Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics
Language English Country United States Media print-electronic
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
PubMed
35391662
PubMed Central
PMC9294128
DOI
10.1007/s13311-022-01228-5
PII: S1878-7479(23)01115-7
Knihovny.cz E-resources
- Keywords
- Brain-blood barrier, Carrier-mediated transport, Drug delivery, Prodrug approach, Receptor-mediated transport,
- MeSH
- Biopharmaceutics * MeSH
- Biological Transport MeSH
- Blood-Brain Barrier metabolism MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Brain metabolism MeSH
- Central Nervous System Diseases * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
One of the greatest challenges with successful pharmaceutical treatments of central nervous system (CNS) diseases is the delivery of drugs into their target sites with appropriate concentrations. For example, the physically tight blood-brain barrier (BBB) effectively blocks compounds from penetrating into the brain, also by the action of metabolizing enzymes and efflux transport mechanisms. However, many endogenous compounds, including both smaller compounds and macromolecules, like amino acids, sugars, vitamins, nucleosides, hormones, steroids, and electrolytes, have their peculiar internalization routes across the BBB. These delivery mechanisms, namely carrier-mediated transport and receptor-mediated transcytosis have been utilized to some extent in brain-targeted drug development. The incomplete knowledge of the BBB and the smaller than a desirable number of chemical tools have hindered the development of successful brain-targeted pharmaceutics. This review discusses the recent advancements achieved in the field from the point of medicinal chemistry view and discusses how brain drug delivery can be improved in the future.
See more in PubMed
Jorgensen C, Ulmschneider MB, Searson PC. Atomistic model of solute transport across the blood–brain barrier. ACS Omega. 2022;7:1100–1112. PubMed PMC
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. Hindawi Publishing Corporation; 2014;2014. PubMed PMC
Galea I. The blood – brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18:2489–2501. PubMed PMC
Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:1–16. PubMed PMC
Johanson C. Choroid plexus blood-CSF barrier: major player in brain disease modeling and neuromedicine. J Neurol Neuromedicine. 2018;3:39–58.
Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31:152–167. PubMed
Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New blood–brain barrier models using primary Parkinson’s Disease rat brain endothelial cells and astrocytes for the development of central nervous system drug delivery systems. ACS Chem Neurosci. 2021;12:3829–3837. PubMed
Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130:55–70. PubMed PMC
Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, et al. Claudin-1-targeted nanoparticles for delivery to aging-induced alterations in the blood–brain barrier. ACS Nano. 2021;15:18520–18531. PubMed PMC
Petty Ma LE. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–323. PubMed
Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol. 2005;25:25–39. PubMed PMC
Barrier BB, Hajal C, Le RB, Kamm RD, Maoz BM. Biology and models of the blood-brain barrier. Annu Rev Biomed Eng. 2021;23:359–384. PubMed
Hawkins Bt DT. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–185. PubMed
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem [Internet]. 2014;11–24. Available from: 10.4137/PMC.S13384. PubMed PMC
Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:1–9. PubMed PMC
Souza AD, Dave KM, Stetler RA, Manickam DS. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2021;171:332–51. Available from: 10.1016/j.addr.2021.01.015. PubMed
Giaume C, Tabernero AMJ. Metabolic trafficking through astrocytic gap junctions. Glia. 1997;21:114–123. PubMed
Alahmari A. Blood-Brain barrier overview: structural and functional correlation. Neural Plast. 2021;6564585. PubMed PMC
Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int [Internet]. Elsevier Ltd; 2021;142:104925. Available from: 10.1016/j.neuint.2020.104925. PubMed PMC
Tumani H, Hegen H. CSF albumin: albumin CSF/serum ratio (marker for blood-CSF barrier function). Cerebrospinal Fluid Clin Neurol. 2015;111–4.
