Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification

. 2023 ; 14 () : 1130175. [epub] 20230509

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37228816

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.

APHM Hôpitaux Universitaires de Marseille Hôpital Timone Competence Center for Rare Oral and Dental Diseases Marseille France

Centre Hospitalier Régional Universitaire de Nancy Université de Lorraine Competence Center for Rare Oral and Dental Diseases Nancy France

Centre Hospitalier Universitaire de Lyon Competence Center for Rare Oral and Dental Diseases Lyon France

Centre Hospitalier Universitaire de Nantes Competence Center for Rare Oral and Dental Diseases Nantes France

Centre Hospitalier Universitaire de Nice Competence Center for Rare Oral and Dental Diseases Nice France

Centre Hospitalier Universitaire Rangueil Toulouse Competence Center for Rare Oral and Den tal Diseases Toulouse France

Department of Stomatology Charles University 2nd Faculty of Medicine and Motol University Hospital Prague Czechia

Eastman Dental Institute University College London London United Kingdom

Faculty of Dentistry International University of Rabat CReSS Centre de recherche en Sciences de la Santé Rabat Morocco

Faculty of Dentistry Khon Kaen University Khon Kaen Thailand

Hôpitaux Universitaires de Strasbourg Laboratoires de diagnostic génétique Institut de Génétique Médicale d'Alsace Strasbourg France

Hôpitaux Universitaires de Strasbourg Pôle de Médecine et Chirurgie Bucco dentaires Hôpital Civil Centre de référence des maladies rares orales et dentaires O Rares Filiére Santé Maladies rares TETE COU European Reference Network ERN CRANIO Strasbourg France

Instituto de Investigación en Ciencias Odontológicas Facultad de Odontología Universidad de Chile Santiago Chile

Rothschild Hospital Public Assistance Paris Hospitals Paris France

Unité de génétique médicale et d'oncogénétique CHU Hassan 2 Fes Morocco

Université de Strasbourg Faculté de Chirurgie Dentaire Strasbourg France

Université de Strasbourg Institut d'études avancées Strasbourg France

Université de Strasbourg Institut de Génétique et de Biologie Moléculaire et Cellulaire IN SERM U1258 CNRS UMR7104 Illkirch France

Université de Strasbourg Laboratoire de Biomatériaux et Bioingénierie Inserm UMR_S 1121 Strasbourg France

Zobrazit více v PubMed

Aaltonen J., Horelli-Kuitunen N., Fan J.-B., Björses P., Perheentupa J., Myers R., et al. (1997). High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res. 7, 820–829. 10.1101/gr.7.8.820 PubMed DOI

Acevedo A. C., Poulter J. A., Alves P. G., de Lima C. L., Castro L. C., Yamaguti P. M., et al. (2015). Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8. 10.1186/s12881-015-0154-5 PubMed DOI PMC

Aïoub M., Lézot F., Molla M., Castaneda B., Robert B., Goubin G., et al. (2007). Msx2 −/− transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone 41, 851–859. 10.1016/j.bone.2007.07.023 PubMed DOI

Akyol M. U., Alden T. D., Amartino H., Ashworth J., Belani K., Berger K. I., et al. (2019). Recommendations for the management of MPS IVA: Systematic evidence- and consensus-based guidance. Orphanet J. Rare Dis. 14, 137. 10.1186/s13023-019-1074-9 PubMed DOI PMC

Aldred M. J., Crawford P. J. (1995). Amelogenesis imperfecta-towards a new classification. Oral Dis. 1, 2–5. 10.1111/j.1601-0825.1995.tb00148.x PubMed DOI

Aldred M. J., Savarirayan R., Crawford P. J. M. (2003). Amelogenesis imperfecta: A classification and catalogue for the 21st century. Oral Dis. 9, 19–23. 10.1034/j.1601-0825.2003.00843.x PubMed DOI

Alsharif S., Hindi S., Khoja F. (2018). Unilateral focal dermal hypoplasia (goltz syndrome): Case report and literature review. Case Rep. Dermatol 10, 101–109. 10.1159/000488521 PubMed DOI PMC

Ashikov A., Abu Bakar N., Wen X.-Y., Niemeijer M., Rodrigues Pinto Osorio G., Brand-Arzamendi K., et al. (2018). Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum. Mol. Genet. 27, 3029–3045. 10.1093/hmg/ddy213 PubMed DOI

Aswath N., Ramakrishnan S. N., Teresa N., Ramanathan A. (2018). A novel ROGDI gene mutation is associated with Kohlschutter-Tonz syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125 (1), e8–e11. 10.1016/j.oooo.2017.09.016 PubMed DOI

Bardet C., Courson F., Wu Y., Khaddam M., Salmon B., Ribes S., et al. (2016). Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J. Bone Min. Res. 31, 498–513. 10.1002/jbmr.2726 PubMed DOI

Björses P., Pelto-Huikko M., Kaukonen J., Aaltonen J., Peltonen L., Ulmanen I. (1999). Localization of the APECED protein in distinct nuclear structures. Hum. Mol. Genet. 8, 259–266. 10.1093/hmg/8.2.259 PubMed DOI

Bloch-Zupan A., Bugueno I. M., Manière M. C. (2021). Protocole National de Diagnostic et de Soins (PNDS): Amélogenèses imparfaites. Synthèse à destination du chirurgien-dentiste et du médecin traitant. https://www.has-sante.fr/jcms/p_3284538/fr/.

Bloch-Zupan A., Sedano H., Scully C. (2012). Dento/oro/craniofacial anomalies and genetics. 1st Ed. Amsterdam: Elsevier. 9780124160385.

Brookes S. J., Barron M. J., Smith C. E. L., Poulter J. A., Mighell A. J., Inglehearn C. F., et al. (2017). Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress. Hum. Mol. Genet. 26, 1863–1876. 10.1093/hmg/ddx090 PubMed DOI PMC

Burgeson R. E., Morris N. P., Murray L. W., Duncan K. G., Keene D. R., Sakai L. Y. (1985). The structure of type VII collagen. Ann. N. Y. Acad. Sci. 460, 47–57. 10.1111/j.1749-6632.1985.tb51156.x PubMed DOI

Burzynski N. J., Gonzalez W. E., Snawder K. D. (1973). Autosomal dominant smooth hypoplastic amelogenesis imperfecta. Report of a case. Oral Surg. Oral Med. Oral Pathol. 36, 818–823. 10.1016/0030-4220(73)90333-2 PubMed DOI

Caciotti A., Tonin R., Mort M., Cooper D. N., Gasperini S., Rigoldi M., et al. (2018). Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Med. Genet. 19, 183. 10.1186/s12881-018-0694-6 PubMed DOI PMC

Caricasole A., Ferraro T., Rimland J. M., Terstappen G. C. (2002). Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157. 10.1016/S0378-1119(02)00467-5 PubMed DOI

Celli J., Duijf P., Hamel B. C., Bamshad M., Kramer B., Smits A. P., et al. (1999). Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 99 (2), 143–153. 10.1016/s0092-8674(00)81646-3 PubMed DOI

Collier P. M., Sauk J. J., Rosenbloom S. J., Yuan Z. A., Gibson C. W. (1997). An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch. Oral Biol. 42 (3), 235–242. 10.1016/s0003-9969(96)00099-4 PubMed DOI

Crawford P. J. M., Aldred M., Bloch-Zupan A. (2007). Amelogenesis imperfecta. Orphanet J. Rare Dis. 2, 17. 10.1186/1750-1172-2-17 PubMed DOI PMC

Daneshmandpour Y., Darvish H., Pashazadeh F., Emamalizadeh B. (2019). Features, genetics and their correlation in Jalili syndrome: A systematic review. J. Med. Genet. 56, 358–369. 10.1136/jmedgenet-2018-105716 PubMed DOI

Darling A. I. (1956). Some observations on amelogenesis imperfecta and calcification of the dental enamel. Proc. R. Soc. Med. 49, 759–765. 10.1177/003591575604901007 PubMed DOI PMC

Daubert D. M., Kelley J. L., Udod Y. G., Habor C., Kleist C. G., Furman I. K., et al. (2016). Human enamel thickness and ENAM polymorphism. Int. J. Oral Sci. 8, 93–97. 10.1038/ijos.2016.1 PubMed DOI PMC

de La Dure-Molla M., Fournier B. P., Manzanares M. C., Acevedo A. C., Hennekam R. C., Friedlander L., et al. (2019). Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders. Am. J. Med. Genet. A 179, 1913–1981. 10.1002/ajmg.a.61316 PubMed DOI

de la Dure-Molla M., Quentric M., Yamaguti P. M., Acevedo A.-C., Mighell A. J., Vikkula M., et al. (2014). Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J. Rare Dis. 9, 84. 10.1186/1750-1172-9-84 PubMed DOI PMC

