Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney

. 2023 May 04 ; 16 (5) : . [epub] 20230504

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37242479

Grantová podpora
Cooperatio Pharmaceutical Sciences Charles University
SVV 260549 Charles University

The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.

Zobrazit více v PubMed

Mohtavinejad N., Shafiee Ardestani M., Khalaj A., Pormohammad A., Najafi R., Bitarafan-Rajabi A., Hajiramezanali M., Amanlou M. Application of radiolabeled peptides in tumor imaging and therapy. Life Sci. 2020;258:118206. doi: 10.1016/j.lfs.2020.118206. PubMed DOI

Abbasi Gharibkandi N., Conlon J.M., Hosseinimehr S.J. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides. 2020;133:170385. doi: 10.1016/j.peptides.2020.170385. PubMed DOI

Eychenne R., Bouvry C., Bourgeois M., Loyer P., Benoist E., Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules. 2020;25:4012. doi: 10.3390/molecules25174012. PubMed DOI PMC

Rizvi S.F.A., Naqvi S.A.R., Roohi S., Sherazi T.A., Rasheed R. 177Lu-DOTA-coupled minigastrin peptides: Promising theranostic agents in neuroendocrine cancers. Mol. Biol. Rep. 2018;45:1759–1767. doi: 10.1007/s11033-018-4319-0. PubMed DOI

Melis M., Krenning E.P., Bernard B.F., Barone R., Visser T.J., de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:1136–1143. doi: 10.1007/s00259-005-1793-0. PubMed DOI

Melis M., Krenning E.P., Bernard B.F., de Visser M., Rolleman E., de Jong M. Renal uptake and retention of radiolabeled somatostatin, bombesin, neurotensin, minigastrin and CCK analogues: Species and gender differences. Nucl. Med. Biol. 2007;34:633–641. doi: 10.1016/j.nucmedbio.2007.05.002. PubMed DOI

Arano Y. Renal brush border strategy: A developing procedure to reduce renal radioactivity levels of radiolabeled polypeptides. Nucl. Med. Biol. 2021;92:149–155. doi: 10.1016/j.nucmedbio.2020.03.001. PubMed DOI

Barone R., Van Der Smissen P., Devuyst O., Beaujean V., Pauwels S., Courtoy P.J., Jamar F. Endocytosis of the somatostatin analogue, octreotide, by the proximal tubule-derived opossum kidney (OK) cell line. Kidney Int. 2005;67:969–976. doi: 10.1111/j.1523-1755.2005.00160.x. PubMed DOI

Vegt E., de Jong M., Wetzels J.F., Masereeuw R., Melis M., Oyen W.J., Gotthardt M., Boerman O.C. Renal toxicity of radiolabeled peptides and antibody fragments: Mechanisms, impact on radionuclide therapy, and strategies for prevention. J. Nucl. Med. 2010;51:1049–1058. doi: 10.2967/jnumed.110.075101. PubMed DOI

Lash L.H., Shivnani A., Mai J., Chinnaiyan P., Krause R.J., Elfarra A.A. Renal cellular transport, metabolism, and cytotoxicity of S-(6-purinyl)glutathione, a prodrug of 6-mercaptopurine, and analogues. Biochem. Pharmacol. 1997;54:1341–1349. doi: 10.1016/S0006-2952(97)00401-2. PubMed DOI

Jones D.P., Sundby G.B., Ormstad K., Orrenius S. Use of isolated kidney cells for study of drug metabolism. Biochem. Pharmacol. 1979;28:929–935. doi: 10.1016/0006-2952(79)90378-2. PubMed DOI

Racusen L.C., Monteil C., Sgrignoli A., Lucskay M., Marouillat S., Rhim J.G., Morin J.P. Cell lines with extended in vitro growth potential from human renal proximal tubule: Characterization, response to inducers, and comparison with established cell lines. J. Lab. Clin. Med. 1997;129:318–329. doi: 10.1016/S0022-2143(97)90180-3. PubMed DOI