Kadry H, Noorani B, Cucullo L. A blood – brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS [Internet]. BioMed Central; 2020;17:1–24. Available from: 10.1186/s12987-020-00230-3. PubMed PMC
Mccabe SM, Zhao N. The potential roles of blood–brain barrier and blood–cerebrospinal fluid barrier in maintaining brain manganese homeostasis. Nutrients. 2021;13:1833. PubMed PMC
Saunders NR, Liddelow S DK. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3. PubMed PMC
Pan W, Kastin AJ. Why study transport of peptides and proteins at the neurovascular interface. Brain Res. 2004;46:32–43. PubMed
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64:640–665. PubMed
Irudayanathan FJ, Wang N, Wang X, Nangia S. Architecture of the paracellular channels formed by claudins of the blood-brain barrier tight junctions. Ann N Y Acad Sci. 2017;1405:131–146. PubMed
Sanchez-Covarrubias L, Slosky L, Thompson B, Davis T, Ronaldson P. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20:1422–1449. PubMed PMC
Al Rihani SB, Darakjian LI, Deodhar M, Dow P, Turgeon J, Michaud V. Disease-induced modulation of drug transporters at the blood – brain barrier level. Int J Mol Sci. 2021;22:3742. PubMed PMC
Aykac A. The function and expression of ATP-binding cassette transporters proteins in the Alzheimer’s disease. Glob Med Genet. 2021;8:149–155. PubMed PMC
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25. PubMed
Peng W, Tan C, Mo L, Jiang J, Zhou W, Du J, et al. Glucose transporter 3 in neuronal glucose metabolism : health and diseases. Metab Clin Exp [Internet]. Elsevier Inc.; 2021;123:154869. Available from: 10.1016/j.metabol.2021.154869. PubMed
Huber J, Witt K, Hom S, Egleton R, Mark KDT. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am J Physiol. 2001;280:1241–1248. PubMed
Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. 2021;144. PubMed
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal [Internet]. BioMed Central; 2021;19:92. Available from: 10.1186/s12964-021-00766-3. PubMed PMC
Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium. 2008;15:254–264. PubMed
Johnsen KB, Burkhart A, Melander F, Kempen PJ, Vejlebo JB, Siupka P, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep [Internet]. Springer US; 2017;7:1–13. Available from: 10.1038/s41598-017-11220-1. PubMed PMC
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;13:1–9. PubMed PMC
Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. J Physiol. 2018;596:4753–4765. PubMed PMC
Urayama A, Grubb JH, Sly WSBW. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci USA. 2004;101:12658–12663. PubMed PMC
Molino Y, David M, Varini K, Jabes F, Gaudin N, Fortoul A. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017;31:1807–1827. PubMed
Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013;19:1567–1576. PubMed
Golden PL, Maccagnan TJ, Pardridge WM. Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Investig. 1997;99:14–18. PubMed PMC
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx. 2005;2:3–14. PubMed PMC
Pinheiro RGR, Coutinho AJ, Pinheiro M. Nanoparticles for targeted brain drug delivery : what do we know ? Int J Mole. 2021;22:11654. PubMed PMC
Jones EM, Polt R. CNS active O-linked glycopeptides. Front Chem. 2015;3:1–9. PubMed PMC
René CA, Parks RJ. Delivery of therapeutic agents to the central nervous system and the promise of extracellular vesicles. Pharmaceutics. 2021;13. PubMed PMC
Achar A, Myers R, Ghosh C. Drug delivery challenges in brain disorders across the blood – brain barrier : novel methods and future considerations for improved therapy. Biomedicines. 2021;9:1834. PubMed PMC
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, et al. Strategies for structural modification of small molecules to improve blood − brain barrier penetration : a recent perspective. J Med Chem. 2021;64(18):13152–13173. PubMed
Huang L, Wells MC, Zhao Z. A practical perspective on the evaluation of small molecule CNS penetration in drug discovery. Drug Metab Lett. 2019;13:78–94. PubMed
Deo AK, Theil F, Nicolas J, UCBPS A, Foriest C, Alleud B-B. Confounding parameters in preclinical assessment of blood − brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol Pharm. 2013. PubMed
Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, et al. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates : a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2):e00575. PubMed PMC
Heffron T. Challenges of developing small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro Oncol. 2017;20:307–312. PubMed PMC
Huang L, Li X, Roberts J, Janosky B. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain. Xenobiotica. 2015;8254:547–555. PubMed
Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 2015;17:289–295. PubMed PMC
Van Bree J, Boer A, Danhof MBD. Drug transport across the blood-brain barrier. Pharm World Sci. 1993;15:2–9. PubMed
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6:252–273. PubMed
Levin VA. Relationship of octanol/water partition coefficient and molecular weight of rat brain capillary permeability. J Med Chem. 1980;23:682–684. PubMed
Pardridge WM. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin bound hormone. Endocrinology. 1979;105:605–612. PubMed
