rubber components: Applications to an automobile cradle mount. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012;227:691–703. doi: 10.1177/0954407012461863. DOI

Zarrin-Ghalami T., Fatemi A. Material deformation and fatigue behavior characterization for elastomeric component life predictions. Polym. Eng. Sci. 2012;52:1795–1805. doi: 10.1002/pen.23125. DOI

Kim H.J., Song M.W., Moon H.I., Kim H., Kim H.Y. Fatigue life prediction of a rubber material based on dynamic crack growth considering shear effect. Int.J. Automot. Technol. 2014;15:317–324. doi: 10.1007/s12239-014-0032-8. DOI

El Yaagoubi M., Juhre D., Meier J., Kröger N., Alshuth T., Giese U. Lifetime prediction of filled elastomers based on particle distribution and the J-integral evaluation. Int. J. Fatigue. 2018;112:341–354. doi: 10.1016/j.ijfatigue.2018.03.024. DOI

Gehrmann O., El Yaagoubi M., El Maanaoui H., Meier J. Lifetime prediction of simple shear loaded filled elastomers based on the probability distribution of particles. Polym. Test. 2019;75:229–236. doi: 10.1016/j.polymertesting.2019.02.025. DOI

Guo H., Li F., Wen S., Yang H., Zhang L. Characterization and Quantitative Analysis of Crack Precursor Size for Rubber Composites. Materials. 2019;12:3442. doi: 10.3390/ma12203442. PubMed DOI PMC

El Maanaoui H., Meier J. Lifetime prediction with temperature dependence for EPDM and NR elastomers based on fatigue crack growth mechanical measurements and filler distribution. Polymer. 2021;228:123909. doi: 10.1016/j.polymer.2021.123909. DOI

Andena L., Rink M., Frassine R., Corrieri R. A fracture mechanics approach for the prediction of the failure time of polybutene pipes. Eng. Fract. Mech. 2009;76:2666–2677. doi: 10.1016/j.engfracmech.2009.10.002. DOI

Le Cam J.-B., Huneau B., Verron E., Gornet L. Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules. 2004;37:5011–5017. doi: 10.1021/ma0495386. DOI

Mars W.V., Fatemi A. Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading. J. Mater. Sci. 2006;41:7324–7332. doi: 10.1007/s10853-006-0962-2. DOI

Saintier N., Cailletaud G., Piques R. Crack initiation and propagation under multiaxial fatigue in a natural rubber. Int. J. Fatigue. 2006;28:61–72. doi: 10.1016/j.ijfatigue.2005.03.006. DOI

Hainsworth S.V. An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers. Polym. Test. 2007;26:60–70. doi: 10.1016/j.polymertesting.2006.08.007. DOI

Le Cam J.-B., Toussaint E. The mechanism of fatigue crack growth in rubbers under severe loading: The Effect of Stress-Induced Crystallization. Macromolecules. 2010;43:4708–4714. doi: 10.1021/ma100042n. DOI

Weng G., Huang G., Lei H., Qu L., Nie Y., Wu J. Crack initiation and evolution in vulcanized natural rubber under high temperature fatigue. Polym. Degrad. Stab. 2011;96:2221–2228. doi: 10.1016/j.polymdegradstab.2011.09.004. DOI

Le Cam J.-B., Huneau B., Verron E. Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions. Int. J. Fatigue. 2013;52:82–94. doi: 10.1016/j.ijfatigue.2013.02.022. DOI

Le Cam J.-B., Huneau B., Verron E. Failure analysis of carbon black filled styrene butadiene rubber under fatigue loading conditions. Plast. Rubber Compos. 2014;43:187–191. doi: 10.1179/1743289814Y.0000000089. DOI

Huneau B., Masquelier I., Marco Y., Le Saux V., Noizet S., Schiel C., Charrier P. Fatigue crack initiation in a carbon black-filled natural rubber. Rubber Chem. Technol. 2016;89:126–141. doi: 10.5254/rct.15.84809. DOI

Marco Y., Huneau B., Masquelier I., Le Saux V., Charrier P. Prediction of fatigue properties of natural rubber based on the descriptions of the cracks population and of the dissipated energy. Polym. Test. 2017;59:67–74. doi: 10.1016/j.polymertesting.2017.01.015. DOI

Federico C.E., Padmanathan H.R., Kotecky O., Rommel R., Rauchs G., Fleming Y., Addiego F., Westermann S. Cavitation Micro-mechanisms in Silica-Filled Styrene-Butadiene Rubber Upon Fatigue and Cyclic Tensile Testing. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.