Deidrick K. K. M., Early M., Constance J., Stein M., Fete T. J. (2016). Cognitive and psychological functioning in focal dermal hypoplasia. Am. J. Med. Genet. C Semin. Med. Genet. 172, 34–40. 10.1002/ajmg.c.31471 PubMed DOI

Dellow E. L., Harley K. E., Unwin R. J., Wrong O., Winter G. B., Parkins B. J. (1998). Amelogenesis imperfecta, nephrocalcinosis, and hypocalciuria syndrome in two siblings from a large family with consanguineous parents. Nephrol. Dial. Transpl. 13 (12), 3193–3196. 10.1093/ndt/13.12.3193 PubMed DOI

DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498. 10.1038/ng.806 PubMed DOI PMC

Dong J., Amor D., Aldred M. J., Gu T., Escamilla M., MacDougall M. (2005). DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am. J. Med. Genet. A 133A, 138–141. 10.1002/ajmg.a.30521 PubMed DOI

Dourado M. R., Dos Santos C. R. R., Dumitriu S., Iancu D., Albanyan S., Kleta R., et al. (2019). Enamel renal syndrome: A novel homozygous FAM20A founder mutation in 5 new Brazilian families. Eur. J. Med. Genet. 62 (11), 103561. 10.1016/j.ejmg.2018.10.013 PubMed DOI

Dubail J., Huber C., Chantepie S., Sonntag S., Tüysüz B., Mihci E., et al. (2018). SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat. Commun. 9, 3087. 10.1038/s41467-018-05191-8 PubMed DOI PMC

Dugan S. L., Temme R. T., Olson R. A., Mikhailov A., Law R., Mahmood H., et al. (2015). New recessive truncating mutation in LTBP3 in a family with oligodontia, short stature, and mitral valve prolapse. Am. J. Med. Genet. A 167, 1396–1399. 10.1002/ajmg.a.37049 PubMed DOI

Durmaz C. D., McGrath J., Liu L., Karabulut H. G. (2018). A novel PORCN frameshift mutation leading to focal dermal hypoplasia: A case report. Cytogenet Genome Res. 154, 119–121. 10.1159/000487580 PubMed DOI

Duverger O., Ohara T., Bible P. W., Zah A., Morasso M. I. (2017). DLX3-Dependent regulation of ion transporters and carbonic anhydrases is crucial for enamel mineralization. J. Bone Min. Res. 32, 641–653. 10.1002/jbmr.3022 PubMed DOI PMC

El-Sayed W., Parry D. A., Shore R. C., Ahmed M., Jafri H., Rashid Y., et al. (2009). Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am. J. Hum. Genet. 85, 699–705. 10.1016/j.ajhg.2009.09.014 PubMed DOI PMC

Exome Aggregation Consortium Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291. 10.1038/nature19057 PubMed DOI PMC

Feldmeyer L., Huber M., Fellmann F., Beckmann J. S., Frenk E., Hohl D. (2006). Confirmation of the origin of NISCH syndrome. Hum. Mutat. 27, 408–410. 10.1002/humu.20333 PubMed DOI

Feske S., Müller J. M., Graf D., Kroczek R. A., Dräger R., Niemeyer C., et al. (1996). Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26 (9), 2119–2126. 10.1002/eji.1830260924 PubMed DOI

Feske S. (2010). CRAC channelopathies. Pflugers Arch. 460, 417–435. 10.1007/s00424-009-0777-5 PubMed DOI PMC

Flores E. R., Tsai K. Y., Crowley D., Sengupta S., Yang A., McKeon F., et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564. 10.1038/416560a PubMed DOI

Fouillen A., Dos Santos Neves J., Mary C., Castonguay J.-D., Moffatt P., Baron C., et al. (2017). Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral. Sci. Rep. 7, 46683. 10.1038/srep46683 PubMed DOI PMC

Frick K. K., Krieger N. S., Nehrke K., Bushinsky D. A. (2009). Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Min. Res. 24, 305–313. 10.1359/jbmr.081015 PubMed DOI PMC

Frisk S., Grandpeix-Guyodo C., Popovic Silwerfeldt K., Hjartarson H. T., Chatzianastassiou D., Magnusson I., et al. (2018). Goltz syndrome in males: A clinical report of a male patient carrying a novel PORCN variant and a review of the literature. Clin. Case Rep. 6, 2103–2110. 10.1002/ccr3.1783 PubMed DOI PMC

Furukawa Y., Haruyama N., Nikaido M., Nakanishi M., Ryu N., Oh-Hora M., et al. (2017). Stim1 regulates enamel mineralization and ameloblast modulation. J. Dent. Res. 96, 1422–1429. 10.1177/0022034517719872 PubMed DOI

Gasse B., Karayigit E., Mathieu E., Jung S., Garret A., Huckert M., et al. (2013). Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta. J. Dent. Res. 92, 598–603. 10.1177/0022034513488393 PubMed DOI

Gasse B., Prasad M., Delgado S., Huckert M., Kawczynski M., Garret-Bernardin A., et al. (2017). Evolutionary analysis predicts sensitive positions of MMP20 and validates newly- and previously-identified MMP20 mutations causing amelogenesis imperfecta. Front. Physiol. 8, 398. 10.3389/fphys.2017.00398 PubMed DOI PMC

Geoffroy V., Herenger Y., Kress A., Stoetzel C., Piton A., Dollfus H., et al. (2018). AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574. 10.1093/bioinformatics/bty304 PubMed DOI

Geoffroy V., Pizot C., Redin C., Piton A., Vasli N., Stoetzel C., et al. (2015). VaRank: A simple and powerful tool for ranking genetic variants. PeerJ 3, e796. 10.7717/peerj.796 PubMed DOI PMC

Gibson C. W., Yuan Z. A., Hall B., Longenecker G., Chen E., Thyagarajan T., et al. (2001). Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 276, 31871–31875. 10.1074/jbc.M104624200 PubMed DOI

Goodwin A. F., Tidyman W. E., Jheon A. H., Sharir A., Zheng X., Charles C., et al. (2014). Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum. Mol. Genet. 23, 682–692. 10.1093/hmg/ddt455 PubMed DOI PMC

Greene S. R., Yuan Z. A., Wright J. T., Amjad H., Abrams W. R., Buchanan J. A., et al. (2002). A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch. Oral Biol. 47, 211–217. 10.1016/s0003-9969(01)00111-x PubMed DOI

Guerrini R., Mei D., Kerti-Szigeti K., Pepe S., Koenig M. K., Von Allmen G., et al. (2022). Phenotypic and genetic spectrum of ATP6V1A encephalopathy: A disorder of lysosomal homeostasis. Brain 145, 2687–2703. 10.1093/brain/awac145 PubMed DOI PMC

Guo D., Ling J., Wang M.-H., She J.-X., Gu J., Wang C.-Y. (2005). Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol. Pain 1, 15–8069. 10.1186/1744-8069-1-15 PubMed DOI PMC

Guo D., Regalado E. S., Pinard A., Chen J., Lee K., Rigelsky C., et al. (2018). LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 102, 706–712. 10.1016/j.ajhg.2018.03.002 PubMed DOI PMC

Happle R., Lenz W. (1977). Striation of bones in focal dermal hypoplasia: Manifestation of functional mosaicism? Br. J. Dermatol 96, 133–135. 10.1111/j.1365-2133.1977.tb12534.x PubMed DOI

Hardies K., de Kovel C. G. F., Weckhuysen S., Asselbergh B., Geuens T., Deconinck T., et al. (2015). Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain 138, 3238–3250. 10.1093/brain/awv263 PubMed DOI

Harrison S. M., Biesecker L. G., Rehm H. L. (2019). Overview of specifications to the ACMG/AMP variant interpretation guidelines. Curr. Protoc. Hum. Genet. 103, e93. 10.1002/cphg.93 PubMed DOI PMC

Hart P. S., Aldred M. J., Crawford P. J. M., Wright N. J., Hart T. C., Wright J. T. (2002a). Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch. Oral Biol. 47, 261–265. 10.1016/s0003-9969(02)00003-1 PubMed DOI

Hart P. S., Hart T. C., Michalec M. D., Ryu O. H., Simmons D., Hong S., et al. (2004). Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J. Med. Genet. 41, 545–549. 10.1136/jmg.2003.017657 PubMed DOI PMC

