Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37228816
PubMed Central
PMC10205041
DOI
10.3389/fphys.2023.1130175
PII: 1130175
Knihovny.cz E-zdroje
- Klíčová slova
- NGS, amelogenesis imperfecta, enamel, genetics, next-generation sequencing, rare diseases,
- Publikační typ
- časopisecké články MeSH
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Eastman Dental Institute University College London London United Kingdom
Faculty of Dentistry Khon Kaen University Khon Kaen Thailand
Rothschild Hospital Public Assistance Paris Hospitals Paris France
Unité de génétique médicale et d'oncogénétique CHU Hassan 2 Fes Morocco
Université de Strasbourg Faculté de Chirurgie Dentaire Strasbourg France
Université de Strasbourg Institut d'études avancées Strasbourg France
Zobrazit více v PubMed
Aaltonen J., Horelli-Kuitunen N., Fan J.-B., Björses P., Perheentupa J., Myers R., et al. (1997). High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res. 7, 820–829. 10.1101/gr.7.8.820 PubMed DOI
Acevedo A. C., Poulter J. A., Alves P. G., de Lima C. L., Castro L. C., Yamaguti P. M., et al. (2015). Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8. 10.1186/s12881-015-0154-5 PubMed DOI PMC
Aïoub M., Lézot F., Molla M., Castaneda B., Robert B., Goubin G., et al. (2007). Msx2 −/− transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone 41, 851–859. 10.1016/j.bone.2007.07.023 PubMed DOI
Akyol M. U., Alden T. D., Amartino H., Ashworth J., Belani K., Berger K. I., et al. (2019). Recommendations for the management of MPS IVA: Systematic evidence- and consensus-based guidance. Orphanet J. Rare Dis. 14, 137. 10.1186/s13023-019-1074-9 PubMed DOI PMC
Aldred M. J., Crawford P. J. (1995). Amelogenesis imperfecta-towards a new classification. Oral Dis. 1, 2–5. 10.1111/j.1601-0825.1995.tb00148.x PubMed DOI
Aldred M. J., Savarirayan R., Crawford P. J. M. (2003). Amelogenesis imperfecta: A classification and catalogue for the 21st century. Oral Dis. 9, 19–23. 10.1034/j.1601-0825.2003.00843.x PubMed DOI
Alsharif S., Hindi S., Khoja F. (2018). Unilateral focal dermal hypoplasia (goltz syndrome): Case report and literature review. Case Rep. Dermatol 10, 101–109. 10.1159/000488521 PubMed DOI PMC
Ashikov A., Abu Bakar N., Wen X.-Y., Niemeijer M., Rodrigues Pinto Osorio G., Brand-Arzamendi K., et al. (2018). Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum. Mol. Genet. 27, 3029–3045. 10.1093/hmg/ddy213 PubMed DOI
Aswath N., Ramakrishnan S. N., Teresa N., Ramanathan A. (2018). A novel ROGDI gene mutation is associated with Kohlschutter-Tonz syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125 (1), e8–e11. 10.1016/j.oooo.2017.09.016 PubMed DOI
Bardet C., Courson F., Wu Y., Khaddam M., Salmon B., Ribes S., et al. (2016). Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J. Bone Min. Res. 31, 498–513. 10.1002/jbmr.2726 PubMed DOI
Björses P., Pelto-Huikko M., Kaukonen J., Aaltonen J., Peltonen L., Ulmanen I. (1999). Localization of the APECED protein in distinct nuclear structures. Hum. Mol. Genet. 8, 259–266. 10.1093/hmg/8.2.259 PubMed DOI
Bloch-Zupan A., Bugueno I. M., Manière M. C. (2021). Protocole National de Diagnostic et de Soins (PNDS): Amélogenèses imparfaites. Synthèse à destination du chirurgien-dentiste et du médecin traitant. https://www.has-sante.fr/jcms/p_3284538/fr/.
Bloch-Zupan A., Sedano H., Scully C. (2012). Dento/oro/craniofacial anomalies and genetics. 1st Ed. Amsterdam: Elsevier. 9780124160385.
