• This record comes from PubMed

Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics

. 2022 Apr ; 19 (3) : 942-976. [epub] 20220407

Language English Country United States Media print-electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Links

PubMed 35391662
PubMed Central PMC9294128
DOI 10.1007/s13311-022-01228-5
PII: S1878-7479(23)01115-7
Knihovny.cz E-resources

One of the greatest challenges with successful pharmaceutical treatments of central nervous system (CNS) diseases is the delivery of drugs into their target sites with appropriate concentrations. For example, the physically tight blood-brain barrier (BBB) effectively blocks compounds from penetrating into the brain, also by the action of metabolizing enzymes and efflux transport mechanisms. However, many endogenous compounds, including both smaller compounds and macromolecules, like amino acids, sugars, vitamins, nucleosides, hormones, steroids, and electrolytes, have their peculiar internalization routes across the BBB. These delivery mechanisms, namely carrier-mediated transport and receptor-mediated transcytosis have been utilized to some extent in brain-targeted drug development. The incomplete knowledge of the BBB and the smaller than a desirable number of chemical tools have hindered the development of successful brain-targeted pharmaceutics. This review discusses the recent advancements achieved in the field from the point of medicinal chemistry view and discusses how brain drug delivery can be improved in the future.

See more in PubMed

Jorgensen C, Ulmschneider MB, Searson PC. Atomistic model of solute transport across the blood–brain barrier. ACS Omega. 2022;7:1100–1112. PubMed PMC

Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int. Hindawi Publishing Corporation; 2014;2014. PubMed PMC

Galea I. The blood – brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18:2489–2501. PubMed PMC

Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:1–16. PubMed PMC

Johanson C. Choroid plexus blood-CSF barrier: major player in brain disease modeling and neuromedicine. J Neurol Neuromedicine. 2018;3:39–58.

Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31:152–167. PubMed

Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New blood–brain barrier models using primary Parkinson’s Disease rat brain endothelial cells and astrocytes for the development of central nervous system drug delivery systems. ACS Chem Neurosci. 2021;12:3829–3837. PubMed

Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130:55–70. PubMed PMC

Bony BA, Tarudji AW, Miller HA, Gowrikumar S, Roy S, Curtis ET, et al. Claudin-1-targeted nanoparticles for delivery to aging-induced alterations in the blood–brain barrier. ACS Nano. 2021;15:18520–18531. PubMed PMC

Petty Ma LE. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 2002;68:311–323. PubMed

Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol. 2005;25:25–39. PubMed PMC

Barrier BB, Hajal C, Le RB, Kamm RD, Maoz BM. Biology and models of the blood-brain barrier. Annu Rev Biomed Eng. 2021;23:359–384. PubMed

Hawkins Bt DT. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–185. PubMed

Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem [Internet]. 2014;11–24. Available from: 10.4137/PMC.S13384. PubMed PMC

Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:1–9. PubMed PMC

Souza AD, Dave KM, Stetler RA, Manickam DS. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2021;171:332–51. Available from: 10.1016/j.addr.2021.01.015. PubMed

Giaume C, Tabernero AMJ. Metabolic trafficking through astrocytic gap junctions. Glia. 1997;21:114–123. PubMed

Alahmari A. Blood-Brain barrier overview: structural and functional correlation. Neural Plast. 2021;6564585. PubMed PMC

Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int [Internet]. Elsevier Ltd; 2021;142:104925. Available from: 10.1016/j.neuint.2020.104925. PubMed PMC

Tumani H, Hegen H. CSF albumin: albumin CSF/serum ratio (marker for blood-CSF barrier function). Cerebrospinal Fluid Clin Neurol. 2015;111–4.

Kadry H, Noorani B, Cucullo L. A blood – brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS [Internet]. BioMed Central; 2020;17:1–24. Available from: 10.1186/s12987-020-00230-3. PubMed PMC

Mccabe SM, Zhao N. The potential roles of blood–brain barrier and blood–cerebrospinal fluid barrier in maintaining brain manganese homeostasis. Nutrients. 2021;13:1833. PubMed PMC

Saunders NR, Liddelow S DK. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3. PubMed PMC

Pan W, Kastin AJ. Why study transport of peptides and proteins at the neurovascular interface. Brain Res. 2004;46:32–43. PubMed

Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64:640–665. PubMed

Irudayanathan FJ, Wang N, Wang X, Nangia S. Architecture of the paracellular channels formed by claudins of the blood-brain barrier tight junctions. Ann N Y Acad Sci. 2017;1405:131–146. PubMed

Sanchez-Covarrubias L, Slosky L, Thompson B, Davis T, Ronaldson P. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20:1422–1449. PubMed PMC

Al Rihani SB, Darakjian LI, Deodhar M, Dow P, Turgeon J, Michaud V. Disease-induced modulation of drug transporters at the blood – brain barrier level. Int J Mol Sci. 2021;22:3742. PubMed PMC

Aykac A. The function and expression of ATP-binding cassette transporters proteins in the Alzheimer’s disease. Glob Med Genet. 2021;8:149–155. PubMed PMC