Hart P. S., Hart T. C., Simmer J. P., Wright J. T. (2002b). A nomenclature for X-linked amelogenesis imperfecta. Arch. Oral Biol. 47, 255–260. 10.1016/s0003-9969(02)00005-5 PubMed DOI

Hart T. C., Hart P. S., Gorry M. C., Michalec M. D., Ryu O. H., Uygur C., et al. (2003). Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J. Med. Genet. 40 (12), 900–906. 10.1136/jmg.40.12.900 PubMed DOI PMC

Harutunian K., Figueiredo R., Gay-Escoda C. (2011). Tuberous sclerosis complex with oral manifestations: A case report and literature review. Med. Oral Patol. Oral Cir. Bucal 16, e478–e481. 10.4317/medoral.16.e478 PubMed DOI

Hassan M. Q., Javed A., Morasso M. I., Karlin J., Montecino M., Wijnen A. J. van, et al. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: Temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell. Biol. 24, 9248–9261. 10.1128/MCB.24.20.9248-9261.2004 PubMed DOI PMC

Heimler A., Fox J. E., Hershey J. E., Crespi P. (1991). Sensorineural hearing loss, enamel hypoplasia, and nail abnormalities in sibs. Am. J. Med. Genet. 39, 192–195. 10.1002/ajmg.1320390214 PubMed DOI

Holcroft J., Ganss B. (2011). Identification of amelotin- and ODAM-interacting enamel matrix proteins using the yeast two-hybrid system. Eur. J. Oral Sci. 119 (1), 301–306. 10.1111/j.1600-0722.2011.00870.x PubMed DOI

Hollister D. W., Klein S. H., De Jager H. J., Lachman R. S., Rimoin D. L. (1973). The lacrimo-auriculo-dento-digital syndrome. J. Pediatr. 83, 438–444. 10.1016/s0022-3476(73)80268-9 PubMed DOI

Hu J. C.-C., Chan H.-C., Simmer S. G., Seymen F., Richardson A. S., Hu Y., et al. (2012a). Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS One 7, e52052. 10.1371/journal.pone.0052052 PubMed DOI PMC

Hu J. C.-C., Yamakoshi Y. (2003). Enamelin and autosomal-dominant amelogenesis imperfecta. Crit. Rev. Oral Biol. Med. 14, 387–398. 10.1177/154411130301400602 PubMed DOI

Hu P., Lacruz R. S., Smith C. E., Smith S. M., Kurtz I., Paine M. L. (2012b). Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts. Cells Tissues Organs 196, 501–509. 10.1159/000337493 PubMed DOI PMC

Huckert M., Mecili H., Laugel-Haushalter V., Stoetzel C., Muller J., Flori E., et al. (2014). A novel mutation in the ROGDI gene in a patient with kohlschütter-tönz syndrome. Mol. Syndromol. 5, 293–298. 10.1159/000366252 PubMed DOI PMC

Huckert M., Stoetzel C., Morkmued S., Laugel-Haushalter V., Geoffroy V., Muller J., et al. (2015). Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum. Mol. Genet. 24, 3038–3049. 10.1093/hmg/ddv053 PubMed DOI PMC

Inoki K., Li Y., Zhu T., Wu J., Guan K.-L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell. Biol. 4, 648–657. 10.1038/ncb839 PubMed DOI

Inoue K., Zhuang L., Ganapathy V. (2002). Human Na+-coupled citrate transporter: Primary structure, genomic organization, and transport function. Biochem. Biophys. Res. Commun. 299, 465–471. 10.1016/S0006-291X(02)02669-4 PubMed DOI

Intarak N., Theerapanon T., Thaweesapphithak S., Suphapeetiporn K., Porntaveetus T., Shotelersuk V. (2019). Genotype-phenotype correlation and expansion of orodental anomalies in LTBP3-related disorders. Mol. Genet. Genomics 294, 773–787. 10.1007/s00438-019-01547-x PubMed DOI

Iwase M., Kaneko S., Kim H., Satta Y., Takahata N. (2007). Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs 186, 49–59. 10.1159/000102680 PubMed DOI

Jabs E. W., Müller U., Li X., Ma L., Luo W., Haworth I. S., et al. (1993). A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 75, 443–450. 10.1016/0092-8674(93)90379-5 PubMed DOI

Jagtap R., Alansari R., Ruprecht A., Kashtwari D. (2019). Trichodentoosseous syndrome: A case report and review of literature. BJR Case Rep. 5, 20190039. 10.1259/bjrcr.20190039 PubMed DOI PMC

Jain P., Kaul R., Saha S., Sarkar S. (2017). Tricho-dento-osseous syndrome and precocious eruption. J. Clin. Exp. Dent. 9, e494–e497. 10.4317/jced.53348 PubMed DOI PMC

Jalili I. K., Smith N. J. (1988). A progressive cone-rod dystrophy and amelogenesis imperfecta: A new syndrome. J. Med. Genet. 25, 738–740. 10.1136/jmg.25.11.738 PubMed DOI PMC

Jani P., Nguyen Q. C., Almpani K., Keyvanfar C., Mishra R., Liberton D., et al. (2020). Severity of oro-dental anomalies in Loeys-Dietz syndrome segregates by gene mutation. J. Med. Genet. 57, 699–707. 10.1136/jmedgenet-2019-106678 PubMed DOI PMC

Jaureguiberry G., De la Dure-Molla M., Parry D., Quentric M., Himmerkus N., Koike T., et al. (2012). Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 122, 1–6. 10.1159/000349989 PubMed DOI PMC

Ji Y., Li C., Tian Y., Gao Y., Dong Z., Xiang L., et al. (2021). Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev. Dyn. 250, 1505–1517. 10.1002/dvdy.336 PubMed DOI

Kantaputra P. N., Hamada T., Kumchai T., McGrath J. A. (2003). Heterozygous mutation in the SAM domain of p63 underlies rapp-hodgkin ectodermal dysplasia. J. Dent. Res. 82, 433–437. 10.1177/154405910308200606 PubMed DOI

Katsura K. A., Horst J. A., Chandra D., Le T. Q., Nakano Y., Zhang Y., et al. (2014). WDR72 models of structure and function: A stage-specific regulator of enamel mineralization. Matrix Biol. 38, 48–58. 10.1016/j.matbio.2014.06.005 PubMed DOI PMC

Katsura K., Nakano Y., Zhang Y., Shemirani R., Li W., Den Besten P. (2022). WDR72 regulates vesicle trafficking in ameloblasts. Sci. Rep. 12, 2820. 10.1038/s41598-022-06751-1 PubMed DOI PMC

Kausalya P. J., Amasheh S., Günzel D., Wurps H., Müller D., Fromm M., et al. (2006). Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J. Clin. Investig. 116, 878–891. 10.1172/JCI26323 PubMed DOI PMC

Khandelwal P., Maheshnull V., Mathur V. P., Raut S., Geetha T. S., Nair S., et al. (2021). Phenotypic variability in distal acidification defects associated with WDR72 mutations. Pediatr. Nephrol. 36, 881–887. 10.1007/s00467-020-04747-5 PubMed DOI

Kim J.-W., Lee S.-K., Lee Z. H., Park J.-C., Lee K.-E., Lee M.-H., et al. (2008). FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am. J. Hum. Genet. 82, 489–494. 10.1016/j.ajhg.2007.09.020 PubMed DOI PMC

Kim J.-W., Seymen F., Lin B. P.-J., Kiziltan B., Gencay K., Simmer J. P., et al. (2005a). ENAM mutations in autosomal-dominant amelogenesis imperfecta. J. Dent. Res. 84, 278–282. 10.1177/154405910508400314 PubMed DOI

Kim J.-W., Simmer J. P., Hart T. C., Hart P. S., Ramaswami M. D., Bartlett J. D., et al. (2005b). MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J. Med. Genet. 42, 271–275. 10.1136/jmg.2004.024505 PubMed DOI PMC

Kim J.-W., Zhang H., Seymen F., Koruyucu M., Hu Y., Kang J., et al. (2019). Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin. Genet. 95, 375–383. 10.1111/cge.13487 PubMed DOI PMC

Kim J. W., Simmer J. P., Hu Y. Y., Lin B. P., Boyd C., Wright J. T., et al. (2004). Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta. J. Dent. Res. 83 (5), 378–383. 10.1177/154405910408300505 PubMed DOI

Kim Y. J., Abe Y., Kim Y.-J., Fujiki Y., Kim J.-W. (2021a). Identification of a homozygous PEX26 mutation in a heimler syndrome patient. Genes. (Basel). 12, 646. 10.3390/genes12050646 PubMed DOI PMC