Brookes S. J., Barron M. J., Smith C. E. L., Poulter J. A., Mighell A. J., Inglehearn C. F., et al. (2017). Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress. Hum. Mol. Genet. 26, 1863–1876. 10.1093/hmg/ddx090 PubMed DOI PMC
Burgeson R. E., Morris N. P., Murray L. W., Duncan K. G., Keene D. R., Sakai L. Y. (1985). The structure of type VII collagen. Ann. N. Y. Acad. Sci. 460, 47–57. 10.1111/j.1749-6632.1985.tb51156.x PubMed DOI
Burzynski N. J., Gonzalez W. E., Snawder K. D. (1973). Autosomal dominant smooth hypoplastic amelogenesis imperfecta. Report of a case. Oral Surg. Oral Med. Oral Pathol. 36, 818–823. 10.1016/0030-4220(73)90333-2 PubMed DOI
Caciotti A., Tonin R., Mort M., Cooper D. N., Gasperini S., Rigoldi M., et al. (2018). Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Med. Genet. 19, 183. 10.1186/s12881-018-0694-6 PubMed DOI PMC
Caricasole A., Ferraro T., Rimland J. M., Terstappen G. C. (2002). Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157. 10.1016/S0378-1119(02)00467-5 PubMed DOI
Celli J., Duijf P., Hamel B. C., Bamshad M., Kramer B., Smits A. P., et al. (1999). Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 99 (2), 143–153. 10.1016/s0092-8674(00)81646-3 PubMed DOI
Collier P. M., Sauk J. J., Rosenbloom S. J., Yuan Z. A., Gibson C. W. (1997). An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch. Oral Biol. 42 (3), 235–242. 10.1016/s0003-9969(96)00099-4 PubMed DOI
Crawford P. J. M., Aldred M., Bloch-Zupan A. (2007). Amelogenesis imperfecta. Orphanet J. Rare Dis. 2, 17. 10.1186/1750-1172-2-17 PubMed DOI PMC
Daneshmandpour Y., Darvish H., Pashazadeh F., Emamalizadeh B. (2019). Features, genetics and their correlation in Jalili syndrome: A systematic review. J. Med. Genet. 56, 358–369. 10.1136/jmedgenet-2018-105716 PubMed DOI
Darling A. I. (1956). Some observations on amelogenesis imperfecta and calcification of the dental enamel. Proc. R. Soc. Med. 49, 759–765. 10.1177/003591575604901007 PubMed DOI PMC
Daubert D. M., Kelley J. L., Udod Y. G., Habor C., Kleist C. G., Furman I. K., et al. (2016). Human enamel thickness and ENAM polymorphism. Int. J. Oral Sci. 8, 93–97. 10.1038/ijos.2016.1 PubMed DOI PMC
de La Dure-Molla M., Fournier B. P., Manzanares M. C., Acevedo A. C., Hennekam R. C., Friedlander L., et al. (2019). Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders. Am. J. Med. Genet. A 179, 1913–1981. 10.1002/ajmg.a.61316 PubMed DOI
de la Dure-Molla M., Quentric M., Yamaguti P. M., Acevedo A.-C., Mighell A. J., Vikkula M., et al. (2014). Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J. Rare Dis. 9, 84. 10.1186/1750-1172-9-84 PubMed DOI PMC
Deidrick K. K. M., Early M., Constance J., Stein M., Fete T. J. (2016). Cognitive and psychological functioning in focal dermal hypoplasia. Am. J. Med. Genet. C Semin. Med. Genet. 172, 34–40. 10.1002/ajmg.c.31471 PubMed DOI
Dellow E. L., Harley K. E., Unwin R. J., Wrong O., Winter G. B., Parkins B. J. (1998). Amelogenesis imperfecta, nephrocalcinosis, and hypocalciuria syndrome in two siblings from a large family with consanguineous parents. Nephrol. Dial. Transpl. 13 (12), 3193–3196. 10.1093/ndt/13.12.3193 PubMed DOI
DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498. 10.1038/ng.806 PubMed DOI PMC
Dong J., Amor D., Aldred M. J., Gu T., Escamilla M., MacDougall M. (2005). DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am. J. Med. Genet. A 133A, 138–141. 10.1002/ajmg.a.30521 PubMed DOI
Dourado M. R., Dos Santos C. R. R., Dumitriu S., Iancu D., Albanyan S., Kleta R., et al. (2019). Enamel renal syndrome: A novel homozygous FAM20A founder mutation in 5 new Brazilian families. Eur. J. Med. Genet. 62 (11), 103561. 10.1016/j.ejmg.2018.10.013 PubMed DOI
Dubail J., Huber C., Chantepie S., Sonntag S., Tüysüz B., Mihci E., et al. (2018). SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat. Commun. 9, 3087. 10.1038/s41467-018-05191-8 PubMed DOI PMC