Marco Y., Le Saux V., Calloch S., Charrier P. X-ray computed μ-tomography: A tool for the characterization of fatigue defect population in a polychloroprene rubber. Procedia Eng. 2010;2:2131–2140. doi: 10.1016/j.proeng.2010.03.229. DOI

Le Saux V., Marco Y., Calloch S., Charrier P. Evaluation of the fatigue defect population in an elastomer using X-ray computed micro-tomography. Polym. Eng. Sci. 2011;51:1253–1263. doi: 10.1002/pen.21872. DOI

Euchler E., Bernhardt R., Schneider K., Heinrich G., Tada T., Wießner S., Stommel M. Cavitation in Rubber Vulcanizates Subjected to Constrained Tensile Deformation. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.

Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Effect of mechanical loading history on fatigue crack growth of non-crystallizing rubber. Eng. Fract. Mech. 2021;257:108010. doi: 10.1016/j.engfracmech.2021.108010. DOI

Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber. Int. J. Fatigue. 2021;144:106050. doi: 10.1016/j.ijfatigue.2020.106050. DOI

ISO; Geneva, Switzerland: 2015. Polyethylene (PE) Materials for Piping Systems—Determination of Resistance to Slow Crack Growth under Cyclic Loading-Cracked Round Bar Test Method, 2015, 23.040.20 Plastics Pipes; 23.040.45 Plastics fittings (18489)

Moroni G., Petrò S. A Discussion on Performance Verification of 3D X-Ray Computed Tomography Systems. Procedia CIRP. 2018;75:125–130. doi: 10.1016/j.procir.2018.04.064. DOI

Tagliabue S., Andena L., Nacucchi M., de Pascalis F. An image-based approach for structure investigation and 3D numerical modelling of polymeric foams. J. Polym. Res. 2021;28:75. doi: 10.1007/s10965-021-02438-9. DOI

Otsu N. A threshold selection method from gray-level histograms. IEE Trans. Syst. Man Cybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI

Andena L., Caimmi F., Leonardi L., Nacucchi M., de Pascalis F. Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study. J. Cell. Plast. 2019;55:49–72. doi: 10.1177/0021955X18806794. DOI

Najman L., Schmitt M. Watershed of a continuous function. Signal. Process. 1994;38:99–112. doi: 10.1016/0165-1684(94)90059-0. DOI

ANSYS Inc. ANSYS Help Release 2022 R1. [(accessed on 31 January 2022)]. Available online: https://ansyshelp.ansys.com.

Wöhler A. Wöhler’s experiments on the strength of metals. Engineering. 1867;4:160–161.

ASTM International; West Conshohocken, PA, USA: 2015. Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data.

Ruellan B., Le Cam J.-B., Jeanneau I., Canévet F., Mortier F., Robin E. Fatigue of natural rubber under different temperatures. Int. J. Fatigue. 2019;124:544–557. doi: 10.1016/j.ijfatigue.2018.10.009. DOI

Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Impact of temperature on the fatigue and crack growth behavior of rubbers. Procedia Struct. Integr. 2018;13:642–647. doi: 10.1016/j.prostr.2018.12.106. DOI

Schieppati J., Schrittesser B., Wondracek A., Robin S., Holzner A., Pinter G. Heat build-up of rubbers during cyclic loading; Proceedings of the 11th European Conference on Constitutive Models for Rubber (ECCMR 2019); Nantes, France. 25–27 June 2019.

Gent A.N., Scott K.W. Dynamic mechanical properties. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.

Ferry J.D. Viscoelastic Properties of Polymers. 3rd ed. Wiley; New York, NY, USA: Chichester, UK: 1980.

Hertzberg R.W., Manson J.A. Fatigue of Engineering Plastics. Academic Press; New York, NY, USA: London, UK: 1980.

Alshuth T., Abraham F., Jerrams S. Parameter Dependence and Prediction of Fatigue Properties of Elastomer Products. Rubber Chem. Technol. 2002;75:635–642. doi: 10.5254/1.3544990. DOI

Kim W. Fatigue life estimation of an engine rubber mount. Int. J. Fatigue. 2004;26:553–560. doi: 10.1016/j.ijfatigue.2003.08.025. DOI

Abraham F., Alshuth T., Jerrams S. The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers. Mater. Des. 2005;26:239–245. doi: 10.1016/j.matdes.2004.02.020. DOI

Kim J., Jeong H. A study on the material properties and fatigue life of natural rubber with different carbon blacks. Int. J. Fatigue. 2005;27:263–272. doi: 10.1016/j.ijfatigue.2004.07.002. DOI

Kim H., Kim H.-Y. Numerical life prediction method for fatigue failure of rubber-like material under repeated loading condition. J. Mech. Sci. Technol. 2006;20:473–481. doi: 10.1007/BF02916478. DOI

Woo C.S., Kim W.D. Fatigue lifetime prediction methodology of rubber components. In: de Wilde W., Brebbia C.A., editors. High Performance Structures and Materials IV, Proceedings of the HPSM 2008, Algarve, Portugal, 13–15 May 2008. WIT Press; Southampton, UK: 2008. pp. 285–293.