Kim Y. J., Kang J., Seymen F., Koruyucu M., Gencay K., Shin T. J., et al. (2017). Analyses of MMP20 missense mutations in two families with hypomaturation amelogenesis imperfecta. Front. Physiol. 8, 229. 10.3389/fphys.2017.00229 PubMed DOI PMC

Kim Y. J., Kang J., Seymen F., Koruyucu M., Zhang H., Kasimoglu Y., et al. (2020). Alteration of exon definition causes amelogenesis imperfecta. J. Dent. Res. 99, 410–418. 10.1177/0022034520901708 PubMed DOI PMC

Kim Y. J., Lee Y., Zhang H., Song J.-S., Hu J. C.-C., Simmer J. P., et al. (2021b). A novel de novo SP6 mutation causes severe hypoplastic amelogenesis imperfecta. Genes. (Basel). 12, 346. 10.3390/genes12030346 PubMed DOI PMC

Kindelan S. A., Brook A. H., Gangemi L., Lench N., Wong F. S., Fearne J., et al. (2000). Detection of a novel mutation in X-linked amelogenesis imperfecta. J. Dent. Res. 79, 1978–1982. 10.1177/00220345000790120901 PubMed DOI

Kiritsi D., Huilaja L., Franzke C.-W., Kokkonen N., Pazzagli C., Schwieger-Briel A., et al. (2015). Junctional epidermolysis bullosa with LAMB3 splice-site mutations. Acta Derm. Venereol. 95, 849–851. 10.2340/00015555-2073 PubMed DOI

Kittler R., Putz G., Pelletier L., Poser I., Heninger A.-K., Drechsel D., et al. (2004). An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040. 10.1038/nature03159 PubMed DOI

Kohlschütter A., Chappuis D., Meier C., Tönz O., Vassella F., Herschkowitz N., et al. (1974). Familial epilepsy and yellow teeth-a disease of the CNS associated with enamel hypoplasia. Helv. Paediatr. Acta 29, 283–294. PubMed

Konrad M., Schaller A., Seelow D., Pandey A. V., Waldegger S., Lesslauer A., et al. (2006). Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957. 10.1086/508617 PubMed DOI PMC

Kosaki R., Naito Y., Torii C., Takahashi T., Nakajima T., Kosaki K. (2008). Split hand foot malformation with whorl-like pigmentary pattern: Phenotypic expression of somatic mosaicism for the p63 mutation. Am. J. Med. Genet. A 146A, 2574–2577. 10.1002/ajmg.a.32415 PubMed DOI

Kuga T., Sasaki M., Mikami T., Miake Y., Adachi J., Shimizu M., et al. (2016). FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci. Rep. 6, 26557. 10.1038/srep26557 PubMed DOI PMC

Lacruz R. S., Feske S. (2015). Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci. 1356, 45–79. 10.1111/nyas.12938 PubMed DOI PMC

Lagerström M., Dahl N., Iselius L., Bäckman B., Pettersson U. (1990). Mapping of the gene for X-linked amelogenesis imperfecta by linkage analysis. Am. J. Hum. Genet. 46, 120–125. PubMed PMC

Lagerström M., Dahl N., Nakahori Y., Nakagome Y., Bäckman B., Landegren U., et al. (1991). A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10, 971–975. 10.1016/0888-7543(91)90187-j PubMed DOI

Landrum M. J., Lee J. M., Benson M., Brown G. R., Chao C., Chitipiralla S., et al. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46 (D1), D1062–D1067. 10.1093/nar/gkx1153 PubMed DOI PMC

Larrègue M., Duterque M. (1975). Letter: Striated osteopathy in focal dermal hypoplasia. Arch. Dermatol 111 (10), 1365. 10.1001/archderm.1975.01630220129019 PubMed DOI

Lau E. C., Mohandas T. K., Shapiro L. J., Slavkin H. C., Snead M. L. (1989). Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4, 162–168. 10.1016/0888-7543(89)90295-4 PubMed DOI

Laugel-Haushalter V., Bär S., Schaefer E., Stoetzel C., Geoffroy V., Alembik Y., et al. (2019). A new SLC10A7 homozygous missense mutation responsible for a milder phenotype of skeletal dysplasia with amelogenesis imperfecta. Front. Genet. 10, 504. 10.3389/fgene.2019.00504 PubMed DOI PMC

Lee K.-E., Ko J., Le C. G. T., Shin T. J., Hyun H.-K., Lee S.-H., et al. (2015). Novel LAMB3 mutations cause non-syndromic amelogenesis imperfecta with variable expressivity. Clin. Genet. 87, 90–92. 10.1111/cge.12340 PubMed DOI PMC

Lee N. P. Y., Tong M. K., Leung P. P., Chan V. W., Leung S., Tam P.-C., et al. (2006). Kidney claudin-19: Localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett. 580, 923–931. 10.1016/j.febslet.2006.01.019 PubMed DOI

Lee S.-K., Seymen F., Kang H.-Y., Lee K.-E., Gencay K., Tuna B., et al. (2010). MMP20 hemopexin domain mutation in amelogenesis imperfecta. J. Dent. Res. 89, 46–50. 10.1177/0022034509352844 PubMed DOI PMC

Lee S. K., Lee K. E., Jeong T. S., Hwang Y. H., Kim S., Hu J. C., et al. (2011). FAM83H mutations cause ADHCAI and alter intracellular protein localization. J. Dent. Res. 90 (3), 377–381. 10.1177/0022034510389177 PubMed DOI PMC

Lench N. J., Winter G. B. (1995). Characterisation of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum. Mutat. 5, 251–259. 10.1002/humu.1380050310 PubMed DOI

Li X., Yin W., Pérez-Jurado L., Bonadio J., Francke U. (1995). Mapping of human and murine genes for latent TGF-β binding protein-2 (LTBP2). Mamm. Genome 6, 42–45. 10.1007/BF00350892 PubMed DOI

Liang T., Hu Y., Smith C. E., Richardson A. S., Zhang H., Yang J., et al. (2019). AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity. Mol. Genet. Genomic Med. 7, e929. 10.1002/mgg3.929 PubMed DOI PMC

Lindemeyer R. G., Gibson C. W., Wright T. J. (2010). Amelogenesis imperfecta due to a mutation of the enamelin gene: Clinical case with genotype-phenotype correlations. Pediatr. Dent. 32 (1), 56–60. PubMed PMC

Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., et al. (2018). Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 10, 26. 10.1038/s41368-018-0027-9 PubMed DOI PMC

Ludwig M.-G., Vanek M., Guerini D., Gasser J. A., Jones C. E., Junker U., et al. (2003). Proton-sensing G-protein-coupled receptors. Nature 425, 93–98. 10.1038/nature01905 PubMed DOI

Maas S. M., Jong T. P. V. M. de, Buss P., Hennekam R. C. M. (1996). EEC syndrome and genitourinary anomalies: An update. Am. J. Med. Genet. 63, 472–478. 10.1002/(SICI)1096-8628(19960614)63:3<472::AID-AJMG11>3.0 PubMed DOI

Mårdh C. K., Bäckman B., Holmgren G., Hu J. C., Simmer J. P., Forsman-Semb K. (2002). A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum. Mol. Genet. 11(9), 1069–1074. 10.1093/hmg/11.9.1069 PubMed DOI

Martelli-Júnior H., dos Santos Neto P. E., de Aquino S. N., de Oliveira Santos C. C., Borges S. P., Oliveira E. A., et al. (2011). Amelogenesis imperfecta and nephrocalcinosis syndrome: A case report and review of the literature. Nephron Physiol. 118 (3), 62–65. 10.1159/000322828 PubMed DOI

Martino F., D’Eufemia P., Pergola M. S., Finocchiaro R., Celli M., Giampà G., et al. (1992). Child with manifestations of dermotrichic syndrome and ichthyosis follicularis-alopecia-photophobia (IFAP) syndrome. Am. J. Med. Genet. 44, 233–236. 10.1002/ajmg.1320440222 PubMed DOI

Masunaga T. (2006). Epidermal basement membrane: Its molecular organization and blistering disorders. Connect. Tissue Res. 47, 55–66. 10.1080/03008200600584157 PubMed DOI

Mátyás G., Arnold E., Carrel T., Baumgartner D., Boileau C., Berger W., et al. (2006). Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum. Mutat. 27, 760–769. 10.1002/humu.20353 PubMed DOI