Dugan S. L., Temme R. T., Olson R. A., Mikhailov A., Law R., Mahmood H., et al. (2015). New recessive truncating mutation in LTBP3 in a family with oligodontia, short stature, and mitral valve prolapse. Am. J. Med. Genet. A 167, 1396–1399. 10.1002/ajmg.a.37049 PubMed DOI
Durmaz C. D., McGrath J., Liu L., Karabulut H. G. (2018). A novel PORCN frameshift mutation leading to focal dermal hypoplasia: A case report. Cytogenet Genome Res. 154, 119–121. 10.1159/000487580 PubMed DOI
Duverger O., Ohara T., Bible P. W., Zah A., Morasso M. I. (2017). DLX3-Dependent regulation of ion transporters and carbonic anhydrases is crucial for enamel mineralization. J. Bone Min. Res. 32, 641–653. 10.1002/jbmr.3022 PubMed DOI PMC
El-Sayed W., Parry D. A., Shore R. C., Ahmed M., Jafri H., Rashid Y., et al. (2009). Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am. J. Hum. Genet. 85, 699–705. 10.1016/j.ajhg.2009.09.014 PubMed DOI PMC
Exome Aggregation Consortium Lek M., Karczewski K. J., Minikel E. V., Samocha K. E., Banks E., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291. 10.1038/nature19057 PubMed DOI PMC
Feldmeyer L., Huber M., Fellmann F., Beckmann J. S., Frenk E., Hohl D. (2006). Confirmation of the origin of NISCH syndrome. Hum. Mutat. 27, 408–410. 10.1002/humu.20333 PubMed DOI
Feske S., Müller J. M., Graf D., Kroczek R. A., Dräger R., Niemeyer C., et al. (1996). Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26 (9), 2119–2126. 10.1002/eji.1830260924 PubMed DOI
Feske S. (2010). CRAC channelopathies. Pflugers Arch. 460, 417–435. 10.1007/s00424-009-0777-5 PubMed DOI PMC
Flores E. R., Tsai K. Y., Crowley D., Sengupta S., Yang A., McKeon F., et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564. 10.1038/416560a PubMed DOI
Fouillen A., Dos Santos Neves J., Mary C., Castonguay J.-D., Moffatt P., Baron C., et al. (2017). Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral. Sci. Rep. 7, 46683. 10.1038/srep46683 PubMed DOI PMC
Frick K. K., Krieger N. S., Nehrke K., Bushinsky D. A. (2009). Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Min. Res. 24, 305–313. 10.1359/jbmr.081015 PubMed DOI PMC
Frisk S., Grandpeix-Guyodo C., Popovic Silwerfeldt K., Hjartarson H. T., Chatzianastassiou D., Magnusson I., et al. (2018). Goltz syndrome in males: A clinical report of a male patient carrying a novel PORCN variant and a review of the literature. Clin. Case Rep. 6, 2103–2110. 10.1002/ccr3.1783 PubMed DOI PMC
Furukawa Y., Haruyama N., Nikaido M., Nakanishi M., Ryu N., Oh-Hora M., et al. (2017). Stim1 regulates enamel mineralization and ameloblast modulation. J. Dent. Res. 96, 1422–1429. 10.1177/0022034517719872 PubMed DOI
Gasse B., Karayigit E., Mathieu E., Jung S., Garret A., Huckert M., et al. (2013). Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta. J. Dent. Res. 92, 598–603. 10.1177/0022034513488393 PubMed DOI
Gasse B., Prasad M., Delgado S., Huckert M., Kawczynski M., Garret-Bernardin A., et al. (2017). Evolutionary analysis predicts sensitive positions of MMP20 and validates newly- and previously-identified MMP20 mutations causing amelogenesis imperfecta. Front. Physiol. 8, 398. 10.3389/fphys.2017.00398 PubMed DOI PMC
Geoffroy V., Herenger Y., Kress A., Stoetzel C., Piton A., Dollfus H., et al. (2018). AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574. 10.1093/bioinformatics/bty304 PubMed DOI
Geoffroy V., Pizot C., Redin C., Piton A., Vasli N., Stoetzel C., et al. (2015). VaRank: A simple and powerful tool for ranking genetic variants. PeerJ 3, e796. 10.7717/peerj.796 PubMed DOI PMC
Gibson C. W., Yuan Z. A., Hall B., Longenecker G., Chen E., Thyagarajan T., et al. (2001). Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 276, 31871–31875. 10.1074/jbc.M104624200 PubMed DOI
Goodwin A. F., Tidyman W. E., Jheon A. H., Sharir A., Zheng X., Charles C., et al. (2014). Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum. Mol. Genet. 23, 682–692. 10.1093/hmg/ddt455 PubMed DOI PMC