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25. PubMed

Peng W, Tan C, Mo L, Jiang J, Zhou W, Du J, et al. Glucose transporter 3 in neuronal glucose metabolism : health and diseases. Metab Clin Exp [Internet]. Elsevier Inc.; 2021;123:154869. Available from: 10.1016/j.metabol.2021.154869. PubMed

Huber J, Witt K, Hom S, Egleton R, Mark KDT. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am J Physiol. 2001;280:1241–1248. PubMed

Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. 2021;144. PubMed

Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal [Internet]. BioMed Central; 2021;19:92. Available from: 10.1186/s12964-021-00766-3. PubMed PMC

Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium. 2008;15:254–264. PubMed

Johnsen KB, Burkhart A, Melander F, Kempen PJ, Vejlebo JB, Siupka P, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep [Internet]. Springer US; 2017;7:1–13. Available from: 10.1038/s41598-017-11220-1. PubMed PMC

Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;13:1–9. PubMed PMC

Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. J Physiol. 2018;596:4753–4765. PubMed PMC

Urayama A, Grubb JH, Sly WSBW. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci USA. 2004;101:12658–12663. PubMed PMC

Molino Y, David M, Varini K, Jabes F, Gaudin N, Fortoul A. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017;31:1807–1827. PubMed

Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013;19:1567–1576. PubMed

Golden PL, Maccagnan TJ, Pardridge WM. Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Investig. 1997;99:14–18. PubMed PMC

Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx. 2005;2:3–14. PubMed PMC

Pinheiro RGR, Coutinho AJ, Pinheiro M. Nanoparticles for targeted brain drug delivery : what do we know ? Int J Mole. 2021;22:11654. PubMed PMC

Jones EM, Polt R. CNS active O-linked glycopeptides. Front Chem. 2015;3:1–9. PubMed PMC

René CA, Parks RJ. Delivery of therapeutic agents to the central nervous system and the promise of extracellular vesicles. Pharmaceutics. 2021;13. PubMed PMC

Achar A, Myers R, Ghosh C. Drug delivery challenges in brain disorders across the blood – brain barrier : novel methods and future considerations for improved therapy. Biomedicines. 2021;9:1834. PubMed PMC

Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, et al. Strategies for structural modification of small molecules to improve blood − brain barrier penetration : a recent perspective. J Med Chem. 2021;64(18):13152–13173. PubMed

Huang L, Wells MC, Zhao Z. A practical perspective on the evaluation of small molecule CNS penetration in drug discovery. Drug Metab Lett. 2019;13:78–94. PubMed

Deo AK, Theil F, Nicolas J, UCBPS A, Foriest C, Alleud B-B. Confounding parameters in preclinical assessment of blood − brain barrier permeation: an overview with emphasis on species differences and effect of disease states. Mol Pharm. 2013. PubMed

Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, et al. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates : a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2):e00575. PubMed PMC

Heffron T. Challenges of developing small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro Oncol. 2017;20:307–312. PubMed PMC

Huang L, Li X, Roberts J, Janosky B. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain. Xenobiotica. 2015;8254:547–555. PubMed

Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 2015;17:289–295. PubMed PMC

Van Bree J, Boer A, Danhof MBD. Drug transport across the blood-brain barrier. Pharm World Sci. 1993;15:2–9. PubMed

Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6:252–273. PubMed

Levin VA. Relationship of octanol/water partition coefficient and molecular weight of rat brain capillary permeability. J Med Chem. 1980;23:682–684. PubMed

Pardridge WM. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin bound hormone. Endocrinology. 1979;105:605–612. PubMed

Pardridge WM. Plasma protein-mediated transport of steroid and thyroid hormones. Am J Physiol. 1987;252:157–164. PubMed

Schaefer CP, Tome ME, Davis TP. The opioid epidemic: a central role for the blood brain barrier in opioid analgesia and abuse. Fluids Barriers CNS BioMed Central. 2017;14:1–11. PubMed PMC

Madrid Y, Lander LF, Brem HLR. New directions in the delivery of drugs and other substances to the central nervous system. Adv Pharmacol. 1991;22:299–324. PubMed

Stanimirovic DB, Sandhu JK, Costain WJ. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs. 2018;32:547–559. PubMed PMC

Payandeh J, Volgraf M. Ligand binding at the protein–lipid interface: strategic considerations for drug design. Nat Rev Drug Discov [Internet]. Springer US; 2021;20:710–22. Available from: 10.1038/s41573-021-00240-2. PubMed

Sakai H, Inoue H, Murata K, Toba T, Shimmyo Y, Narii N, Ueno SY, Igawa Y, Takemoto N. Fibroblast growth factor receptor modulators employing diamines with reduced phospholipidosis- inducing potential. Bioorg Med Chem. 2020;28:115562. PubMed

Fernandes J, Gattass CR. Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 ( MRP1 / ABCC1) J Med Chem. 2009;1:1214–1218. PubMed

Rover S, Cesura AM, Huguenin P, Kettler R, Szente A. Synthesis and biochemical evaluation of N - (4-Phenylthiazol-2-yl ) benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem. 1997;2623:4378–4385. PubMed