McCarl C.-A., Picard C., Khalil S., Kawasaki T., Röther J., Papolos A., et al. (2009). ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124, 1311–1318. 10.1016/j.jaci.2009.10.007 PubMed DOI PMC

McGrath J. A., Li K., Dunnill M. G. S., McMillan J. R., Christiano A. M., Eady R. A., et al. (1996). Compound heterozygosity for a dominant Glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. Am. J. Pathol. 148 (6), 1787–1796. PubMed PMC

McNally B. A., Somasundaram A., Yamashita M., Prakriya M. (2012). Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482, 241–245. 10.1038/nature10752 PubMed DOI PMC

Mechaussier S., Perrault I., Dollfus H., Bloch-Zupan A., Loundon N., Jonard L., et al. (2020). Heimler syndrome. Adv. Exp. Med. Biol. 1299, 81–87. 10.1007/978-3-030-60204-8_7 PubMed DOI

Mendoza G., Pemberton T. J., Lee K., Scarel-Caminaga R., Mehrian-Shai R., Gonzalez-Quevedo C., et al. (2007). A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3. Hum. Genet. 120, 653–662. 10.1007/s00439-006-0246-6 PubMed DOI PMC

Molla M., Descroix V., Aïoub M., Simon S., Castañeda B., Hotton D., et al. (2010). Enamel protein regulation and dental and periodontal physiopathology in Msx2 mutant mice. Am. J. Pathol. 177, 2516–2526. 10.2353/ajpath.2010.091224 PubMed DOI PMC

Montaño A. M., Tomatsu S., Brusius A., Smith M., Orii T. (2008). Growth charts for patients affected with Morquio A disease. Am. J. Med. Genet. Part A 146A, 1286–1295. 10.1002/ajmg.a.32281 PubMed DOI

Mory A., Dagan E., Illi B., Duquesnoy P., Mordechai S., Shahor I., et al. (2012). A nonsense mutation in the human homolog of Drosophila rogdi causes kohlschutter–tonz syndrome. Am. J. Hum. Genet. 90, 708–714. 10.1016/j.ajhg.2012.03.005 PubMed DOI PMC

Müller D., Kausalya P. J., Meij I. C., Hunziker W. (2006). Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: Blocking endocytosis restores surface expression of a novel claudin-16 mutant that lacks the entire C-terminal cytosolic tail. Hum. Mol. Genet. 15, 1049–1058. 10.1093/hmg/ddl020 PubMed DOI

Muto T., Miyoshi K., Horiguchi T., Noma T. (2012). Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression. J. Med. Investig. 59, 59–68. 10.2152/jmi.59.59 PubMed DOI

Nagamine K., Peterson P., Scott H. S., Kudoh J., Minoshima S., Heino M., et al. (1997). Positional cloning of the APECED gene. Nat. Genet. 17, 393–398. 10.1038/ng1297-393 PubMed DOI

Nakamura T., de Vega S., Fukumoto S., Jimenez L., Unda F., Yamada Y. (2008). Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J. Biol. Chem. 283, 4825–4833. 10.1074/jbc.M708388200 PubMed DOI

Nakamura T., Unda F., de-Vega S., Vilaxa A., Fukumoto S., Yamada K. M., et al. (2004). The Krüppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation. J. Biol. Chem. 279, 626–634. 10.1074/jbc.M307502200 PubMed DOI

Nalbant D., Youn H., Nalbant S. I., Sharma S., Cobos E., Beale E. G., et al. (2005). FAM20: An evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics 6, 11. 10.1186/1471-2164-6-11 PubMed DOI PMC

Neuhaus C., Eisenberger T., Decker C., Nagl S., Blank C., Pfister M., et al. (2017). Next-generation sequencing reveals the mutational landscape of clinically diagnosed usher syndrome: Copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in heimler syndrome. Mol. Genet. Genomic Med. 5, 531–552. 10.1002/mgg3.312 PubMed DOI PMC

Nikolopoulos G., Smith C. E. L., Brookes S. J., El-Asrag M. E., Brown C. J., Patel A., et al. (2020). New missense variants in RELT causing hypomineralised amelogenesis imperfecta. Clin. Genet. 97, 688–695. 10.1111/cge.13721 PubMed DOI PMC

Nikolopoulos G., Smith C. E. L., Poulter J. A., Murillo G., Silva S., Lamb T., et al. (2021). Spectrum of pathogenic variants and founder effects in amelogenesis imperfecta associated with MMP20. Hum. Mutat. 42, 567–576. 10.1002/humu.24187 PubMed DOI

Noor A., Windpassinger C., Vitcu I., Orlic M., Rafiq M. A., Khalid M., et al. (2009). Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. Am. J. Hum. Genet. 84, 519–523. 10.1016/j.ajhg.2009.03.007 PubMed DOI PMC

Nurbaeva M. K., Eckstein M., Concepcion A. R., Smith C. E., Srikanth S., Paine M. L., et al. (2015). Dental enamel cells express functional SOCE channels. Sci. Rep. 5, 15803. 10.1038/srep15803 PubMed DOI PMC

Ogawa T., Tomatsu S., Fukuda S., Yamagishi A., Rezvi G. M., Sukegawa K., et al. (1995). Mucopolysaccharidosis IVA: Screening and identification of mutations of the N-acetylgalactosamine-6-sulfate sulfatase gene. Hum. Mol. Genet. 4, 341–349. 10.1093/hmg/4.3.341 PubMed DOI

O’Sullivan J., Bitu C. C., Daly S. B., Urquhart J. E., Barron M. J., Bhaskar S. S., et al. (2011). Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am. J. Hum. Genet. 88, 616–620. 10.1016/j.ajhg.2011.04.005 PubMed DOI PMC

Ozdemir D., Hart P. S., Firatli E., Aren G., Ryu O. H., Hart T. C. (2005a). Phenotype of ENAM mutations is dosage-dependent. J. Dent. Res. 84, 1036–1041. 10.1177/154405910508401113 PubMed DOI PMC

Ozdemir D., Hart P. S., Ryu O. H., Choi S. J., Ozdemir-Karatas M., Firatli E., et al. (2005b). MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J. Dent. Res. 84, 1031–1035. 10.1177/154405910508401112 PubMed DOI PMC

Papagerakis P., Lin H.-K., Lee K. Y., Hu Y., Simmer J. P., Bartlett J. D., et al. (2008). Premature stop codon in MMP20 causing amelogenesis imperfecta. J. Dent. Res. 87, 56–59. 10.1177/154405910808700109 PubMed DOI PMC

Parker N. J., Begley C. G., Smith P. J., Fox R. M. (1996). Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253–256. 10.1006/geno.1996.0553 PubMed DOI

Parry D. A., Brookes S. J., Logan C. V., Poulter J. A., El-Sayed W., Al-Bahlani S., et al. (2012). Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am. J. Hum. Genet. 91, 565–571. 10.1016/j.ajhg.2012.07.020 PubMed DOI PMC

Parry D. A., Holmes T. D., Gamper N., El-Sayed W., Hettiarachchi N. T., Ahmed M., et al. (2016a). A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency. J. Allergy Clin. Immunol. 137, 955–957. 10.1016/j.jaci.2015.08.051 PubMed DOI PMC

Parry D. A., Mighell A. J., El-Sayed W., Shore R. C., Jalili I. K., Dollfus H., et al. (2009). Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet. 84, 266–273. 10.1016/j.ajhg.2009.01.009 PubMed DOI PMC

Parry D. A., Poulter J. A., Logan C. V., Brookes S. J., Jafri H., Ferguson C. H., et al. (2013). Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. Am. J. Hum. Genet. 92, 307–312. 10.1016/j.ajhg.2013.01.003 PubMed DOI PMC

Parry D. A., Smith C. E. L., El-Sayed W., Poulter J. A., Shore R. C., Logan C. V., et al. (2016b). Mutations in the pH-sensing G-protein-coupled receptor GPR68 cause amelogenesis imperfecta. Am. J. Hum. Genet. 99, 984–990. 10.1016/j.ajhg.2016.08.020 PubMed DOI PMC

Pavlic A., Waltimo-Sirén J. (2009). Clinical and microstructural aberrations of enamel of deciduous and permanent teeth in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Arch. Oral Biol. 54, 658–665. 10.1016/j.archoralbio.2009.03.009 PubMed DOI

Peracha H., Sawamoto K., Averill L., Kecskemethy H., Theroux M., Thacker M., et al. (2018). Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol. Genet. Metab. 125, 18–37. 10.1016/j.ymgme.2018.05.004 PubMed DOI PMC