Greene S. R., Yuan Z. A., Wright J. T., Amjad H., Abrams W. R., Buchanan J. A., et al. (2002). A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch. Oral Biol. 47, 211–217. 10.1016/s0003-9969(01)00111-x PubMed DOI
Guerrini R., Mei D., Kerti-Szigeti K., Pepe S., Koenig M. K., Von Allmen G., et al. (2022). Phenotypic and genetic spectrum of ATP6V1A encephalopathy: A disorder of lysosomal homeostasis. Brain 145, 2687–2703. 10.1093/brain/awac145 PubMed DOI PMC
Guo D., Ling J., Wang M.-H., She J.-X., Gu J., Wang C.-Y. (2005). Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol. Pain 1, 15–8069. 10.1186/1744-8069-1-15 PubMed DOI PMC
Guo D., Regalado E. S., Pinard A., Chen J., Lee K., Rigelsky C., et al. (2018). LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 102, 706–712. 10.1016/j.ajhg.2018.03.002 PubMed DOI PMC
Happle R., Lenz W. (1977). Striation of bones in focal dermal hypoplasia: Manifestation of functional mosaicism? Br. J. Dermatol 96, 133–135. 10.1111/j.1365-2133.1977.tb12534.x PubMed DOI
Hardies K., de Kovel C. G. F., Weckhuysen S., Asselbergh B., Geuens T., Deconinck T., et al. (2015). Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain 138, 3238–3250. 10.1093/brain/awv263 PubMed DOI
Harrison S. M., Biesecker L. G., Rehm H. L. (2019). Overview of specifications to the ACMG/AMP variant interpretation guidelines. Curr. Protoc. Hum. Genet. 103, e93. 10.1002/cphg.93 PubMed DOI PMC
Hart P. S., Aldred M. J., Crawford P. J. M., Wright N. J., Hart T. C., Wright J. T. (2002a). Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch. Oral Biol. 47, 261–265. 10.1016/s0003-9969(02)00003-1 PubMed DOI
Hart P. S., Hart T. C., Michalec M. D., Ryu O. H., Simmons D., Hong S., et al. (2004). Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J. Med. Genet. 41, 545–549. 10.1136/jmg.2003.017657 PubMed DOI PMC
Hart P. S., Hart T. C., Simmer J. P., Wright J. T. (2002b). A nomenclature for X-linked amelogenesis imperfecta. Arch. Oral Biol. 47, 255–260. 10.1016/s0003-9969(02)00005-5 PubMed DOI
Hart T. C., Hart P. S., Gorry M. C., Michalec M. D., Ryu O. H., Uygur C., et al. (2003). Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J. Med. Genet. 40 (12), 900–906. 10.1136/jmg.40.12.900 PubMed DOI PMC
Harutunian K., Figueiredo R., Gay-Escoda C. (2011). Tuberous sclerosis complex with oral manifestations: A case report and literature review. Med. Oral Patol. Oral Cir. Bucal 16, e478–e481. 10.4317/medoral.16.e478 PubMed DOI
Hassan M. Q., Javed A., Morasso M. I., Karlin J., Montecino M., Wijnen A. J. van, et al. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: Temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell. Biol. 24, 9248–9261. 10.1128/MCB.24.20.9248-9261.2004 PubMed DOI PMC
Heimler A., Fox J. E., Hershey J. E., Crespi P. (1991). Sensorineural hearing loss, enamel hypoplasia, and nail abnormalities in sibs. Am. J. Med. Genet. 39, 192–195. 10.1002/ajmg.1320390214 PubMed DOI
Holcroft J., Ganss B. (2011). Identification of amelotin- and ODAM-interacting enamel matrix proteins using the yeast two-hybrid system. Eur. J. Oral Sci. 119 (1), 301–306. 10.1111/j.1600-0722.2011.00870.x PubMed DOI
Hollister D. W., Klein S. H., De Jager H. J., Lachman R. S., Rimoin D. L. (1973). The lacrimo-auriculo-dento-digital syndrome. J. Pediatr. 83, 438–444. 10.1016/s0022-3476(73)80268-9 PubMed DOI
Hu J. C.-C., Chan H.-C., Simmer S. G., Seymen F., Richardson A. S., Hu Y., et al. (2012a). Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS One 7, e52052. 10.1371/journal.pone.0052052 PubMed DOI PMC
Hu J. C.-C., Yamakoshi Y. (2003). Enamelin and autosomal-dominant amelogenesis imperfecta. Crit. Rev. Oral Biol. Med. 14, 387–398. 10.1177/154411130301400602 PubMed DOI
Hu P., Lacruz R. S., Smith C. E., Smith S. M., Kurtz I., Paine M. L. (2012b). Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts. Cells Tissues Organs 196, 501–509. 10.1159/000337493 PubMed DOI PMC