Pardridge WM. Plasma protein-mediated transport of steroid and thyroid hormones. Am J Physiol. 1987;252:157–164. PubMed
Schaefer CP, Tome ME, Davis TP. The opioid epidemic: a central role for the blood brain barrier in opioid analgesia and abuse. Fluids Barriers CNS BioMed Central. 2017;14:1–11. PubMed PMC
Madrid Y, Lander LF, Brem HLR. New directions in the delivery of drugs and other substances to the central nervous system. Adv Pharmacol. 1991;22:299–324. PubMed
Stanimirovic DB, Sandhu JK, Costain WJ. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs. 2018;32:547–559. PubMed PMC
Payandeh J, Volgraf M. Ligand binding at the protein–lipid interface: strategic considerations for drug design. Nat Rev Drug Discov [Internet]. Springer US; 2021;20:710–22. Available from: 10.1038/s41573-021-00240-2. PubMed
Sakai H, Inoue H, Murata K, Toba T, Shimmyo Y, Narii N, Ueno SY, Igawa Y, Takemoto N. Fibroblast growth factor receptor modulators employing diamines with reduced phospholipidosis- inducing potential. Bioorg Med Chem. 2020;28:115562. PubMed
Fernandes J, Gattass CR. Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 ( MRP1 / ABCC1) J Med Chem. 2009;1:1214–1218. PubMed
Rover S, Cesura AM, Huguenin P, Kettler R, Szente A. Synthesis and biochemical evaluation of N - (4-Phenylthiazol-2-yl ) benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem. 1997;2623:4378–4385. PubMed
Tsang JE, Urner LM, Kim G, Chow K, Baufeld L, Faull K, et al. Development of a potent brain-penetrant EGFR tyrosine kinase inhibitor against malignant brain tumors. ACS Med Chem Lett. 2020;11:1799–1809. PubMed PMC
Gajbhiye KR, Pawar A, Mahadik KR, Gajbhiye V. PEGylated nanocarriers: a promising tool for targeted delivery to the brain. Colloids Surf B Biointerfaces. 2020;187. PubMed
Immordino ML, Cattel L. Stealth liposomes : review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315. PubMed PMC
Kasinathan N, Jagani HV, Alex AT, Volety SM, Venkata RJ. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015;22:243–257. PubMed
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. 1996;93:14164–14169. PubMed PMC
Xing Y, Wen CY, Li ST, Xia ZX. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier. Neural Regen Res. 2016;11:617–622. PubMed PMC
McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials. 2009;30:3986–3995. PubMed
Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channelmediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release. 2011;152:402–410. PubMed
Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27:3482–3490. PubMed
Arduino I, Depalo N, Re F, Dal Magro R, Panniello A, Margiotta N, Fanizza E, Lopalco A, Laquintana V, Cutrignelli A, Lopedota AA, Franco M, Denora N. PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: an in vitro study. Int J Pharm. 2020;583:119351. PubMed
Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53. PubMed
Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112:12486–12491. PubMed PMC
Zhang Y, Wang Y, Boado RJ, Pardridge WM. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharm Res. 2008;25:400–406. PubMed
Li Y, He H, Jia X, Lu WL, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33:3899–3908. PubMed
Huang R, Ke W, Liu Y, Jiang C, Pei Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008;29:238–246. PubMed
Hattori Y. Delivery of plasmid DNA into tumors by intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice. Pharmacol & Pharm. 2016;07:272–282.
Coisne C, Hallier-Vanuxeem D, Boucau MC, Hachani J, Tilloy S, Bricout H, Monflier E, Wils D, Serpelloni M, Parissaux X, Fenart L, Gosselet F. Beta-cyclodextrins decrease cholesterol release and ABC-associated transporter expression in smooth muscle cells and aortic endothelial cells. Front physiol. 2016;7:185. PubMed PMC
Becker G, Da Silva S, Sabo A, Antal MC, Kemmel V, Monassier L. Blood–brain barrier permeability: is 5-hydroxytryptamine receptor type 4 a game changer?. Pharmaceutics. 2021. PubMed PMC
Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules. 2016;21:1748. PubMed PMC
Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92–102. PubMed PMC
Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65:1–14. PubMed
Dhokchawle BV, Gawad JB, Kamble MD, Tauro SJ, Bhandari AB. Promoieties used in prodrug design: a review. Indian J Pharm Educ Res. 2014;48:35–40.
Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules. 2008;13:1035–1065. PubMed PMC
Lecomte JM, Costentin J, Vlaiculescu A, Chaillet P, Marcais-Collado H, Llorens-Cortes C, Leboyer M, Schwartz JC. Pharmacological properties of acetorphan, a parenterally active “enkephalinase” inhibitor. J Pharmacol Exp Ther. 1986;237(3):937–944. PubMed
Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, Schwartz JC. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980;288(5788):286–288. PubMed
Yoshiharu D, Hideki H, Shinobu F, Takafumi N, Yoshinari Y, Shizuo Y, Ryohei K. Improved brain delivery of a nonsteroidal anti-inflammatory drug with a synthetic glyceride ester: a preliminary attempt at a CNS drug delivery system for the therapy of Alzheimer’s disease. J Drug Target. 2000;8:371–381. PubMed