Tsang JE, Urner LM, Kim G, Chow K, Baufeld L, Faull K, et al. Development of a potent brain-penetrant EGFR tyrosine kinase inhibitor against malignant brain tumors. ACS Med Chem Lett. 2020;11:1799–1809. PubMed PMC

Gajbhiye KR, Pawar A, Mahadik KR, Gajbhiye V. PEGylated nanocarriers: a promising tool for targeted delivery to the brain. Colloids Surf B Biointerfaces. 2020;187. PubMed

Immordino ML, Cattel L. Stealth liposomes : review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315. PubMed PMC

Kasinathan N, Jagani HV, Alex AT, Volety SM, Venkata RJ. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015;22:243–257. PubMed

Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. 1996;93:14164–14169. PubMed PMC

Xing Y, Wen CY, Li ST, Xia ZX. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier. Neural Regen Res. 2016;11:617–622. PubMed PMC

McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials. 2009;30:3986–3995. PubMed

Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channelmediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release. 2011;152:402–410. PubMed

Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27:3482–3490. PubMed

Arduino I, Depalo N, Re F, Dal Magro R, Panniello A, Margiotta N, Fanizza E, Lopalco A, Laquintana V, Cutrignelli A, Lopedota AA, Franco M, Denora N. PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: an in vitro study. Int J Pharm. 2020;583:119351. PubMed

Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53. PubMed

Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112:12486–12491. PubMed PMC

Zhang Y, Wang Y, Boado RJ, Pardridge WM. Lysosomal enzyme replacement of the brain with intravenous non-viral gene transfer. Pharm Res. 2008;25:400–406. PubMed

Li Y, He H, Jia X, Lu WL, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33:3899–3908. PubMed

Huang R, Ke W, Liu Y, Jiang C, Pei Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008;29:238–246. PubMed

Hattori Y. Delivery of plasmid DNA into tumors by intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice. Pharmacol & Pharm. 2016;07:272–282.

Coisne C, Hallier-Vanuxeem D, Boucau MC, Hachani J, Tilloy S, Bricout H, Monflier E, Wils D, Serpelloni M, Parissaux X, Fenart L, Gosselet F. Beta-cyclodextrins decrease cholesterol release and ABC-associated transporter expression in smooth muscle cells and aortic endothelial cells. Front physiol. 2016;7:185. PubMed PMC

Becker G, Da Silva S, Sabo A, Antal MC, Kemmel V, Monassier L. Blood–brain barrier permeability: is 5-hydroxytryptamine receptor type 4 a game changer?. Pharmaceutics. 2021. PubMed PMC

Coisne C, Tilloy S, Monflier E, Wils D, Fenart L, Gosselet F. Cyclodextrins as emerging therapeutic tools in the treatment of cholesterol-associated vascular and neurodegenerative diseases. Molecules. 2016;21:1748. PubMed PMC

Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J. 2008;10:92–102. PubMed PMC

Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65:1–14. PubMed

Dhokchawle BV, Gawad JB, Kamble MD, Tauro SJ, Bhandari AB. Promoieties used in prodrug design: a review. Indian J Pharm Educ Res. 2014;48:35–40.

Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules. 2008;13:1035–1065. PubMed PMC

Lecomte JM, Costentin J, Vlaiculescu A, Chaillet P, Marcais-Collado H, Llorens-Cortes C, Leboyer M, Schwartz JC. Pharmacological properties of acetorphan, a parenterally active “enkephalinase” inhibitor. J Pharmacol Exp Ther. 1986;237(3):937–944. PubMed

Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, Schwartz JC. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980;288(5788):286–288. PubMed

Yoshiharu D, Hideki H, Shinobu F, Takafumi N, Yoshinari Y, Shizuo Y, Ryohei K. Improved brain delivery of a nonsteroidal anti-inflammatory drug with a synthetic glyceride ester: a preliminary attempt at a CNS drug delivery system for the therapy of Alzheimer’s disease. J Drug Target. 2000;8:371–381. PubMed

Singhal D, Morgan ME, Anderson BD. Role of brain tissue localized purine metabolizing enzymes in the central nervous system delivery of anti-HIV agents 2’-beta-fluoro-2’,3’-dideoxyinosine and 2’-beta-fluoro-2’,3’-dideoxyadenosine in rats. Pharm Res. 1997;14:786–792. PubMed

Shanmuganathan K, Koudriakova T, Nampalli S, Du J, Gallo JM, Schinazi RF, Chu CK. Enhanced brain delivery of an anti-HIV nucleosides 2’-F-ara-ddI by xanthine oxidase medianted biotransformation. J Med Chem. 1994;37:821–827. PubMed

Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17:978–984. PubMed

Al-Ghananeem A, Traboulsi AA, Dittert LW, Hussain AA. Targeted brain delvery of 17β-estradiol via nasally administerd water soluble prodrugs. AAPS Pharm Sci Tech. 2002;3:1–8. PubMed PMC

Bodor N. Redox drug delivery systems for targeting drugs to the brain. Ann New York Acad Sci. 1987;507:289–306. PubMed

Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 2014;9:2241–2257. PubMed PMC