Huckert M., Mecili H., Laugel-Haushalter V., Stoetzel C., Muller J., Flori E., et al. (2014). A novel mutation in the ROGDI gene in a patient with kohlschütter-tönz syndrome. Mol. Syndromol. 5, 293–298. 10.1159/000366252 PubMed DOI PMC
Huckert M., Stoetzel C., Morkmued S., Laugel-Haushalter V., Geoffroy V., Muller J., et al. (2015). Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum. Mol. Genet. 24, 3038–3049. 10.1093/hmg/ddv053 PubMed DOI PMC
Inoki K., Li Y., Zhu T., Wu J., Guan K.-L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell. Biol. 4, 648–657. 10.1038/ncb839 PubMed DOI
Inoue K., Zhuang L., Ganapathy V. (2002). Human Na+-coupled citrate transporter: Primary structure, genomic organization, and transport function. Biochem. Biophys. Res. Commun. 299, 465–471. 10.1016/S0006-291X(02)02669-4 PubMed DOI
Intarak N., Theerapanon T., Thaweesapphithak S., Suphapeetiporn K., Porntaveetus T., Shotelersuk V. (2019). Genotype-phenotype correlation and expansion of orodental anomalies in LTBP3-related disorders. Mol. Genet. Genomics 294, 773–787. 10.1007/s00438-019-01547-x PubMed DOI
Iwase M., Kaneko S., Kim H., Satta Y., Takahata N. (2007). Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs 186, 49–59. 10.1159/000102680 PubMed DOI
Jabs E. W., Müller U., Li X., Ma L., Luo W., Haworth I. S., et al. (1993). A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 75, 443–450. 10.1016/0092-8674(93)90379-5 PubMed DOI
Jagtap R., Alansari R., Ruprecht A., Kashtwari D. (2019). Trichodentoosseous syndrome: A case report and review of literature. BJR Case Rep. 5, 20190039. 10.1259/bjrcr.20190039 PubMed DOI PMC
Jain P., Kaul R., Saha S., Sarkar S. (2017). Tricho-dento-osseous syndrome and precocious eruption. J. Clin. Exp. Dent. 9, e494–e497. 10.4317/jced.53348 PubMed DOI PMC
Jalili I. K., Smith N. J. (1988). A progressive cone-rod dystrophy and amelogenesis imperfecta: A new syndrome. J. Med. Genet. 25, 738–740. 10.1136/jmg.25.11.738 PubMed DOI PMC
Jani P., Nguyen Q. C., Almpani K., Keyvanfar C., Mishra R., Liberton D., et al. (2020). Severity of oro-dental anomalies in Loeys-Dietz syndrome segregates by gene mutation. J. Med. Genet. 57, 699–707. 10.1136/jmedgenet-2019-106678 PubMed DOI PMC
Jaureguiberry G., De la Dure-Molla M., Parry D., Quentric M., Himmerkus N., Koike T., et al. (2012). Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 122, 1–6. 10.1159/000349989 PubMed DOI PMC
Ji Y., Li C., Tian Y., Gao Y., Dong Z., Xiang L., et al. (2021). Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev. Dyn. 250, 1505–1517. 10.1002/dvdy.336 PubMed DOI
Kantaputra P. N., Hamada T., Kumchai T., McGrath J. A. (2003). Heterozygous mutation in the SAM domain of p63 underlies rapp-hodgkin ectodermal dysplasia. J. Dent. Res. 82, 433–437. 10.1177/154405910308200606 PubMed DOI
Katsura K. A., Horst J. A., Chandra D., Le T. Q., Nakano Y., Zhang Y., et al. (2014). WDR72 models of structure and function: A stage-specific regulator of enamel mineralization. Matrix Biol. 38, 48–58. 10.1016/j.matbio.2014.06.005 PubMed DOI PMC
Katsura K., Nakano Y., Zhang Y., Shemirani R., Li W., Den Besten P. (2022). WDR72 regulates vesicle trafficking in ameloblasts. Sci. Rep. 12, 2820. 10.1038/s41598-022-06751-1 PubMed DOI PMC
Kausalya P. J., Amasheh S., Günzel D., Wurps H., Müller D., Fromm M., et al. (2006). Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J. Clin. Investig. 116, 878–891. 10.1172/JCI26323 PubMed DOI PMC
Khandelwal P., Maheshnull V., Mathur V. P., Raut S., Geetha T. S., Nair S., et al. (2021). Phenotypic variability in distal acidification defects associated with WDR72 mutations. Pediatr. Nephrol. 36, 881–887. 10.1007/s00467-020-04747-5 PubMed DOI
Kim J.-W., Lee S.-K., Lee Z. H., Park J.-C., Lee K.-E., Lee M.-H., et al. (2008). FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am. J. Hum. Genet. 82, 489–494. 10.1016/j.ajhg.2007.09.020 PubMed DOI PMC
Kim J.-W., Seymen F., Lin B. P.-J., Kiziltan B., Gencay K., Simmer J. P., et al. (2005a). ENAM mutations in autosomal-dominant amelogenesis imperfecta. J. Dent. Res. 84, 278–282. 10.1177/154405910508400314 PubMed DOI