Pereverzev A., Komarova S. V., Korcok J., Armstrong S., Tremblay G. B., Dixon S. J., et al. (2008). Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone 42, 150–161. 10.1016/j.bone.2007.08.044 PubMed DOI

Perniola R. (2018). Twenty years of AIRE. Front. Immunol. 9, 98. 10.3389/fimmu.2018.00098 PubMed DOI PMC

Picard C., McCarl C.-A., Papolos A., Khalil S., Lüthy K., Hivroz C., et al. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980. 10.1056/NEJMoa0900082 PubMed DOI PMC

Plaisancié J., Collet C., Pelletier V., Perdomo Y., Studer F., Fradin M., et al. (2015). MSX2 gene duplication in a patient with eye development defects. Ophthalmic Genet. 36, 353–358. 10.3109/13816810.2014.886270 PubMed DOI

Pollak C., Floy M., Say B. (2003). Sensorineural hearing loss and enamel hypoplasia with subtle nail findings: Another family with heimler’s syndrome. Clin. Dysmorphol. 12, 55–58. 10.1097/00019605-200301000-00010 PubMed DOI

Polok B., Escher P., Ambresin A., Chouery E., Bolay S., Meunier I., et al. (2009). Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 84, 259–265. 10.1016/j.ajhg.2009.01.006 PubMed DOI PMC

Portsteffen H., Beyer A., Becker E., Epplen C., Pawlak A., Kunau W.-H., et al. (1997). Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat. Genet. 17, 449–452. 10.1038/ng1297-449 PubMed DOI

Poulter J. A., Brookes S. J., Shore R. C., Smith C. E. L., Abi Farraj L., Kirkham J., et al. (2014a). A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum. Mol. Genet. 23, 2189–2197. 10.1093/hmg/ddt616 PubMed DOI PMC

Poulter J. A., Murillo G., Brookes S. J., Smith C. E. L., Parry D. A., Silva S., et al. (2014b). Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 23, 5317–5324. 10.1093/hmg/ddu247 PubMed DOI PMC

Prasad M. K., Geoffroy V., Vicaire S., Jost B., Dumas M., Le Gras S., et al. (2016a). A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J. Med. Genet. 53, 98–110. 10.1136/jmedgenet-2015-103302 PubMed DOI PMC

Prasad M. K., Laouina S., El Alloussi M., Dollfus H., Bloch-Zupan A. (2016b). Amelogenesis imperfecta: 1 family, 2 phenotypes, and 2 mutated genes. J. Dent. Res. 95, 1457–1463. 10.1177/0022034516663200 PubMed DOI

Price J. A., Bowden D. W., Tim Wright J., Pettenati M. J., Hart T. C. (1998). Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum. Mol. Genet. 7, 563–569. 10.1093/hmg/7.3.563 PubMed DOI

Raine J., Winter R. M., Davey A., Tucker S. M. (1989). Unknown syndrome: Microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J. Med. Genet. 26, 786–788. 10.1136/jmg.26.12.786 PubMed DOI PMC

Rao S., Witkop C. J. (1971). Inherited defects in tooth structure. Birth Defects Orig. Artic. Ser. 7, 153–184. PubMed

Rapp R. S., Hodgkin W. E. (1968). Anhidrotic ectodermal dysplasia: Autosomal dominant inheritance with palate and lip anomalies. J. Med. Genet. 5, 269–272. 10.1136/jmg.5.4.269 PubMed DOI PMC

Ratbi I., Falkenberg K. D., Sommen M., Al-Sheqaih N., Guaoua S., Vandeweyer G., et al. (2015). Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6. Am. J. Hum. Genet. 97, 535–545. 10.1016/j.ajhg.2015.08.011 PubMed DOI PMC

Rathi N., Mattoo K., Bhatnagar S. (2014). Extending the use of a diagnostic occlusal splint to overcome existing lacunae of vertical dimension transfer in full mouth rehabilitation cases. Am. J. Med. Case Rep. 2, 291–297. 10.12691/ajmcr-2-12-9 DOI

Reese M. G., Eeckman F. H., Kulp D., Haussler D. (1997). Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323. 10.1089/cmb.1997.4.311 PubMed DOI

Reuber B. E., Germain-Lee E., Collins C. S., Morrell J. C., Ameritunga R., Moser H. W., et al. (1997). Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17, 445–448. 10.1038/ng1297-445 PubMed DOI

Rey T., Tarabeux J., Gerard B., Delbarre M., Le Béchec A., Stoetzel C., et al. (2019). Protocol GenoDENT: Implementation of a new NGS panel for molecular diagnosis of genetic disorders with orodental involvement. Methods Mol. Biol. 1922, 407–452. 10.1007/978-1-4939-9012-2_36 PubMed DOI

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17, 405–424. 10.1038/gim.2015.30 PubMed DOI PMC

Rinne T., Hamel B., van Bokhoven H., Brunner H. G. (2006). Pattern of p63 mutations and their phenotypes-update. Am. J. Med. Genet. A 140, 1396–1406. 10.1002/ajmg.a.31271 PubMed DOI

Robinson C. (2014). Enamel maturation: A brief background with implications for some enamel dysplasias. Front. Physiol. 5, 388. 10.3389/fphys.2014.00388 PubMed DOI PMC

Rølling I., Clausen N., Nyvad B., Sindet-Pedersen S. (1999). Dental findings in three siblings with Morquio’s syndrome. Int. J. Paediatr. Dent. 9, 219–224. 10.1046/j.1365-263x.1999.00127.x PubMed DOI

Ruspita I., Das P., Xia Y., Kelangi S., Miyoshi K., Noma T., et al. (2020). An msx2-sp6-follistatin pathway operates during late stages of tooth development to control amelogenesis. Front. Physiol. 11, 582610. 10.3389/fphys.2020.582610 PubMed DOI PMC

Sabbioni S., Veronese A., Trubia M., Taramelli R., Barbanti-Brodano G., Croce C. M., et al. (1999). Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet Celll Genet. 86, 214–218. 10.1159/000015341 PubMed DOI

Sawamoto K., Álvarez González J. V., Piechnik M., Otero F. J., Couce M. L., Suzuki Y., et al. (2020). Mucopolysaccharidosis IVA: Diagnosis, treatment, and management. Int. J. Mol. Sci. 21. 1517. 10.3390/ijms21041517 PubMed DOI PMC

Scherer S. W., Heng H. H. Q., Robinson G. W., Mahon K. A., Evans J. P., Tsui L.-C. (1995). Assignment of the human homolog of mouse Dlx3 to Chromosome 17q21.3-q22 by analysis of somatic cell hybrids and fluorescence in situ hybridization. Mamm. Genome 6, 310–311. 10.1007/BF00352432 PubMed DOI

Schossig A., Bloch-Zupan A., Lussi A., Wolf N. I., Raskin S., Cohen M., et al. (2017). SLC13A5 is the second gene associated with Kohlschütter-Tönz syndrome. J. Med. Genet. 54, 54–62. 10.1136/jmedgenet-2016-103988 PubMed DOI

Schossig A., Wolf N. I., Fischer C., Fischer M., Stocker G., Pabinger S., et al. (2012). Mutations in ROGDI cause kohlschütter-tönz syndrome. Am. J. Hum. Genet. 90, 701–707. 10.1016/j.ajhg.2012.02.012 PubMed DOI PMC

Schulze C. (1970). “Developmental abnormalities of the teeth and jaws,” in Thoma’s oral pathology. Editors Gorlin R. J., Goldman H. M. (St Louis: C. V. Mosby; ), 112–122.