Prokai L, Prokai-Tatrai K, Bodor N. Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev. 2000;20:367–416. PubMed

Dwibhashyam VSNA. Strategies for enhanced drug delivery to the central nervous system. Indian J Pharm Sci. 2008;70:145–153. PubMed PMC

Bodor N, Prokai L, Wu WM, Farag H, Jonalagadda S, Kawamura M, Simpkins J. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science. 1992;257:1698–1700. PubMed

Hultqvist G, Syvänen S, Fang XT, Lannfelt L, Sehlin D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7:308–318. PubMed PMC

Faresjö R, Bonvicini G, Fang XT, Aguilar X, Sehlin D, Syvänen S. Brain pharmacokinetics of two BBB penetrating bispecific antibodies of different size. Fluids Barriers CNS [Internet]. BioMed Central; 2021;18:26. Available from: 10.1186/s12987-021-00257-0. PubMed PMC

Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12:1359. PubMed

Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int J Mol Sci. 2021;22:1–24. PubMed PMC

Simonneau C, Duschmalé M, Gavrilov A, Brandenberg N, Hoehnel S, Ceroni C, et al. Investigating receptor-mediated antibody transcytosis using blood–brain barrier organoid arrays. Fluids Barriers CNS. 2021;18:1–17. PubMed PMC

Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, et al. Efficient clearance of A β protofibrils in A β PP-transgenic mice treated with a brain-penetrating bifunctional antibody. Alzheimer’s Res Ther. 2018;10:49. PubMed PMC

Gustavsson T, Syvänen S, Callaghan PO. SPECT imaging of distribution and retention of a brain-penetrating bispecific amyloid-β antibody in a mouse model of Alzheimer’s disease. Transl Neurodegener. 2020;9:37. PubMed PMC

Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks M, et al. Intrathecal antibody distribution in the rat brain : surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol. 2018;3:445–475. PubMed PMC

Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, et al. Overcoming blood – brain barrier transport : Advances in nanoparticle-based drug delivery strategies. Mater Today [Internet]. Elsevier B.V.; 2020;37:112–25. Available from: 10.1016/j.mattod.2020.02.001. PubMed PMC

Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the treatment of brain metastases, a dream or a reality? Pharmaceutics. 2020;12:62. PubMed PMC

Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60. PubMed

Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:35–58. PubMed

Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104:29–45. PubMed

Torchilin VP, Rammohan R, Weissig V, Leuchenko TSTAT. peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci. 2000;98:8786–8791. PubMed PMC

Rousselle C, Clair P, Lefauconnier J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000;57:679–686. PubMed

Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285:1569–1572. PubMed

Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8:1481–1493. PubMed PMC

Vagner T, Dvorzhak A, Wójtowicz A. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol Cell Neurosci. 2016;77:76–86. PubMed

Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res. 2009;144:18–26. PubMed PMC

Pardridge WM, Kang YS, Buciak J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 1995;12:807–816. PubMed

Zhang Y, Zhang Y, Bryant J, Charles A, Boado RJ, Pardridge W. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–3677. PubMed

Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr. 2018;44. PubMed PMC

Pardridge WM. Brain drug targeting and gene technologies. Jpn J Pharmacol. 2001;87:97–103. PubMed

Liu L, Guo KLJ. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29:1509–1517. PubMed

He Q, Liu J, Liang J, Liu X, Li W, Liu Z, et al. Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceutical perspective. Cells. 2018;7:24. PubMed PMC

Agrawal M, Ajazuddin, Tripathi DK, Saraf S, Saraf S, Antimisiaris SG, Mourtas S, Hammarlund-Udenaes M, Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;260:61–77. PubMed

Angela R. Jones EVS. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res [Internet]. 2007;24:1759–71. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf. PubMed PMC

Smith QR, Stoll J. Molecular characterization of amino acid transporters at the blood-brain barrier. Brain Barrier Syst. 1999;45:303–320.

Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res. 2020;37. PubMed PMC

Djaletti R, Melamed E. New therapies for Parkinson’s disease. J Neurol. 2001;248:357–362. PubMed

Hokari M, Wu HQ, Schwarcz R, Smith QR. Facilitated brain uptake of 4-chlorokynureine and conversion to 7-chlorokynurenic acid. Neuropharmacol Neurotoxicol. 1996;8:15–18. PubMed

Bonina FP, Arenare L, Palagiano F, Salia A, Nava F, Trombetta D, de Caprariis P. Synthesis, stability and pharmacological evaluation of nipecotic acid prodrugs. J Pharm Sci. 1999;88:561–567. PubMed

Gynther M, Jalkanen ALM. Brain uptake of ketoprofen-lysine prodrug in rats. Int J Pharm. 2010;399:121–128. PubMed

Gynther M, Laine K, Ropponen J, Leppänen J, Mannila A, Nevalainen T, Savolainen J, Järvinen T, Rautio J. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem. 2008;51:932–936. PubMed

Bonina FP, Arenare L, Ippolito R, Boatto G, Battaglia G, Bruno V, de Caprariis P. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202:79–88. PubMed

Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of glucose chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur J Pharm. 1996;318:477–484. PubMed

Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of O-methylsulfonyl derivatives of D-glucose as potential alkylating agents for targeted drug delivery to the brain. Evaluation of their interaction with the human erythrocyte GLUT1 hexose transporter. Carbohydr Res. 1997;299:15–21. PubMed

Bonina F, Puglia C, Rimoli MG, Melisi D, Boatto GNM, Malignano ALRG. Glycosyl derivatives of dopamine and L-dopa as antiparkinson prodrugs: synthesis, pharmacological activity and in vitro stability studies. J Drug Target. 2003;11:25–36. PubMed

Leveugle B, Ding W, Laurence F, Dehouck MP, Scanameo A, Cecchelli RFH, Fillit H. Heparin oligosaccharides that pass the blood-brain barrier inhibit beta-amyloid precursor protein secretion and heparin binding to beta-amyloid peptide. J Neurochem. 1998;70:736–744. PubMed

Ma Q, Dudas B, Hejna M, Cornelli U, Lee JM, Lorens S, Mervis R, Hanin I, Fareed J. The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thromb Res. 2002;105:447–453. PubMed

Gynther M, Ropponen J, Laine K, Leppänen J, Haapakoski P, Peura L, Järvinen T, Rautio J. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. J Med Chem. 2009;52:3348–3353. PubMed

Kriss CT, Lou B-S, Szabo LZ, Mitchell SA, Hruby VJ, Polt R. Enkephalinbased drug design: Conformational analysis of O-linked glycopeptides by NMR and molecular modeling. Tetrahedron Assymetr. 2000;11:9–25.

Bilsky E, Egleton RD, Mitchell SA, Palian MM, Davis P, Huber JD, Jones H, Yamamura HI, Janders J, Davis TP, Porreca F, Hruby VJ, Polt R. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J Med Chem. 2000;47:2586–2590. PubMed

Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54:1046–1077. PubMed

Hao ZF, Cui YX, Li MH, Du D, Liu MF, Tao HQ, Li S, Cao F. Liposomes modified with P-aminophenyl-α-D-mannopyranoside: a carrier for targeting cerebral functional regions in mice. Eur J Pharm Biopharm. 2013;84:505–516. PubMed

Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des [Internet]. 2014;20:1487–98. Available from: 10.1016/j.earlhumdev.2015.09.003, 10.1016/j.earlhumdev.2014.01.002, 10.1016/S0378-3782(12)70006-3, http://www.sciencedirect.com/science/article/pii/S2341287914000763. PubMed PMC

Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-Hydroxybutyric acid. AAPS J. 2008;10:311–321. PubMed PMC

Kang YS, Terasaki T, Tsuji A. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids. J Pharmacobiodyn. 1990;13:158–163. PubMed

Terasaki T, Takakuwa S, Moritani S, Tsuji A. Transport of monocarboxylic acids at the blood brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J Pharmacol Exp Ther. 1991;258:932–937. PubMed

Barone E, Cenini G, Di Domenico F. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 2011;63:172–180. PubMed PMC

Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther. 1997;280:551–560. PubMed

Deguchi Y, Yokoyama Y, Sakamoto T. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier. Life Sci. 2000;66:649–662. PubMed

Boswell-Casteel RC, Hays FA. Equilibrative nucleoside transporters – a review. Nucleosides Nucleotides Nucleic Acids. 2017;36:7–30. PubMed PMC

Gati WP, Misra HK, Knaus EE, Wiebe LI. Structural modifications at the 2’- and 3’- positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter. Biochem Pharmacol. 1984;33:3325–3331. PubMed

Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, et al. Review of transporter substrate, inhibitor, and inducer characteristics of cladribine. Clin Pharmacokinet [Internet]. Springer International Publishing; 2021; Available from: 10.1007/s40262-021-01065-3. PubMed PMC

Owen RP, Badagnani I, Giacomini KM. Molecular determinants of specificity for synthetic nucleoside analogs in the concentrative nucleoside transporter, CNT2. J Biol Chem [Internet]. © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2006;281:26675–82. Available from: 10.1074/jbc.M513421200. PubMed

Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165:1260–1287. PubMed PMC

Ritzel MWL, Ng AML, Yao SYM, Graham K, Loewen SK, Smith KM, et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (System cib) J Biol Chem. 2001;276:2914–2927. PubMed

Molina-Arcas M, Casado F, Pastor-Anglada M. Nucleoside transporter proteins. Curr Vasc Pharmacol. 2009;7:426–434. PubMed

Cano-Soldado P, Larráyoz IM, Molina-Arcas M, Casado FJ, Martinez-Picado J, Lostao MP, et al. Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1) Antivir Ther. 2004;9:993–1002. PubMed

Chang C, Swaan PW, Ngo LY, Lum PY, Patil SD, Unadkat J. Molecular requirements of the human nucleoside transporters hCNT1, hCNT2, and hENT1. Mol Pharmacol. 2004;65:558–570. PubMed

Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, et al. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci. 2007;27:449–458. PubMed PMC

Zaragozá R. Transport of amino acids across the blood-brain barrier. Front Physiol. 2020;11:1–11. PubMed PMC