Singhal D, Morgan ME, Anderson BD. Role of brain tissue localized purine metabolizing enzymes in the central nervous system delivery of anti-HIV agents 2’-beta-fluoro-2’,3’-dideoxyinosine and 2’-beta-fluoro-2’,3’-dideoxyadenosine in rats. Pharm Res. 1997;14:786–792. PubMed
Shanmuganathan K, Koudriakova T, Nampalli S, Du J, Gallo JM, Schinazi RF, Chu CK. Enhanced brain delivery of an anti-HIV nucleosides 2’-F-ara-ddI by xanthine oxidase medianted biotransformation. J Med Chem. 1994;37:821–827. PubMed
Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17:978–984. PubMed
Al-Ghananeem A, Traboulsi AA, Dittert LW, Hussain AA. Targeted brain delvery of 17β-estradiol via nasally administerd water soluble prodrugs. AAPS Pharm Sci Tech. 2002;3:1–8. PubMed PMC
Bodor N. Redox drug delivery systems for targeting drugs to the brain. Ann New York Acad Sci. 1987;507:289–306. PubMed
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 2014;9:2241–2257. PubMed PMC
Prokai L, Prokai-Tatrai K, Bodor N. Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev. 2000;20:367–416. PubMed
Dwibhashyam VSNA. Strategies for enhanced drug delivery to the central nervous system. Indian J Pharm Sci. 2008;70:145–153. PubMed PMC
Bodor N, Prokai L, Wu WM, Farag H, Jonalagadda S, Kawamura M, Simpkins J. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science. 1992;257:1698–1700. PubMed
Hultqvist G, Syvänen S, Fang XT, Lannfelt L, Sehlin D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7:308–318. PubMed PMC
Faresjö R, Bonvicini G, Fang XT, Aguilar X, Sehlin D, Syvänen S. Brain pharmacokinetics of two BBB penetrating bispecific antibodies of different size. Fluids Barriers CNS [Internet]. BioMed Central; 2021;18:26. Available from: 10.1186/s12987-021-00257-0. PubMed PMC
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12:1359. PubMed
Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int J Mol Sci. 2021;22:1–24. PubMed PMC
Simonneau C, Duschmalé M, Gavrilov A, Brandenberg N, Hoehnel S, Ceroni C, et al. Investigating receptor-mediated antibody transcytosis using blood–brain barrier organoid arrays. Fluids Barriers CNS. 2021;18:1–17. PubMed PMC
Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, et al. Efficient clearance of A β protofibrils in A β PP-transgenic mice treated with a brain-penetrating bifunctional antibody. Alzheimer’s Res Ther. 2018;10:49. PubMed PMC
Gustavsson T, Syvänen S, Callaghan PO. SPECT imaging of distribution and retention of a brain-penetrating bispecific amyloid-β antibody in a mouse model of Alzheimer’s disease. Transl Neurodegener. 2020;9:37. PubMed PMC
Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks M, et al. Intrathecal antibody distribution in the rat brain : surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol. 2018;3:445–475. PubMed PMC
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, et al. Overcoming blood – brain barrier transport : Advances in nanoparticle-based drug delivery strategies. Mater Today [Internet]. Elsevier B.V.; 2020;37:112–25. Available from: 10.1016/j.mattod.2020.02.001. PubMed PMC
Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the treatment of brain metastases, a dream or a reality? Pharmaceutics. 2020;12:62. PubMed PMC
Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60. PubMed
Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:35–58. PubMed
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104:29–45. PubMed
Torchilin VP, Rammohan R, Weissig V, Leuchenko TSTAT. peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci. 2000;98:8786–8791. PubMed PMC
Rousselle C, Clair P, Lefauconnier J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000;57:679–686. PubMed
Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285:1569–1572. PubMed
Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8:1481–1493. PubMed PMC
Vagner T, Dvorzhak A, Wójtowicz A. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol Cell Neurosci. 2016;77:76–86. PubMed
Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res. 2009;144:18–26. PubMed PMC
Pardridge WM, Kang YS, Buciak J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 1995;12:807–816. PubMed
Zhang Y, Zhang Y, Bryant J, Charles A, Boado RJ, Pardridge W. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–3677. PubMed
Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr. 2018;44. PubMed PMC
Pardridge WM. Brain drug targeting and gene technologies. Jpn J Pharmacol. 2001;87:97–103. PubMed
Liu L, Guo KLJ. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29:1509–1517. PubMed
He Q, Liu J, Liang J, Liu X, Li W, Liu Z, et al. Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective. Cells. 2018;7:24. PubMed PMC
Agrawal M, Ajazuddin, Tripathi DK, Saraf S, Saraf S, Antimisiaris SG, Mourtas S, Hammarlund-Udenaes M, Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. PubMed
Angela R. Jones EVS. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res [Internet]. 2007;24:1759–71. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf. PubMed PMC
Smith QR, Stoll J. Molecular characterization of amino acid transporters at the blood-brain barrier. Brain Barrier Syst. 1999;45:303–320.