Sewerin S., Piontek J., Schönauer R., Grunewald S., Rauch A., Neuber S., et al. (2022). Defective claudin-10 causes a novel variation of HELIX syndrome through compromised tight junction strand assembly. Genes. Dis. 9, 1301–1314. 10.1016/j.gendis.2021.06.006 PubMed DOI PMC

Seymen F., Kim Y. J., Lee Y. J., Kang J., Kim T.-H., Choi H., et al. (2016). Recessive mutations in ACPT, encoding testicular acid phosphatase, cause hypoplastic amelogenesis imperfecta. Am. J. Hum. Genet. 99, 1199–1205. 10.1016/j.ajhg.2016.09.018 PubMed DOI PMC

Seymen F., Lee K.-E., Koruyucu M., Gencay K., Bayram M., Tuna E. B., et al. (2014a). ENAM mutations with incomplete penetrance. J. Dent. Res. 93, 988–992. 10.1177/0022034514548222 PubMed DOI PMC

Seymen F., Lee K.-E., Koruyucu M., Gencay K., Bayram M., Tuna E. B., et al. (2015a). Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta. Oral Dis. 21, 456–461. 10.1111/odi.12303 PubMed DOI PMC

Seymen F., Lee K.-E., Tran Le C. G., Yildirim M., Gencay K., Lee Z. H., et al. (2014b). Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta. J. Dent. Res. 93, 366–370. 10.1177/0022034514523786 PubMed DOI

Seymen F., Park J.-C., Lee K.-E., Lee H.-K., Lee D.-S., Koruyucu M., et al. (2015b). Novel MMP20 and KLK4 mutations in amelogenesis imperfecta. J. Dent. Res. 94, 1063–1069. 10.1177/0022034515590569 PubMed DOI

Seymen F., Zhang H., Kasimoglu Y., Koruyucu M., Simmer J. P., Hu J. C.-C., et al. (2021). Novel mutations in GPR68 and SLC24A4 cause hypomaturation amelogenesis imperfecta. J. Pers. Med. 12, 13. 10.3390/jpm12010013 PubMed DOI PMC

Shaheen R., Ansari S., Alshammari M. J., Alkhalidi H., Alrukban H., Eyaid W., et al. (2013). A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J. Med. Genet. 50, 431–436. 10.1136/jmedgenet-2013-101527 PubMed DOI

Shapiro M. B., Senapathy P. (1987). RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174. 10.1093/nar/15.17.7155 PubMed DOI PMC

Shore R. C., Bäckman B., Elcock C., Brook A. H., Brookes S. J., Kirkham J. (2010). The structure and composition of deciduous enamel affected by local hypoplastic autosomal dominant amelogenesis imperfecta resulting from an ENAM mutation. Cells Tissues Organs 191, 301–306. 10.1159/000258703 PubMed DOI

Simmer J. P., Hu J. C.-C., Hu Y., Zhang S., Liang T., Wang S.-K., et al. (2021). A genetic model for the secretory stage of dental enamel formation. J. Struct. Biol. 213, 107805. 10.1016/j.jsb.2021.107805 PubMed DOI PMC

Simmer J. P., Hu Y., Lertlam R., Yamakoshi Y., Hu J. C.-C. (2009). Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J. Biol. Chem. 284, 19110–19121. 10.1074/jbc.M109.013623 PubMed DOI PMC

Simon D. B., Lu Y., Choate K. A., Velazquez H., Al-Sabban E., Praga M., et al. (1999). Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106. 10.1126/science.285.5424.103 PubMed DOI

Simpson M. A., Hsu R., Keir L. S., Hao J., Sivapalan G., Ernst L. M., et al. (2007). Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am. J. Hum. Genet. 81, 906–912. 10.1086/522240 PubMed DOI PMC

Simpson M. A., Scheuerle A., Hurst J., Patton M. A., Stewart H., Crosby A. H. (2009). Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin. Genet. 75, 271–276. 10.1111/j.1399-0004.2008.01118.x PubMed DOI

Slegtenhorst M. van, Hoogt R. de, Hermans C., Nellist M., Janssen B., Verhoef S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808. 10.1126/science.277.5327.805 PubMed DOI

Smith C. E. L., Kirkham J., Day P. F., Soldani F., McDerra E. J., Poulter J. A., et al. (2017a). A fourth KLK4 mutation is associated with enamel hypomineralisation and structural abnormalities. Front. Physiol. 8, 333. 10.3389/fphys.2017.00333 PubMed DOI PMC

Smith C. E. L., Murillo G., Brookes S. J., Poulter J. A., Silva S., Kirkham J., et al. (2016). Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 25, 3578–3587. 10.1093/hmg/ddw203 PubMed DOI PMC

Smith C. E. L., Poulter J. A., Brookes S. J., Murillo G., Silva S., Brown C. J., et al. (2019). Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta. J. Dent. Res. 98, 698–704. 10.1177/0022034519835205 PubMed DOI PMC

Smith C. E. L., Whitehouse L. L. E., Poulter J. A., Wilkinson Hewitt L., Nadat F., Jackson B. R., et al. (2020). A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum. Mol. Genet. 29, 1417–1425. 10.1093/hmg/ddaa041 PubMed DOI PMC

Smith C. E., Whitehouse L. L., Poulter J. A., Brookes S. J., Day P. F., Soldani F., et al. (2017b). Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta. Eur. J. Hum. Genet. 25, 1015–1019. 10.1038/ejhg.2017.79 PubMed DOI PMC

Spedicati B., Cocca M., Palmisano R., Faletra F., Barbieri C., Francescatto M., et al. (2021). Natural human knockouts and mendelian disorders: Deep phenotyping in Italian isolates. Eur. J. Hum. Genet. 29, 1272–1281. 10.1038/s41431-021-00850-9 PubMed DOI PMC

Sripathomsawat W., Tanpaiboon P., Heering J., Dötsch V., Hennekam R. C. M., Kantaputra P. (2011). Phenotypic analysis of Arg227 mutations of TP63 with emphasis on dental phenotype and micturition difficulties in EEC syndrome. Am J M Genet A 155, 228–232. 10.1002/ajmg.a.33768 PubMed DOI

Su X., Chakravarti D., Cho M. S., Liu L., Gi Y. J., Lin Y.-L., et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990. 10.1038/nature09459 PubMed DOI PMC

Suh J., Choi H. S., Kwon A., Chae H. W., Lee J.-S., Kim H.-S. (2019). A novel compound heterozygous mutation of the AIRE gene in a patient with autoimmune polyendocrine syndrome type 1. Ann. Pediatr. Endocrinol. Metab. 24, 248–252. 10.6065/apem.2019.24.4.248 PubMed DOI PMC

Sun S., Yu M., Fan Z., Yeh I.-T., Feng H., Liu H., et al. (2019). DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochem. Biophys. Res. Commun. 516, 171–176. 10.1016/j.bbrc.2019.06.029 PubMed DOI

Sutton V. R., van Bokhoven H. (2010). “TP63-Related disorders,” in GeneReviews® [Internet]. Editors Adam M. P., Everman D. B., Mirzaa G. M., Pagon R. A., Wallace S. E., Bean L. J. H., et al. (Seattle (WA): University of Washington, Seattle; ), 1993–2022. PubMed

Tabata M. J., Matsumura T., Liu J. G., Wakisaka S., Kurisu K. (1996). Expression of cytokeratin 14 in ameloblast-lineage cells of the developing tooth of rat, both in vivo and in vitro . Arch. Oral Biol. 41, 1019–1027. 10.1016/s0003-9969(96)00087-8 PubMed DOI

Tanaka A., Weinel S., Nagy N., O’Driscoll M., Lai-Cheong J. E., Kulp-Shorten C. L., et al. (2012). Germline mutation in ATR in autosomal- dominant oropharyngeal cancer syndrome. Am. J. Hum. Genet. 90, 511–517. 10.1016/j.ajhg.2012.01.007 PubMed DOI PMC

Tanimoto K., Le T., Zhu L., Witkowska H. E., Robinson S., Hall S., et al. (2008). Reduced amelogenin-MMP20 interactions in amelogenesis imperfecta. J. Dent. Res. 87, 451–455. 10.1177/154405910808700516 PubMed DOI PMC

The 1000 Geno mes Project Consortium Gibbs R. A., Boerwinkle E., Doddapaneni H., Han Y., Korchina V., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393 PubMed DOI PMC

Tomura H., Wang J.-Q., Liu J.-P., Komachi M., Damirin A., Mogi C., et al. (2008). Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J. Bone Min. Res. 23, 1129–1139. 10.1359/jbmr.080236 PubMed DOI

Torres L. H. S., de-Azevedo-Vaz S. L., Barroso D. R. C., Silva D. N., Velloso T. R. G., de Barros L. A. P. (2018). Enamel-renal-syndrome: Case report. Spec. Care Dent. 38 (3), 172–175. 10.1111/scd.12288 PubMed DOI

Toyosawa S., Fujiwara T., Ooshima T., Shintani S., Sato A., Ogawa Y., et al. (2000). Cloning and characterization of the human ameloblastin gene. Gene 256, 1–11. 10.1016/S0378-1119(00)00379-6 PubMed DOI

Tucci A., Kara E., Schossig A., Wolf N. I., Plagnol V., Fawcett K., et al. (2013). Kohlschütter-Tönz syndrome: Mutations in ROGDI and evidence of genetic heterogeneity. Hum. Mutat. 34 (2), 296–300. 10.1002/humu.22241 PubMed DOI PMC