Zhang L, Sui C, Yang W, Luo Q. Amino acid transporters: emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci. 2020;15:192–206. PubMed PMC

Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, et al. Cationic amino acid transporter-1-mediated arginine uptake is essential for chronic lymphocytic leukemia cell proliferation and viability. Front Oncol. 2019;9:1–14. PubMed PMC

Kozak CA. Naturally occurring polymorphisms of the mouse gammaretrovirus receptors CAT-1 and XPR1 alter virus tropism and pathogenicity. Adv Virol. 2011;2011:14–17. PubMed PMC

Couroussé T, Gautron S. Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther. 2015:94–103. PubMed

Koepsell H. Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci. 2004;25:375–381. PubMed

Williams EI, Betterton RD, Davis TP, Ronaldson PT. Transporter-mediated delivery of small molecule drugs to the brain: a critical mechanism that can advance therapeutic development for ischemic stroke. Pharmaceutics. 2020;12. PubMed PMC

Amphoux A, Vialou V, Drescher E, Brüss M, La Cour CM, Rochat C, et al. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006;50:941–952. PubMed

Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A. 2009;106:8043–8048. PubMed PMC

Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1017–1023. PubMed

Minuesa G, Volk C, Molina-Arcas M, Gorboulev V, Erkizia I, Arndt P, et al. Correction to “transport of lamivudine [(-)-β-L-2′, 3′-dideoxy-3′-thiacytidine] and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther. 2009;329:1187. PubMed

Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20:379–386. PubMed

Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176:1169–1180. PubMed PMC

Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:203–208. PubMed

Torres-Vergara P, Escudero C, Penny J. Drug transport at the brain and endothelial dysfunction in preeclampsia: Implications and perspectives. Front Physiol. 2018;9:1–12. PubMed PMC

Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente M, Ronaldson PT. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: Relevance to CNS drug delivery. J Cereb Blood Flow Metab. 2014;34:699–707. PubMed PMC

Schäfer AM, Meyer HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain : Physiological and Pharmacological Implications. Pharmaceutics. 2021;13:384. PubMed PMC

Kinzi J, Grube M, Zu Schwabedissen HEM. OATP2B1 – The underrated member of the organic anion transporting polypeptide family of drug transporters?. Biochem Pharmacol [Internet]. Elsevier Inc.; 2021;188:114534. Available from: 10.1016/j.bcp.2021.114534. PubMed

Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: Role of the solute carrier family. NeuroRx. 2005;2:73–85. PubMed PMC

Mor AL, Kaminski TW, Karbowska M, Pawlak D. New insight into organic anion transporters from the perspective of potentially important interactions and drugs toxicity. J Physiol Pharmacol. 2018;69:307–324. PubMed

Inazu M. Functional expression of choline transporters in the blood-brain barrier. Nutrients. 2019;11. PubMed PMC

Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: an emerging role of choline transporter-like protein 1. Exp Biol Med [Internet]. 2019;244:655–62. Available from: 10.1177/1535370219830997. PubMed PMC

Abel Lajtha MR. Handbook of Neurochemistry and Molecular Neurobiology. Pap. Knowl. Towar. a Media Hist. Doc: Springer; 2007.

De Boer AG, Van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–656. PubMed

De Gooijer MC, Kemper EM, Buil LCM, Ceren HC, Buckle T, Beijnen JH. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost ll ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when bloo. Cell Reports Med. 2021;2:100184. PubMed PMC

Demeule M, Régina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, et al. Drug transport to the brain: Key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol. 2002;38:339–348. PubMed

Shapiro AB, Fox K, Lee P, Yang YD, Ling V. Functional intracellular P-glycoprotein. Int J Cancer. 1998;76:857–864. PubMed

Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003;87:1010–1023. PubMed

Schinkel AH, Wagenaar E, Mol CAAM, Van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 1996;97:2517–2524. PubMed PMC

Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65:1063–1070. PubMed

Slot AJ, Wise DD, Deeley RG, Monks TJ, Cole SPC. Modulation of human Multidrug Resistance Protein (MRP) 1 (ABCC1) and MRP2 (ABCC2) transport activities by endogenous and exogenous glutathione-conjugated catechol metabolites. Drug Metab Dispos. 2008;36:552–560. PubMed

Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett. 2016;370:153–164. PubMed

Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–1302. PubMed

Zhong X, Liu MY, Sun XH, Wei MJ. Association between ABCB1 polymorphisms and haplotypes and Alzheimer’s disease: a metaanalysis. Sci Rep. 2016;6:32708. PubMed PMC

Fenart L, Buee-Scherrer V, Descamps L, Duhem C, Poullain MG. Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an in vitro model of the blood-brain barrier. Pharm Res. 1998;15:993–1000. PubMed

Gruol DJ, Zee MC, Trotter J, Bourgeois S. Reversal of multidrug resistance by RU 4861. Cancer Res. 1994;54:3088–3091. PubMed

Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24:7612–7621. PubMed PMC

Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Updat. 2016;22:164–181. PubMed PMC

Russel FGM, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci. 2008;29:200–207. PubMed