Kim J.-W., Simmer J. P., Hart T. C., Hart P. S., Ramaswami M. D., Bartlett J. D., et al. (2005b). MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J. Med. Genet. 42, 271–275. 10.1136/jmg.2004.024505 PubMed DOI PMC
Kim J.-W., Zhang H., Seymen F., Koruyucu M., Hu Y., Kang J., et al. (2019). Mutations in RELT cause autosomal recessive amelogenesis imperfecta. Clin. Genet. 95, 375–383. 10.1111/cge.13487 PubMed DOI PMC
Kim J. W., Simmer J. P., Hu Y. Y., Lin B. P., Boyd C., Wright J. T., et al. (2004). Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta. J. Dent. Res. 83 (5), 378–383. 10.1177/154405910408300505 PubMed DOI
Kim Y. J., Abe Y., Kim Y.-J., Fujiki Y., Kim J.-W. (2021a). Identification of a homozygous PEX26 mutation in a heimler syndrome patient. Genes. (Basel). 12, 646. 10.3390/genes12050646 PubMed DOI PMC
Kim Y. J., Kang J., Seymen F., Koruyucu M., Gencay K., Shin T. J., et al. (2017). Analyses of MMP20 missense mutations in two families with hypomaturation amelogenesis imperfecta. Front. Physiol. 8, 229. 10.3389/fphys.2017.00229 PubMed DOI PMC
Kim Y. J., Kang J., Seymen F., Koruyucu M., Zhang H., Kasimoglu Y., et al. (2020). Alteration of exon definition causes amelogenesis imperfecta. J. Dent. Res. 99, 410–418. 10.1177/0022034520901708 PubMed DOI PMC
Kim Y. J., Lee Y., Zhang H., Song J.-S., Hu J. C.-C., Simmer J. P., et al. (2021b). A novel de novo SP6 mutation causes severe hypoplastic amelogenesis imperfecta. Genes. (Basel). 12, 346. 10.3390/genes12030346 PubMed DOI PMC
Kindelan S. A., Brook A. H., Gangemi L., Lench N., Wong F. S., Fearne J., et al. (2000). Detection of a novel mutation in X-linked amelogenesis imperfecta. J. Dent. Res. 79, 1978–1982. 10.1177/00220345000790120901 PubMed DOI
Kiritsi D., Huilaja L., Franzke C.-W., Kokkonen N., Pazzagli C., Schwieger-Briel A., et al. (2015). Junctional epidermolysis bullosa with LAMB3 splice-site mutations. Acta Derm. Venereol. 95, 849–851. 10.2340/00015555-2073 PubMed DOI
Kittler R., Putz G., Pelletier L., Poser I., Heninger A.-K., Drechsel D., et al. (2004). An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040. 10.1038/nature03159 PubMed DOI
Kohlschütter A., Chappuis D., Meier C., Tönz O., Vassella F., Herschkowitz N., et al. (1974). Familial epilepsy and yellow teeth-a disease of the CNS associated with enamel hypoplasia. Helv. Paediatr. Acta 29, 283–294. PubMed
Konrad M., Schaller A., Seelow D., Pandey A. V., Waldegger S., Lesslauer A., et al. (2006). Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957. 10.1086/508617 PubMed DOI PMC
Kosaki R., Naito Y., Torii C., Takahashi T., Nakajima T., Kosaki K. (2008). Split hand foot malformation with whorl-like pigmentary pattern: Phenotypic expression of somatic mosaicism for the p63 mutation. Am. J. Med. Genet. A 146A, 2574–2577. 10.1002/ajmg.a.32415 PubMed DOI
Kuga T., Sasaki M., Mikami T., Miake Y., Adachi J., Shimizu M., et al. (2016). FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci. Rep. 6, 26557. 10.1038/srep26557 PubMed DOI PMC
Lacruz R. S., Feske S. (2015). Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci. 1356, 45–79. 10.1111/nyas.12938 PubMed DOI PMC
Lagerström M., Dahl N., Iselius L., Bäckman B., Pettersson U. (1990). Mapping of the gene for X-linked amelogenesis imperfecta by linkage analysis. Am. J. Hum. Genet. 46, 120–125. PubMed PMC
Lagerström M., Dahl N., Nakahori Y., Nakagome Y., Bäckman B., Landegren U., et al. (1991). A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10, 971–975. 10.1016/0888-7543(91)90187-j PubMed DOI
Landrum M. J., Lee J. M., Benson M., Brown G. R., Chao C., Chitipiralla S., et al. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46 (D1), D1062–D1067. 10.1093/nar/gkx1153 PubMed DOI PMC
Larrègue M., Duterque M. (1975). Letter: Striated osteopathy in focal dermal hypoplasia. Arch. Dermatol 111 (10), 1365. 10.1001/archderm.1975.01630220129019 PubMed DOI