Woo C.-S., Kim W.-D., Kwon J.-D. A study on the material properties and fatigue life prediction of natural rubber component. Mater. Sci. Eng. A. 2008;483-484:376–381. doi: 10.1016/j.msea.2006.09.189. DOI

Woo C.-S., Kim W.-D., Lee S.-H., Choi B.-I., Park H.-S. Fatigue life prediction of vulcanized natural rubber subjected to heat-aging. Procedia Eng. 2009;1:9–12. doi: 10.1016/j.proeng.2009.06.004. DOI

Abraham F., Alshuth T., Jerrams S. Dependence on mean stress and stress amplitude of fatigue life of EPDM elastomers. Plast. Rubber Compos. 2013;30:421–425. doi: 10.1179/146580101101541822. DOI

El Yaagoubi M., Juhre D., Meier J., Alshuth T., Giese U. Tearing energy and path-dependent J-integral evaluation considering stress softening for carbon black reinforced elastomers. Eng. Fract. Mech. 2018;190:259–272. doi: 10.1016/j.engfracmech.2017.12.029. DOI

El Yaagoubi M., El Maanaoui H., Meier J. New fatigue test sample: Lifetime prediction of carbon black filled elastomers based on the probability distribution of particles. Polymer. 2020;208:122973. doi: 10.1016/j.polymer.2020.122973. DOI

Meier J., Robin S., Ludwig M., El Yaagoubi M. Influence of Filler Induced Cracks on the Statistical Lifetime of Rubber: A Review. In: Heinrich G., Kipscholl R., Stoček R., editors. Fatigue Crack Growth in Rubber Materials: Experiments and Modelling. Springer; Cham, Switzerland: 2020.

Zahnt B.A. Ph.D. Thesis. Montanuniversität Leoben; Leoben, Austria: 2003. Ermüdungsverhalten von Diskontinuierlich Glasfaserverstärkten Kunststoffen—Charakterisierungsmethoden, Werkstoffgesetze und Struktur-Eigenschafts-Beziehungen.

Pinter G., Ladstätter E., Billinger W., Lang R.W. Characterisation of the tensile fatigue behaviour of RTM-laminates by isocyclic stress–strain-diagrams. Int. J. Fatigue. 2006;28:1277–1283. doi: 10.1016/j.ijfatigue.2006.02.012. DOI

Berer M., Major Z., Pinter G., Constantinescu D.M., Marsavina L. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime. Mech. Time-Depend. Mater. 2014;18:663–684. doi: 10.1007/s11043-013-9211-7. DOI

Tong X., Chen X., Xu J., Zheng Y., Zhi S. The heat build-up of a polymer matrix composite under cyclic loading: Experimental assessment and numerical simulation. Int. J. Fatigue. 2018;116:323–333. doi: 10.1016/j.ijfatigue.2018.06.040. DOI

Gent A.N. Elasticity. In: Gent A.N., editor. Engineering with Rubber: How to Design Rubber Components. 3rd ed. Hanser Publications; Cincinnati, OH, USA: 2012.

Arbeiter F., Schrittesser B., Frank A., Berer M., Pinter G. Cyclic tests on cracked round bars as a quick tool to assess the long term behaviour of thermoplastics and elastomers. Polym. Test. 2015;45:83–92. doi: 10.1016/j.polymertesting.2015.05.008. DOI

Wang C., Stiller T., Hausberger A., Pinter G., Grün F., Schwarz T. Correlation of Tribological Behavior and Fatigue Properties of Filled and Unfilled TPUs. Lubricants. 2019;7:60. doi: 10.3390/lubricants7070060. DOI

Wang C., Hausberger A., Berer M., Pinter G., Grün F., Schwarz T. An investigation of fretting behavior of thermoplastic polyurethane for mechanical seal application. Polym. Test. 2018;72:271–284. doi: 10.1016/j.polymertesting.2018.10.037. DOI

Frank A., Freimann W., Pinter G., Lang R.W. A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades. Eng. Fract. Mech. 2009;76:2780–2787. doi: 10.1016/j.engfracmech.2009.06.009. DOI

Greensmith H.W. Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension. J. Appl. Polym. Sci. 1963;7:993–1002. doi: 10.1002/app.1963.070070316. DOI

Scibetta M., Chaouadi R., Van Walle E. Fracture toughness analysis of circumferentially-cracked round bars. Int. J. Fract. 2000;104:145–168. doi: 10.1023/A:1007625612644. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...