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res. 2020;37. PubMed PMC
Djaletti R, Melamed E. New therapies for Parkinson’s disease. J Neurol. 2001;248:357–362. PubMed
Hokari M, Wu HQ, Schwarcz R, Smith QR. Facilitated brain uptake of 4-chlorokynureine and conversion to 7-chlorokynurenic acid. Neuropharmacol Neurotoxicol. 1996;8:15–18. PubMed
Bonina FP, Arenare L, Palagiano F, Salia A, Nava F, Trombetta D, de Caprariis P. Synthesis, stability and pharmacological evaluation of nipecotic acid prodrugs. J Pharm Sci. 1999;88:561–567. PubMed
Gynther M, Jalkanen ALM. Brain uptake of ketoprofen-lysine prodrug in rats. Int J Pharm. 2010;399:121–128. PubMed
Gynther M, Laine K, Ropponen J, Leppänen J, Mannila A, Nevalainen T, Savolainen J, Järvinen T, Rautio J. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem. 2008;51:932–936. PubMed
Bonina FP, Arenare L, Ippolito R, Boatto G, Battaglia G, Bruno V, de Caprariis P. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202:79–88. PubMed
Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of glucose chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur J Pharm. 1996;318:477–484. PubMed
Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of O-methylsulfonyl derivatives of D-glucose as potential alkylating agents for targeted drug delivery to the brain. Evaluation of their interaction with the human erythrocyte GLUT1 hexose transporter. Carbohydr Res. 1997;299:15–21. PubMed
Bonina F, Puglia C, Rimoli MG, Melisi D, Boatto GNM, Malignano ALRG. Glycosyl derivatives of dopamine and L-dopa as antiparkinson prodrugs: synthesis, pharmacological activity and in vitro stability studies. J Drug Target. 2003;11:25–36. PubMed
Leveugle B, Ding W, Laurence F, Dehouck MP, Scanameo A, Cecchelli RFH, Fillit H. Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J Neurochem. 1998;70:736–744. PubMed
Ma Q, Dudas B, Hejna M, Cornelli U, Lee JM, Lorens S, Mervis R, Hanin I, Fareed J. The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thromb Res. 2002;105:447–453. PubMed
Gynther M, Ropponen J, Laine K, Leppänen J, Haapakoski P, Peura L, Järvinen T, Rautio J. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. J Med Chem. 2009;52:3348–3353. PubMed
Kriss CT, Lou B-S, Szabo LZ, Mitchell SA, Hruby VJ, Polt R. Enkephalinbased drug design: Conformational analysis of O-linked glycopeptides by NMR and molecular modeling. Tetrahedron Assymetr. 2000;11:9–25.
Bilsky E, Egleton RD, Mitchell SA, Palian MM, Davis P, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem. 2000;47:2586–2590. PubMed
Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54:1046–1077. PubMed
Hao ZF, Cui YX, Li MH, Du D, Liu MF, Tao HQ, Li S, Cao F. Liposomes modified with P-aminophenyl-α-D-mannopyranoside: a carrier for targeting cerebral functional regions in mice. Eur J Pharm Biopharm. 2013;84:505–516. PubMed
Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des [Internet]. 2014;20:1487–98. Available from: 10.1016/j.earlhumdev.2015.09.003, 10.1016/j.earlhumdev.2014.01.002, 10.1016/S0378-3782(12)70006-3, http://www.sciencedirect.com/science/article/pii/S2341287914000763. PubMed PMC
Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-Hydroxybutyric acid. AAPS J. 2008;10:311–321. PubMed PMC
Kang YS, Terasaki T, Tsuji A. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids. J Pharmacobiodyn. 1990;13:158–163. PubMed
Terasaki T, Takakuwa S, Moritani S, Tsuji A. Transport of monocarboxylic acids at the blood brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J Pharmacol Exp Ther. 1991;258:932–937. PubMed
Barone E, Cenini G, Di Domenico F. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 2011;63:172–180. PubMed PMC
Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther. 1997;280:551–560. PubMed
Deguchi Y, Yokoyama Y, Sakamoto T. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier. Life Sci. 2000;66:649–662. PubMed
Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters – a review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. PubMed PMC
Gati WP, Misra HK, Knaus EE, Wiebe LI. Structural modifications at the 2’- and 3’- positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter. Biochem Pharmacol. 1984;33:3325–3331. PubMed
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, et al. Review of transporter substrate, inhibitor, and inducer characteristics of cladribine. Clin Pharmacokinet [Internet]. Springer International Publishing; 2021; Available from: 10.1007/s40262-021-01065-3. PubMed PMC
Owen RP, Badagnani I, Giacomini KM. Molecular determinants of specificity for synthetic nucleoside analogs in the concentrative nucleoside transporter, CNT2. J Biol Chem [Internet]. © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2006;281:26675–82. Available from: 10.1074/jbc.M513421200. PubMed
Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165:1260–1287. PubMed PMC
Ritzel MWL, Ng AML, Yao SYM, Graham K, Loewen SK, Smith KM, et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (System cib) J Biol Chem. 2001;276:2914–2927. PubMed
Molina-Arcas M, Casado F, Pastor-Anglada M. Nucleoside transporter proteins. Curr Vasc Pharmacol. 2009;7:426–434. PubMed
Cano-Soldado P, Larráyoz IM, Molina-Arcas M, Casado FJ, Martinez-Picado J, Lostao MP, et al. Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1) Antivir Ther. 2004;9:993–1002. PubMed