Klaassen C.D., Aleksunes L.M. Xenobiotic, bile acid, and cholesterol transporters: Function and regulation. Pharmacol. Rev. 2010;62:1–96. doi: 10.1124/pr.109.002014. PubMed DOI PMC

Elsakka E.G.E., Mokhtar M.M., Hegazy M., Ismail A., Doghish A.S. Megalin, a multi-ligand endocytic receptor, and its participation in renal function and diseases: A review. Life Sci. 2022;308:120923. doi: 10.1016/j.lfs.2022.120923. PubMed DOI

Eshbach M.L., Weisz O.A. Receptor-Mediated Endocytosis in the Proximal Tubule. Annu. Rev. Physiol. 2017;79:425–448. doi: 10.1146/annurev-physiol-022516-034234. PubMed DOI PMC

Christensen E.I., Birn H., Storm T., Weyer K., Nielsen R. Endocytic receptors in the renal proximal tubule. Physiology. 2012;27:223–236. doi: 10.1152/physiol.00022.2012. PubMed DOI

Weyer K., Nielsen R., Petersen S.V., Christensen E.I., Rehling M., Birn H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J. Nucl. Med. 2013;54:159–165. doi: 10.2967/jnumed.112.110528. PubMed DOI

Blaufox M.D. Transport of 99mTc-MAG3 via rat renal organic anion. J. Nucl. Med. 2004;45:86–88. PubMed

Cihlo J., Melicharová L., Petrik M., Laznickova A., Laznicek M. Comparison of 111In-DOTA-NOC and 111I-DOTA-TATE distribution in the target and dose-limiting tissues: Conflicting results in vitro and in vivo. Anticancer. Res. 2008;28:2189–2195. PubMed

Trejtnar F., Laznicek M., Laznickova A., Kopecky M., Petrik M., Béhé M., Schmidt J., Maecke H., Maina T., Nock B. Biodistribution and elimination characteristics of two 111In-labeled CCK-2/gastrin receptor-specific peptides in rats. Anticancer. Res. 2007;27:907–912. PubMed

Melicharova L., Laznickova A., Laznicek M. Preclinical evaluation of gastrin derivatives labelled with 111In: Radiolabelling, affinity profile and pharmacokinetics in rats. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2014;158:544–551. doi: 10.5507/bp.2013.064. PubMed DOI

Masters J.R.W. Cell line misidentification: The beginning of the end. Nat. Rev. Cancer. 2010;10:441–448. PubMed

Hilgendorf C., Ahlin G., Seithel A., Artursson P., Ungell A.L., Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 2007;35:1333–1340. doi: 10.1124/dmd.107.014902. PubMed DOI

Ahlin G., Hilgendorf C., Karlsson J., Szigyarto C.A., Uhlén M., Artursson P. Endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs. Drug Metab. Dispos. 2009;37:2275–2283. doi: 10.1124/dmd.109.028654. PubMed DOI

Pietruck F., Kuhlmann M.K., Lange B., Feldkamp T., Herget-Rosenthal S., Rauen U., Burkhardt G., Kohler H., Philipp T., Kribben A. Effect of quercetin on hypoxic injury in freshly isolated rat proximal tubules. J. Lab. Clin. Med. 2003;142:106–112. doi: 10.1016/S0022-2143(03)00065-9. PubMed DOI

Nesslany F., Zennouche N., Simar-Meintières S., Talahari I., Nkili-Mboui E.N., Marzin D. In vivo Comet assay on isolated kidney cells to distinguish genotoxic carcinogens from epigenetic carcinogens or cytotoxic compounds. Mutat. Res. 2007;630:28–41. doi: 10.1016/j.mrgentox.2007.02.010. PubMed DOI

Engbersen R., Masereeuw R., van Gestel M.A., van der Logt E.M., Smits P., Russel F.G. Glibenclamide depletes ATP in renal proximal tubular cells by interfering with mitochondrial metabolism. Br. J. Pharmacol. 2005;145:1069–1075. doi: 10.1038/sj.bjp.0706275. PubMed DOI PMC