Lau E. C., Mohandas T. K., Shapiro L. J., Slavkin H. C., Snead M. L. (1989). Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4, 162–168. 10.1016/0888-7543(89)90295-4 PubMed DOI
Laugel-Haushalter V., Bär S., Schaefer E., Stoetzel C., Geoffroy V., Alembik Y., et al. (2019). A new SLC10A7 homozygous missense mutation responsible for a milder phenotype of skeletal dysplasia with amelogenesis imperfecta. Front. Genet. 10, 504. 10.3389/fgene.2019.00504 PubMed DOI PMC
Lee K.-E., Ko J., Le C. G. T., Shin T. J., Hyun H.-K., Lee S.-H., et al. (2015). Novel LAMB3 mutations cause non-syndromic amelogenesis imperfecta with variable expressivity. Clin. Genet. 87, 90–92. 10.1111/cge.12340 PubMed DOI PMC
Lee N. P. Y., Tong M. K., Leung P. P., Chan V. W., Leung S., Tam P.-C., et al. (2006). Kidney claudin-19: Localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett. 580, 923–931. 10.1016/j.febslet.2006.01.019 PubMed DOI
Lee S.-K., Seymen F., Kang H.-Y., Lee K.-E., Gencay K., Tuna B., et al. (2010). MMP20 hemopexin domain mutation in amelogenesis imperfecta. J. Dent. Res. 89, 46–50. 10.1177/0022034509352844 PubMed DOI PMC
Lee S. K., Lee K. E., Jeong T. S., Hwang Y. H., Kim S., Hu J. C., et al. (2011). FAM83H mutations cause ADHCAI and alter intracellular protein localization. J. Dent. Res. 90 (3), 377–381. 10.1177/0022034510389177 PubMed DOI PMC
Lench N. J., Winter G. B. (1995). Characterisation of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum. Mutat. 5, 251–259. 10.1002/humu.1380050310 PubMed DOI
Li X., Yin W., Pérez-Jurado L., Bonadio J., Francke U. (1995). Mapping of human and murine genes for latent TGF-β binding protein-2 (LTBP2). Mamm. Genome 6, 42–45. 10.1007/BF00350892 PubMed DOI
Liang T., Hu Y., Smith C. E., Richardson A. S., Zhang H., Yang J., et al. (2019). AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity. Mol. Genet. Genomic Med. 7, e929. 10.1002/mgg3.929 PubMed DOI PMC
Lindemeyer R. G., Gibson C. W., Wright T. J. (2010). Amelogenesis imperfecta due to a mutation of the enamelin gene: Clinical case with genotype-phenotype correlations. Pediatr. Dent. 32 (1), 56–60. PubMed PMC
Lu T., Li M., Xu X., Xiong J., Huang C., Zhang X., et al. (2018). Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral Sci. 10, 26. 10.1038/s41368-018-0027-9 PubMed DOI PMC
Ludwig M.-G., Vanek M., Guerini D., Gasser J. A., Jones C. E., Junker U., et al. (2003). Proton-sensing G-protein-coupled receptors. Nature 425, 93–98. 10.1038/nature01905 PubMed DOI
Maas S. M., Jong T. P. V. M. de, Buss P., Hennekam R. C. M. (1996). EEC syndrome and genitourinary anomalies: An update. Am. J. Med. Genet. 63, 472–478. 10.1002/(SICI)1096-8628(19960614)63:3<472::AID-AJMG11>3.0 PubMed DOI
Mårdh C. K., Bäckman B., Holmgren G., Hu J. C., Simmer J. P., Forsman-Semb K. (2002). A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum. Mol. Genet. 11(9), 1069–1074. 10.1093/hmg/11.9.1069 PubMed DOI
Martelli-Júnior H., dos Santos Neto P. E., de Aquino S. N., de Oliveira Santos C. C., Borges S. P., Oliveira E. A., et al. (2011). Amelogenesis imperfecta and nephrocalcinosis syndrome: A case report and review of the literature. Nephron Physiol. 118 (3), 62–65. 10.1159/000322828 PubMed DOI
Martino F., D’Eufemia P., Pergola M. S., Finocchiaro R., Celli M., Giampà G., et al. (1992). Child with manifestations of dermotrichic syndrome and ichthyosis follicularis-alopecia-photophobia (IFAP) syndrome. Am. J. Med. Genet. 44, 233–236. 10.1002/ajmg.1320440222 PubMed DOI
Masunaga T. (2006). Epidermal basement membrane: Its molecular organization and blistering disorders. Connect. Tissue Res. 47, 55–66. 10.1080/03008200600584157 PubMed DOI
Mátyás G., Arnold E., Carrel T., Baumgartner D., Boileau C., Berger W., et al. (2006). Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum. Mutat. 27, 760–769. 10.1002/humu.20353 PubMed DOI
McCarl C.-A., Picard C., Khalil S., Kawasaki T., Röther J., Papolos A., et al. (2009). ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124, 1311–1318. 10.1016/j.jaci.2009.10.007 PubMed DOI PMC