Utami T. W., Miyoshi K., Hagita H., Yanuaryska R. D., Horiguchi T., Noma T. (2011). Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J. Biomed. Biotechnol. 2011, 320987. 10.1155/2011/320987 PubMed DOI PMC

Vahidnezhad H., Youssefian L., Zeinali S., Saeidian A. H., Sotoudeh S., Mozafari N., et al. (2017). Dystrophic epidermolysis bullosa: COL7A1 mutation landscape in a multi-ethnic cohort of 152 extended families with high degree of customary consanguineous marriages. J. Investig. Dermatol 137, 660–669. 10.1016/j.jid.2016.10.023 PubMed DOI

van Bakel I., Sepp T., Ward S., Yates J. R. W., Green A. J. (1997). Mutations in the TSC2 gene: Analysis of the complete coding sequence using the protein truncation test (PTT). Hum. Mol. Genet. 6, 1409–1414. 10.1093/hmg/6.9.1409 PubMed DOI

Vieira G. H., Rodriguez J. D., Carmona-Mora P., Cao L., Gamba B. F., Carvalho D. R., et al. (2012). Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith-Magenis syndrome. Eur. J. Hum. Genet. 20, 148–154. 10.1038/ejhg.2011.167 PubMed DOI PMC

Vig M., Peinelt C., Beck A., Koomoa D. L., Rabah D., Koblan-Huberson M., et al. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223. 10.1126/science.1127883 PubMed DOI PMC

Wang S.-K., Choi M., Richardson A. S., Reid B. M., Lin B. P., Wang S. J., et al. (2014b). ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum. Mol. Genet. 23, 2157–2163. 10.1093/hmg/ddt611 PubMed DOI PMC

Wang S.-K., Hu Y., Simmer J. P., Seymen F., Estrella N. M. R. P., Pal S., et al. (2013). Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J. Dent. Res. 92, 266–271. 10.1177/0022034513475626 PubMed DOI PMC

Wang S.-K., Zhang H., Chavez M. B., Hu Y., Seymen F., Koruyucu M., et al. (2020). Dental malformations associated with biallelic MMP20 mutations. Mol. Genet. Genomic Med. 8, e1307. 10.1002/mgg3.1307 PubMed DOI PMC

Wang S., Choi M., Richardson A. S., Reid B. M., Seymen F., Yildirim M., et al. (2014a). STIM1 and SLC24A4 are critical for enamel maturation. J. Dent. Res. 93, 94S-100S–100S. 10.1177/0022034514527971 PubMed DOI PMC

Wang X., Zhao Y., Yang Y., Qin M. (2015). Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PLoS One 10, e0116514. 10.1371/journal.pone.0116514 PubMed DOI PMC

Wazen R. M., Viegas-Costa L. C., Fouillen A., Moffatt P., Adair-Kirk T. L., Senior R. M., et al. (2016). Laminin γ2 knockout mice rescued with the human protein exhibit enamel maturation defects. Matrix Biol. 52 (54), 207–218. 10.1016/j.matbio.2016.03.002 PubMed DOI

Weinmann J. P., Svoboda J. F., Woods R. W. (1945). Hereditary disturbances of enamel formation and Calcification**From the research department, loyola university, school of Dentistry, chicago College of dental surgery, and the department of health and welfare, bureau of health, division of dental health, augusta, Maine. J. Am. Dent. Assoc. 32, 397–418. 10.14219/jada.archive.1945.0063 DOI

Whitehouse L. L. E., Smith C. E. L., Poulter J. A., Brown C. J., Patel A., Lamb T., et al. (2019). Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis. 25, 182–191. 10.1111/odi.12955 PubMed DOI PMC

Wimalarathna A., Abeyasinghe U., Jayasooriya P., Herath C. (2020). Amelogenesis imperfecta: A literature review based guide to diagnosis and management. J. M. Dent. 10, 94–101. 10.46875/jmd.v10i3.532 DOI

Witkop C. J. (1988). Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: Problems in classification. J. Oral Pathol. 17, 547–553. 10.1111/j.1600-0714.1988.tb01332.x PubMed DOI

Witkop C. J. (1957). Hereditary defects in enamel and dentin. Acta Genet. Stat. Med. 7, 236–239. 10.1159/000150974 PubMed DOI

Witkop C. J. (1971). Manifestations of genetic diseases in the human pulp. Oral Surg. Oral Med. Oral Pathol. 32, 278–316. 10.1016/0030-4220(71)90232-5 PubMed DOI

Witkop C. J., Sauk J. J. (1976). “Heritable defects of enamel,” in Oral facial genetics. Editors Stewart R., Prescott G. (St. Louis: C.V. Mosby Company; ), 151–226.

Wright J. T., Carrion I. A., Morris C. (2015). The molecular basis of hereditary enamel defects in humans. J. Dent. Res. 94, 52–61. 10.1177/0022034514556708 PubMed DOI PMC

Wright J. T. (2023). Enamel phenotypes: Genetic and environmental determinants. Genes. 14, 545. 10.3390/genes14030545 PubMed DOI PMC

Wright J. T., Puranik C. P., Farrington F. (2016). Oral phenotype and variation in focal dermal hypoplasia. Am. J. Med. Genet. C Semin. Med. Genet. 172C, 52–58. 10.1002/ajmg.c.31478 PubMed DOI

Yamada N., Fukuda S., Tomatsu S., Muller V., Hopwood J. J., Nelson J., et al. (1998). Molecular heterogeneity in mucopolysaccharidosis IVA in Australia and Northern Ireland: Nine novel mutations including T312S, a common allele that confers a mild phenotype. Hum. Mutat. 11 (3), 202–208. 10.1002/(SICI)1098-1004(1998)11:3<202::AID-HUMU4>3.0.CO;2-J PubMed DOI

Yamaguti P. M., Neves F. de A. R., Hotton D., Bardet C., Dure-Molla M. de L., Castro L. C., et al. (2017). Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J. Med. Genet. 54, 26–37. 10.1136/jmedgenet-2016-103956 PubMed DOI

Yamazaki D., Funato Y., Miura J., Sato S., Toyosawa S., Furutani K., et al. (2013). Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: A mouse model. PLoS Genet. 9, e1003983. 10.1371/journal.pgen.1003983 PubMed DOI PMC

Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R. T., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718. 10.1038/19539 PubMed DOI

Yang M., Mailhot G., Birnbaum M. J., MacKay C. A., Mason-Savas A., Odgren P. R. (2006). Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J. Biol. Chem. 281, 23598–23605. 10.1074/jbc.M602191200 PubMed DOI

Yenamandra V. K., Vellarikkal S. K., Chowdhury M. R., Jayarajan R., Verma A., Scaria V., et al. (2018). Genotype-phenotype correlations of dystrophic epidermolysis bullosa in India: Experience from a tertiary care centre. Acta Derm. Venereol. 98, 873–879. 10.2340/00015555-2929 PubMed DOI

Yeo G., Burge C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394. 10.1089/1066527041410418 PubMed DOI

Yuan J. P., Zeng W., Huang G. N., Worley P. F., Muallem S. (2007). STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat. Cell. Biol. 9, 636–645. 10.1038/ncb1590 PubMed DOI PMC

Yuen W. Y., Pasmooij A. M. G., Stellingsma C., Jonkman M. F. (2012). Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm. Venereol. 92, 695–696. 10.2340/00015555-1341 PubMed DOI

Zanetti A., D’Avanzo F., AlSayed M., Brusius-Facchin A. C., Chien Y. H., Giugliani R., et al. (2021). Molecular basis of mucopolysaccharidosis IVA (Morquio A syndrome): A review and classification of GALNS gene variants and reporting of 68 novel variants. Hum. Mutat. 42 (11), 1384–1398. 10.1002/humu.24270 PubMed DOI PMC

Zhang H., Koruyucu M., Seymen F., Kasimoglu Y., Kim J.-W., Tinawi S., et al. (2019). WDR72 mutations associated with amelogenesis imperfecta and acidosis. J. Dent. Res. 98, 541–548. 10.1177/0022034518824571 PubMed DOI PMC

Zhang Z., Suzuki Y., Shimozawa N., Fukuda S., Imamura A., Tsukamoto T., et al. (1999). Genomic structure and identification of 11 novel mutations of the PEX6 (peroxisome assembly factor-2) gene in patients with peroxisome biogenesis disorders. Hum. Mutat. 13, 487–496. 10.1002/(SICI)1098-1004(1999)13:6<487::AID-HUMU9>3.0.CO;2-T PubMed DOI

Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D. M. (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683. 10.1126/science.1207056 PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT02397824, NCT01746121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...