Potschka H, Fedrowitz M, Löscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther. 2003;306:124–131. PubMed

Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2018;8:1332–1341. PubMed

Grube M, Hagen P, Jedlitschky G. Neurosteroid transport in the brain: Role of ABC and SLC transporters. Front Pharmacol. 2018;9:354. PubMed PMC

Jani M, Szabó P, Kis E, Molnár É, Glavinas H, Krajcsi P. Kinetic characterization of sulfasalazine transport by human ATP-binding cassette G2. Biol Pharm Bull. 2009;32:497–499. PubMed

Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004;64:3296–3301. PubMed

Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS [Internet]. BioMed Central; 2020;17:1–29. Available from: 10.1186/s12987-020-00196-2. PubMed PMC

Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55:83–105. PubMed

Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135:337–361. PubMed

Hu C, Tao L, Cao X, Chen L. The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci. 2020;15:131–144. PubMed PMC

Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, et al. An overview of cell-based assay platforms for the solute carrier family of transporters. Front Pharmacol. 2021;12:1–31. PubMed PMC

Superti-Furga G, Lackner D, Wiedmer T, Ingles-Prieto A, Barbosa B, Girardi E, et al. The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nat Rev Drug Discov. 2020;19:429–430. PubMed

Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav. 2017;176:139–148. PubMed PMC

Aykaç A, Şehirli AÖ. The Role of the SLC Transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci. 2020;18:174–187. PubMed PMC

Pan W, Kastin AJ. The blood-brain barrier: regulatory roles in wakefulness and sleep. Neuroscientist. 2017;23:124–136. PubMed

Cuddapah VA, Zhang SL, Sehgal A. Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci. 2019;42:500–510. PubMed PMC

Friden PM. Receptor-mediated transport of therapeutics across the blood-brain barrier. Neurosurgery. 1994;35:294–298. PubMed

Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BSS. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci [Internet]. Elsevier Inc.; 2021;274:119326. Available from: 10.1016/j.lfs.2021.119326. PubMed

Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–163. PubMed

Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol [Internet]. Elsevier; 2019;181:101665. Available from: 10.1016/j.pneurobio.2019.101665. PubMed

Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals. 2016;29:573–591. PubMed PMC

Skjørringe T, Burkhart A, Johnsen KB, Moos T. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8:19. PubMed PMC

Boado RJ, Pardridge WM. The Trojan horse liposome technology for nonviral Gene transfer across the blood-brain barrier. J Drug Deliv. 2011;296151. PubMed PMC

Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–250. PubMed

Jefferies WA, Brandon MR, Williams AF, Hunt SV. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology. 1985;54:333–341. PubMed PMC

Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2:129–138. PubMed PMC

Saito Y, Buciak J, Yang J, Pardridge WM. Vector-mediated delivery of 125Ilabeled beta-amyloid peptide A beta 1–40 through the blood-brain barrier and binding to Alzheimer disease amyloid of the A beta 1–40/vector complex. Proc Natl Acad Sci. 1995;92:10227–10231. PubMed PMC

Song B-W, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther. 2002;301:605–610. PubMed

Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN, Meilandt WJ, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5:1–12. PubMed

Israel LL, Braubach O, Galstyan A, Chiechi A, Shatalova ES, Grodzinski Z, Ding H, Black KL, Ljubimova JY, Holler E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the bloodbrain barrier. ACS Nano. 2019;13:1253–1271. PubMed PMC

Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood brain barrier. Proc Natl Acad Sci U S A. 1991;88:4771–4775. PubMed PMC

Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Bäckman C, Bergman H, Hoffer B, Bloom F, Granholm AC. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993;259:373–377. PubMed

Granholm AC, Bäckman C, Bloom F, Ebendal T, Gerhardt GA, Hoffer B, Mackerlova L, Olson L, Söderström S, Walus LR. NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J Pharmacol Exp Ther. 1994;268:448–459. PubMed

Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res. 1996;728:193–203. PubMed

Pardridge WM, Wu D, Sakane T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res. 1998;15:576–582. PubMed

Deguchi Y, Kurihara A, Pardridge W. Retention of biologic activity of human epidermal growth factor following conjugation to a blood-brain barrier drug delivery vector via an extended poly(ethylene glycol) linker. Bioconjug Chem. 1999;10:32–37. PubMed

Bickel U, Yoshikawa T, Landaw EM, Faull KF, Pardridge WM. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci U S A. 1993;90:2618–2622. PubMed PMC

Xia C-F, Zhang Y, Zhang Y, Boado RJ, Pardridge WM. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res. 2007;24:2309–2316. PubMed

Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci U S A. 1995;92:5592–5596. PubMed PMC

Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J Neurochem. 2001;79:119–129. PubMed

Cabezón I, Augé E, Bosch M, Beckett AJ, Prior IA, Pelegrí C, Vilaplana J. Serial block-face scanning electron microscopy applied to study the trafficking of 8D3-coated gold nanoparticles at the blood-brain barrier. Histochem Cell Biol. 2017;36:437. PubMed