Chang C, Swaan PW, Ngo LY, Lum PY, Patil SD, Unadkat J. Molecular requirements of the human nucleoside transporters hCNT1, hCNT2, and hENT1. Mol Pharmacol. 2004;65:558–570. PubMed
Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, et al. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci. 2007;27:449–458. PubMed PMC
Zaragozá R. Transport of amino acids across the blood-brain barrier. Front Physiol. 2020;11:1–11. PubMed PMC
Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci. 2020;15:192–206. PubMed PMC
Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, et al. Cationic amino acid transporter-1-mediated arginine uptake is essential for chronic lymphocytic leukemia cell proliferation and viability. Front Oncol. 2019;9:1–14. PubMed PMC
Kozak CA. Naturally occurring polymorphisms of the mouse gammaretrovirus receptors CAT-1 and XPR1 alter virus tropism and pathogenicity. Adv Virol. 2011;2011:14–17. PubMed PMC
Couroussé T, Gautron S. Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther. 2015:94–103. PubMed
Koepsell H. Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci. 2004;25:375–381. PubMed
Williams EI, Betterton RD, Davis TP, Ronaldson PT. Transporter-mediated delivery of small molecule drugs to the brain: a critical mechanism that can advance therapeutic development for ischemic stroke. Pharmaceutics. 2020;12. PubMed PMC
Amphoux A, Vialou V, Drescher E, Brüss M, La Cour CM, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50:941–952. PubMed
Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A. 2009;106:8043–8048. PubMed PMC
Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1017–1023. PubMed
Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Correction to “transport of lamivudine [(-)-β-L-2′, 3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:1187. PubMed
Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20:379–386. PubMed
Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176:1169–1180. PubMed PMC
Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:203–208. PubMed
Torres-Vergara P, Escudero C, Penny J. Drug transport at the brain and endothelial dysfunction in preeclampsia: Implications and perspectives. Front Physiol. 2018;9:1–12. PubMed PMC
Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente M, Ronaldson PT. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: Relevance to CNS drug delivery. J Cereb Blood Flow Metab. 2014;34:699–707. PubMed PMC
Schäfer AM, Meyer HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain : Physiological and Pharmacological Implications. Pharmaceutics. 2021;13:384. PubMed PMC
Kinzi J, Grube M, Zu Schwabedissen HEM. OATP2B1 – The underrated member of the organic anion transporting polypeptide family of drug transporters?. Biochem Pharmacol [Internet]. Elsevier Inc.; 2021;188:114534. Available from: 10.1016/j.bcp.2021.114534. PubMed
Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: Role of the solute carrier family. NeuroRx. 2005;2:73–85. PubMed PMC
Mor AL, Kaminski TW, Karbowska M, Pawlak D. New insight into organic anion transporters from the perspective of potentially important interactions and drugs toxicity. J Physiol Pharmacol. 2018;69:307–324. PubMed
Inazu M. Functional expression of choline transporters in the blood-brain barrier. Nutrients. 2019;11. PubMed PMC
Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: an emerging role of choline transporter-like protein 1. Exp Biol Med [Internet]. 2019;244:655–62. Available from: 10.1177/1535370219830997. PubMed PMC
Abel Lajtha MR. Handbook of Neurochemistry and Molecular Neurobiology. Pap. Knowl. Towar. a Media Hist. Doc: Springer; 2007.
De Boer AG, Van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–656. PubMed
De Gooijer MC, Kemper EM, Buil LCM, Ceren HC, Buckle T, Beijnen JH. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost ll ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when bloo. Cell Reports Med. 2021;2:100184. PubMed PMC
Demeule M, Régina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, et al. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol. 2002;38:339–348. PubMed
Shapiro AB, Fox K, Lee P, Yang YD, Ling V. Functional intracellular P-glycoprotein. Int J Cancer. 1998;76:857–864. PubMed
Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003;87:1010–1023. PubMed
Schinkel AH, Wagenaar E, Mol CAAM, Van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 1996;97:2517–2524. PubMed PMC
Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65:1063–1070. PubMed
Slot AJ, Wise DD, Deeley RG, Monks TJ, Cole SPC. Modulation of human Multidrug Resistance Protein (MRP) 1 (ABCC1) and MRP2 (ABCC2) transport activities by endogenous and exogenous glutathione-conjugated catechol metabolites. Drug Metab Dispos. 2008;36:552–560. PubMed
Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett. 2016;370:153–164. PubMed
Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–1302. PubMed
Zhong X, Liu MY, Sun XH, Wei MJ. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a metaanalysis. Sci Rep. 2016;6:32708. PubMed PMC
Fenart L, Buee-Scherrer V, Descamps L, Duhem C, Poullain MG. Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an in vitro model of the blood-brain barrier. Pharm Res. 1998;15:993–1000. PubMed
Gruol DJ, Zee MC, Trotter J, Bourgeois S. Reversal of multidrug resistance by RU 4861. Cancer Res. 1994;54:3088–3091. PubMed
Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24:7612–7621. PubMed PMC
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Updat. 2016;22:164–181. PubMed PMC