Shaw S., Marples D. A rat kidney tubule suspension for the study of vasopressin-induced shuttling of AQP2 water channels. Am. J. Physiol. Renal. Physiol. 2002;283:F1160–F1166. doi: 10.1152/ajprenal.00207.2002. PubMed DOI

Visarius T.M., Putt D.A., Schare J.M., Pegouske D.M., Lash L.H. Pathways of glutathione metabolism and transport in isolated proximal tubular cells from rat kidney. Biochem. Pharmacol. 1996;52:259–272. doi: 10.1016/0006-2952(96)00203-1. PubMed DOI

Juul T., Palm F., Nielsen P.M., Bertelsen L.B., Laustsen C. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping. Magn. Reason. Med. 2017;78:457–461. doi: 10.1002/mrm.26379. PubMed DOI

Haenen H.E., Rietjens I.M., Vervoort J., Temmink J.H., van Bladeren P.J. In vitro metabolism of 5-fluoro-2-glutathionyl-nitrobenzene by kidney proximal tubular cells studied by 19F-NMR. Chem. Biol. Interact. 1995;98:97–112. doi: 10.1016/0009-2797(95)03637-7. PubMed DOI

Lash L.H., Putt D.A., Cai H. Drug metabolism enzyme expression and activity in primary cultures of human proximal tubular cells. Toxicology. 2008;244:56–65. doi: 10.1016/j.tox.2007.10.022. PubMed DOI PMC

Trejtnar F., Novy Z., Petrik M., Laznickova A., Melicharova L., Vankova M., Laznicek M. In vitro comparison of renal handling and uptake of two somatostatin receptor-specific peptides labeled with indium-111. Ann. Nucl. Med. 2008;22:859–867. doi: 10.1007/s12149-008-0192-6. PubMed DOI

Stolniceanu C.R., Nistor I., Bilha S.C., Constantin V., Simona V., Matovic M., Stefanescu C., Covic A. Nephrotoxicity/renal failure after therapy with 90Yttrium- and 177Lutetium-radiolabeled somatostatin analogs in different types of neuroendocrine tumors: A systematic review. Nucl. Med. Commun. 2020;41:601–617. doi: 10.1097/MNM.0000000000001198. PubMed DOI

Zhai X.Y., Nielsen R., Birn H., Drumm K., Mildenberger S., Freudinger R., Moestrup S.K., Verroust P.J., Christensen E.I., Gekle M. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int. 2000;58:1523–1533. doi: 10.1046/j.1523-1755.2000.00314.x. PubMed DOI

Christensen E.I., Nielsen R. Role of megalin and cubilin in renal physiology and pathophysiology. Rev. Physiol. Biochem. Pharmacol. 2007;158:1–22. PubMed

Donato M.T., Lahoz A., Castell J.V., Gómez-Lechón M.J. Cell lines: A tool for in vitro drug metabolism studies. Curr. Drug Metab. 2008;9:1–11. PubMed

Behrens I., Kamm W., Dantzig A.H., Kissel T. Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin. J. Pharm. Sci. 2004;93:1743–1754. doi: 10.1002/jps.20062. PubMed DOI

Aiba T., Susa M., Fukumori S., Hashimoto Y. The effects of culture conditions on CYP3A4 and MDR1 mRNA induction by 1,25-dihydroxyvitamin D3 in human intestinal cell lines, Caco-2 and LS180. Drug Metab. Pharmacokinet. 2005;20:268–274. doi: 10.2133/dmpk.20.268. PubMed DOI

Odera K., Goto S., Takahashi R. Age-related change of endocytic receptors megalin and cubilin in the kidney in rats. Biogerontology. 2007;8:505–515. doi: 10.1007/s10522-007-9093-7. PubMed DOI

Zheng G., Bachinsky D.R., Stamenkovic I., Strickland D.K., Brown D., Andres G., McCluskey R.T. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP) J. Histochem. Cytochem. 1994;42:531–542. doi: 10.1177/42.4.7510321. PubMed DOI