Manich G, Cabezón I, del Valle J, Duran-Vilaregut J, Camins A, Pallàs M, Pelegri C, Vilaplana J. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab’ cargo across the blood-brain barrier in mice. Eur J Pharm Sci. 2013;49:556–564. PubMed

Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J. By-passing of P-glycoprotein using immunoliposomes. J Drug Target. 2002;10:73–79. PubMed

Zhang Y, Schlachetzki F, Zhang Y-F, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brainspecific promoter. Hum Gene Ther. 2004;15:339–350. PubMed

Bommana MM, Kirthivasan B, Squillante E. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Deliv. 2012;19:298–306. PubMed

Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces. 2016;145:8–13. PubMed

Candela P, Saint-Pol J, Kuntz M, Boucau MC, Lamartiniere Y, Gosselet F, Fenart L. In vitro discrimination of the role of LRP1 at the BBB cellular level: focus on brain capillary endothelial cells and brain pericytes. Brain Res. 2015;1594:15–26. PubMed

Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol. 1997;138:877–889. PubMed PMC

Wang P, Liu Y, Shang X, Xue Y. CRM197-induced blood-brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J Mol Neurosci. 2011;43:485–492. PubMed

Lesley J, Schulte R, Woods J. Modulation of transferrin receptor expression and function by anti-transferrin receptor antibodies and antibody fragments. Exp Cell Res. 1989;182:215–233. PubMed

Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther. 2000;292:1048–1052. PubMed

Huang R, Ke W, Han L, Liu Y, Shao K, Jiang C, et al. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res Bull [Internet]. 2010;81:600–4. Available from: 10.1016/j.brainresbull.2009.12.008. PubMed

Demeule M, Regina A, Ché C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther [Internet]. 2008;324:1064–72. Available from: 10.1124/jpet.107.131318. PubMed

Tamaru M, Akita H, Fujiwara T, Kajimoto K, Harashima H. Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem Biophys Res Commun [Internet]. 2010;394:587–92. Available from: 10.1016/j.bbrc.2010.03.024. PubMed

Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013;5:1180–1201. PubMed PMC

Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. Int Congr Ser. 2005;1277:185–198.

Wang P, Xue Y, Shang X, Liu Y. Diphtheria toxin mutant CRM197-mediated transcytosis across blood-brain barrier in vitro. Cell Mol Neurobiol. 2010;30:717–725. PubMed PMC

Tosi G, Vilella A, Veratti P, Belletti D, Pederzoli F, Ruozi B, et al. Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated form of diphtheria toxin (CRM197): In vivo experiments. Mol Pharm. 2015;12:3672–3684. PubMed

Osada T, Gu YH, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by Β 1-integrins. J Cereb Blood Flow Metab. 2011;31:1972–1985. PubMed PMC

Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine receptor structure and function in health and disease. Subcell Biochem. 2018;87:329–352. PubMed PMC

Goti D, Hrzenjak A, Levak-Frank S, Frank S, Van Der Westhuyzen DR, Malle E, et al. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem. 2001;76:498–508. PubMed

Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–758. PubMed PMC

Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 2009;30:4195–4202. PubMed

Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631. PubMed PMC

Abulrob A, Sprong H, En Henegouwen PVB, Stanimirovic D. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–1214. PubMed

Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211:233–244. PubMed PMC

Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård PO, Niewoehner J. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE. 2014;9:e96340. PubMed PMC

Zuchero YJY, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82. PubMed

Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. 2009;111:291–314. PubMed PMC

Avnir Y, Turjeman K, Tulchinsky D, Sigal A, Kizelsztein P, Tzemach D, et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS ONE. 2011;6:e25721. PubMed PMC

Turjeman K, Bavli Y, Kizelsztein P, Schilt Y, Allon N, Katzir TB, et al. Nano-drugs based on nano sterically stabilized liposomes for the treatment of inflammatory neurodegenerative diseases. PLoS ONE. 2015;10:e0130442. PubMed PMC

Sarantopoulos J, Gabrail NY, Moulder SL, Brenner AJ, Smith CL, Bouchard D, et al. ANG1005: Results of a phase I study in patients with advanced solid tumors and brain metastases. J Clin Oncol. 2010;28:2556–2556. PubMed

Lu Q, Cai X, Zhang X, Li S, Song Y, Du D, Dutta P, Lin Y. Synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood-brain barrier. ACS Appl Biomat. 2018;1:1687–1694. PubMed PMC

Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces. 2019;173:27–35. PubMed PMC

Lakkadwala S, dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomed Nanotechnol Biol Med. 2020;23:102112. PubMed PMC

Bouzinab K, Summers HS, Stevens MFG, Moody CJ, Thomas NR, Gershkovich P, et al. Delivery of temozolomide and N3-propargyl analog to brain tumors using an apoferritin nanocage. ACS Appl Mater Interfaces. 2020;12:12609–12617. PubMed

Pardridge WM. Human blood? Brain barrier insulin receptor biologic drug development for the CNS view project. J Neurochem. 1985. PubMed

Coloma MJ, Lee HJ, Kurihara A, Landaw EM, Boado RJ, Morrison SL, Pardridge WM. Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res. 2000;17:266–274. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...