Russel FGM, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29:200–207. PubMed
Potschka H, Fedrowitz M, Löscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther. 2003;306:124–131. PubMed
Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2018;8:1332–1341. PubMed
Grube M, Hagen P, Jedlitschky G. Neurosteroid transport in the brain: Role of ABC and SLC transporters. Front Pharmacol. 2018;9:354. PubMed PMC
Jani M, Szabó P, Kis E, Molnár É, Glavinas H, Krajcsi P. Kinetic characterization of sulfasalazine transport by human ATP-binding cassette G2. Biol Pharm Bull. 2009;32:497–499. PubMed
Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004;64:3296–3301. PubMed
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS [Internet]. BioMed Central; 2020;17:1–29. Available from: 10.1186/s12987-020-00196-2. PubMed PMC
Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55:83–105. PubMed
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135:337–361. PubMed
Hu C, Tao L, Cao X, Chen L. The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci. 2020;15:131–144. PubMed PMC
Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, et al. An overview of cell-based assay platforms for the solute carrier family of transporters. Front Pharmacol. 2021;12:1–31. PubMed PMC
Superti-Furga G, Lackner D, Wiedmer T, Ingles-Prieto A, Barbosa B, Girardi E, et al. The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nat Rev Drug Discov. 2020;19:429–430. PubMed
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav. 2017;176:139–148. PubMed PMC
Aykaç A, Şehirli AÖ. The Role of the SLC Transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci. 2020;18:174–187. PubMed PMC
Pan W, Kastin AJ. The blood-brain barrier: regulatory roles in wakefulness and sleep. Neuroscientist. 2017;23:124–136. PubMed
Cuddapah VA, Zhang SL, Sehgal A. Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci. 2019;42:500–510. PubMed PMC
Friden PM. Receptor-mediated transport of therapeutics across the blood-brain barrier. Neurosurgery. 1994;35:294–298. PubMed
Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BSS. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci [Internet]. Elsevier Inc.; 2021;274:119326. Available from: 10.1016/j.lfs.2021.119326. PubMed
Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–163. PubMed
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol [Internet]. Elsevier; 2019;181:101665. Available from: 10.1016/j.pneurobio.2019.101665. PubMed
Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals. 2016;29:573–591. PubMed PMC
Skjørringe T, Burkhart A, Johnsen KB, Moos T. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19. PubMed PMC
Boado RJ, Pardridge WM. The Trojan horse liposome technology for nonviral Gene transfer across the blood-brain barrier. J Drug Deliv. 2011;296151. PubMed PMC
Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–250. PubMed
Jefferies WA, Brandon MR, Williams AF, Hunt SV. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology. 1985;54:333–341. PubMed PMC
Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2:129–138. PubMed PMC
Saito Y, Buciak J, Yang J, Pardridge WM. Vector-mediated delivery of 125Ilabeled beta-amyloid peptide A beta 1–40 through the blood-brain barrier and binding to Alzheimer disease amyloid of the A beta 1–40/vector complex. Proc Natl Acad Sci. 1995;92:10227–10231. PubMed PMC
Song B-W, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther. 2002;301:605–610. PubMed
Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN, Meilandt WJ, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5:1–12. PubMed
Israel LL, Braubach O, Galstyan A, Chiechi A, Shatalova ES, Grodzinski Z, Ding H, Black KL, Ljubimova JY, Holler E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the bloodbrain barrier. ACS Nano. 2019;13:1253–1271. PubMed PMC
Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood brain barrier. Proc Natl Acad Sci U S A. 1991;88:4771–4775. PubMed PMC
Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Bäckman C, Bergman H, Hoffer B, Bloom F, Granholm AC. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993;259:373–377. PubMed
Granholm AC, Bäckman C, Bloom F, Ebendal T, Gerhardt GA, Hoffer B, Mackerlova L, Olson L, Söderström S, Walus LR. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exp Ther. 1994;268:448–459. PubMed
Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res. 1996;728:193–203. PubMed
Pardridge WM, Wu D, Sakane T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res. 1998;15:576–582. PubMed
Deguchi Y, Kurihara A, Pardridge W. Retention of biologic activity of human epidermal growth factor following conjugation to a blood-brain barrier drug delivery vector via an extended poly(ethylene glycol) linker. Bioconjug Chem. 1999;10:32–37. PubMed
Bickel U, Yoshikawa T, Landaw EM, Faull KF, Pardridge WM. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci U S A. 1993;90:2618–2622. PubMed PMC
Xia C-F, Zhang Y, Zhang Y, Boado RJ, Pardridge WM. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res. 2007;24:2309–2316. PubMed
Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci U S A. 1995;92:5592–5596. PubMed PMC
Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J Neurochem. 2001;79:119–129. PubMed
Cabezón I, Augé E, Bosch M, Beckett AJ, Prior IA, Pelegrí C, Vilaplana J. Serial block-face scanning electron microscopy applied to study the trafficking of 8D3-coated gold nanoparticles at the blood-brain barrier. Histochem Cell Biol. 2017;36:437. PubMed