Verroust P.J., Birn H., Nielsen R., Kozyraki R., Christensen E.I. The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int. 2002;62:745–756. doi: 10.1046/j.1523-1755.2002.00501.x. PubMed DOI

Benešová M., Guzik P., Deberle L.M., Busslinger S.D., Landolt T., Schibli R., Müller C. Design and Evaluation of Novel Albumin-Binding Folate Radioconjugates: Systematic Approach of Varying the Linker Entities. Mol. Pharm. 2022;19:963–973. doi: 10.1021/acs.molpharmaceut.1c00932. PubMed DOI

Garousi J., Vorobyeva A., Altai M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules. 2020;25:2673. doi: 10.3390/molecules25112673. PubMed DOI PMC

Geenen L., Nonnekens J., Konijnenberg M., Baatout S., De Jong M., Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl. Med. Biol. 2021;102–103:1–11. doi: 10.1016/j.nucmedbio.2021.06.006. PubMed DOI

Zhang M., Jacobson O., Kiesewetter D.O., Ma Y., Wang Z., Lang L., Tang L., Kang F., Deng H., Yang W., et al. Improving the Theranostic Potential of Exendin 4 by Reducing the Renal Radioactivity through Brush Border Membrane Enzyme-Mediated Degradation. Bioconjug. Chem. 2019;30:1745–1753. doi: 10.1021/acs.bioconjchem.9b00280. PubMed DOI

Bendre S., Zhang Z., Kuo H.T., Rousseau J., Zhang C., Merkens H., Roxin Á., Bénard F., Lin K.S. Evaluation of Met-Val-Lys as a Renal Brush Border Enzyme-Cleavable Linker to Reduce Kidney Uptake of 68Ga-Labeled DOTA-Conjugated Peptides and Peptidomimetics. Molecules. 2020;25:3854. doi: 10.3390/molecules25173854. PubMed DOI PMC

Liu W., Yu W.R., Carling T., Juhlin C., Rastad J., Ridefelt P., Akerström G., Hellman P. Regulation of gp330/megalin expression by vitamins A and D. Eur. J. Clin. Invest. 1998;28:100–107. doi: 10.1046/j.1365-2362.1998.00253.x. PubMed DOI

Demeule M., Jodoin J., Beaulieu E. Dexamethasone modulation of multidrug transporters in normal tissues. FEBS Lett. 1999;442:208–214. doi: 10.1016/S0014-5793(98)01663-9. PubMed DOI

Donner M.G., Keppler D. Up-regulation of basolateral multidrug resistence protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 2001;34:351–359. doi: 10.1053/jhep.2001.26213. PubMed DOI

Payen L., Courtois A., Campion J.P. Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem. Pharmacol. 2000;60:1967–1975. doi: 10.1016/S0006-2952(00)00496-2. PubMed DOI

Kubitz R., Warskulat U., Schmitt M. Dexamethasone- and osmolarity—Dependent expression of the multidrug resistence protein 2 in cultured rat hepatocytes. Biochem. J. 1999;340:585–591. doi: 10.1042/bj3400585. PubMed DOI PMC

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Ivanyi B., Olsen T.S. Immunohistochemical identification of tubular segments in percutaneous renal biopsies. Histochemistry. 1991;95:351–356. doi: 10.1007/BF00266962. PubMed DOI

Hill M.S., Ruiz A., Gomez L.M., Miller J.M., Berman N.E., Stephens E.B. APOBEC3G expression is restricted to epithelial cells of the proximal convoluted tubules and is not expressed in the glomeruli of macaques. J. Histochem. Cytochem. 2007;55:63–70. doi: 10.1369/jhc.6A7054.2006. PubMed DOI

Dekker B.G., Arts C.J., De Ligny C.L. Gel-chromatographic analysis of 99mTc-labeled human serum albumin prepared with Sn(II) as the reductant. Int. J. Appl. Radiat. Isot. 1982;33:1351–1357. doi: 10.1016/0020-708X(82)90167-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...