Manich G, Cabezón I, del Valle J, Duran-Vilaregut J, Camins A, Pallàs M, Pelegri C, Vilaplana J. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab’ cargo across the blood-brain barrier in mice. Eur J Pharm Sci. 2013;49:556–564. PubMed
Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J. By-passing of P-glycoprotein using immunoliposomes. J Drug Target. 2002;10:73–79. PubMed
Zhang Y, Schlachetzki F, Zhang Y-F, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brainspecific promoter. Hum Gene Ther. 2004;15:339–350. PubMed
Bommana MM, Kirthivasan B, Squillante E. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Deliv. 2012;19:298–306. PubMed
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces. 2016;145:8–13. PubMed
Candela P, Saint-Pol J, Kuntz M, Boucau MC, Lamartiniere Y, Gosselet F, Fenart L. In vitro discrimination of the role of LRP1 at the BBB cellular level: focus on brain capillary endothelial cells and brain pericytes. Brain Res. 2015;1594:15–26. PubMed
Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol. 1997;138:877–889. PubMed PMC
Wang P, Liu Y, Shang X, Xue Y. CRM197-induced blood-brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J Mol Neurosci. 2011;43:485–492. PubMed
Lesley J, Schulte R, Woods J. Modulation of transferrin receptor expression and function by anti-transferrin receptor antibodies and antibody fragments. Exp Cell Res. 1989;182:215–233. PubMed
Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther. 2000;292:1048–1052. PubMed
Huang R, Ke W, Han L, Liu Y, Shao K, Jiang C, et al. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res Bull [Internet]. 2010;81:600–4. Available from: 10.1016/j.brainresbull.2009.12.008. PubMed
Demeule M, Regina A, Ché C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther [Internet]. 2008;324:1064–72. Available from: 10.1124/jpet.107.131318. PubMed
Tamaru M, Akita H, Fujiwara T, Kajimoto K, Harashima H. Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem Biophys Res Commun [Internet]. 2010;394:587–92. Available from: 10.1016/j.bbrc.2010.03.024. PubMed
Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013;5:1180–1201. PubMed PMC
Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Ser. 2005;1277:185–198.
Wang P, Xue Y, Shang X, Liu Y. Diphtheria toxin mutant CRM197-mediated transcytosis across blood-brain barrier in vitro. Cell Mol Neurobiol. 2010;30:717–725. PubMed PMC
Tosi G, Vilella A, Veratti P, Belletti D, Pederzoli F, Ruozi B, et al. Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated form of diphtheria toxin (CRM197): In vivo experiments. Mol Pharm. 2015;12:3672–3684. PubMed
Osada T, Gu YH, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by Β 1-integrins. J Cereb Blood Flow Metab. 2011;31:1972–1985. PubMed PMC
Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine receptor structure and function in health and disease. Subcell Biochem. 2018;87:329–352. PubMed PMC
Goti D, Hrzenjak A, Levak-Frank S, Frank S, Van Der Westhuyzen DR, Malle E, et al. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem. 2001;76:498–508. PubMed
Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–758. PubMed PMC
Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 2009;30:4195–4202. PubMed
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. PubMed PMC
Abulrob A, Sprong H, En Henegouwen PVB, Stanimirovic D. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–1214. PubMed
Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233–244. PubMed PMC
Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård PO, Niewoehner J. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE. 2014;9:e96340. PubMed PMC
Zuchero YJY, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82. PubMed
Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. 2009;111:291–314. PubMed PMC
Avnir Y, Turjeman K, Tulchinsky D, Sigal A, Kizelsztein P, Tzemach D, et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS ONE. 2011;6:e25721. PubMed PMC
Turjeman K, Bavli Y, Kizelsztein P, Schilt Y, Allon N, Katzir TB, et al. Nano-drugs based on nano sterically stabilized liposomes for the treatment of inflammatory neurodegenerative diseases. PLoS ONE. 2015;10:e0130442. PubMed PMC
Sarantopoulos J, Gabrail NY, Moulder SL, Brenner AJ, Smith CL, Bouchard D, et al. ANG1005: Results of a phase I study in patients with advanced solid tumors and brain metastases. J Clin Oncol. 2010;28:2556–2556. PubMed
Lu Q, Cai X, Zhang X, Li S, Song Y, Du D, Dutta P, Lin Y. Synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood-brain barrier. ACS Appl Biomat. 2018;1:1687–1694. PubMed PMC
Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces. 2019;173:27–35. PubMed PMC
Lakkadwala S, dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomed Nanotechnol Biol Med. 2020;23:102112. PubMed PMC
Bouzinab K, Summers HS, Stevens MFG, Moody CJ, Thomas NR, Gershkovich P, et al. Delivery of temozolomide and N3-propargyl analog to brain tumors using an apoferritin nanocage. ACS Appl Mater Interfaces. 2020;12:12609–12617. PubMed
Pardridge WM. Human blood? Brain barrier insulin receptor biologic drug development for the CNS view project. J Neurochem. 1985. PubMed
Coloma MJ, Lee HJ, Kurihara A, Landaw EM, Boado RJ, Morrison SL, Pardridge WM. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000;17:266–274. PubMed