McGrath J. A., Li K., Dunnill M. G. S., McMillan J. R., Christiano A. M., Eady R. A., et al. (1996). Compound heterozygosity for a dominant Glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. Am. J. Pathol. 148 (6), 1787–1796. PubMed PMC
McNally B. A., Somasundaram A., Yamashita M., Prakriya M. (2012). Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482, 241–245. 10.1038/nature10752 PubMed DOI PMC
Mechaussier S., Perrault I., Dollfus H., Bloch-Zupan A., Loundon N., Jonard L., et al. (2020). Heimler syndrome. Adv. Exp. Med. Biol. 1299, 81–87. 10.1007/978-3-030-60204-8_7 PubMed DOI
Mendoza G., Pemberton T. J., Lee K., Scarel-Caminaga R., Mehrian-Shai R., Gonzalez-Quevedo C., et al. (2007). A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3. Hum. Genet. 120, 653–662. 10.1007/s00439-006-0246-6 PubMed DOI PMC
Molla M., Descroix V., Aïoub M., Simon S., Castañeda B., Hotton D., et al. (2010). Enamel protein regulation and dental and periodontal physiopathology in Msx2 mutant mice. Am. J. Pathol. 177, 2516–2526. 10.2353/ajpath.2010.091224 PubMed DOI PMC
Montaño A. M., Tomatsu S., Brusius A., Smith M., Orii T. (2008). Growth charts for patients affected with Morquio A disease. Am. J. Med. Genet. Part A 146A, 1286–1295. 10.1002/ajmg.a.32281 PubMed DOI
Mory A., Dagan E., Illi B., Duquesnoy P., Mordechai S., Shahor I., et al. (2012). A nonsense mutation in the human homolog of Drosophila rogdi causes kohlschutter–tonz syndrome. Am. J. Hum. Genet. 90, 708–714. 10.1016/j.ajhg.2012.03.005 PubMed DOI PMC
Müller D., Kausalya P. J., Meij I. C., Hunziker W. (2006). Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: Blocking endocytosis restores surface expression of a novel claudin-16 mutant that lacks the entire C-terminal cytosolic tail. Hum. Mol. Genet. 15, 1049–1058. 10.1093/hmg/ddl020 PubMed DOI
Muto T., Miyoshi K., Horiguchi T., Noma T. (2012). Dissection of morphological and metabolic differentiation of ameloblasts via ectopic SP6 expression. J. Med. Investig. 59, 59–68. 10.2152/jmi.59.59 PubMed DOI
Nagamine K., Peterson P., Scott H. S., Kudoh J., Minoshima S., Heino M., et al. (1997). Positional cloning of the APECED gene. Nat. Genet. 17, 393–398. 10.1038/ng1297-393 PubMed DOI
Nakamura T., de Vega S., Fukumoto S., Jimenez L., Unda F., Yamada Y. (2008). Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J. Biol. Chem. 283, 4825–4833. 10.1074/jbc.M708388200 PubMed DOI
Nakamura T., Unda F., de-Vega S., Vilaxa A., Fukumoto S., Yamada K. M., et al. (2004). The Krüppel-like factor epiprofin is expressed by epithelium of developing teeth, hair follicles, and limb buds and promotes cell proliferation. J. Biol. Chem. 279, 626–634. 10.1074/jbc.M307502200 PubMed DOI
Nalbant D., Youn H., Nalbant S. I., Sharma S., Cobos E., Beale E. G., et al. (2005). FAM20: An evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics 6, 11. 10.1186/1471-2164-6-11 PubMed DOI PMC
Neuhaus C., Eisenberger T., Decker C., Nagl S., Blank C., Pfister M., et al. (2017). Next-generation sequencing reveals the mutational landscape of clinically diagnosed usher syndrome: Copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in heimler syndrome. Mol. Genet. Genomic Med. 5, 531–552. 10.1002/mgg3.312 PubMed DOI PMC
Nikolopoulos G., Smith C. E. L., Brookes S. J., El-Asrag M. E., Brown C. J., Patel A., et al. (2020). New missense variants in RELT causing hypomineralised amelogenesis imperfecta. Clin. Genet. 97, 688–695. 10.1111/cge.13721 PubMed DOI PMC
Nikolopoulos G., Smith C. E. L., Poulter J. A., Murillo G., Silva S., Lamb T., et al. (2021). Spectrum of pathogenic variants and founder effects in amelogenesis imperfecta associated with MMP20. Hum. Mutat. 42, 567–576. 10.1002/humu.24187 PubMed DOI
Noor A., Windpassinger C., Vitcu I., Orlic M., Rafiq M. A., Khalid M., et al. (2009). Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. Am. J. Hum. Genet. 84, 519–523. 10.1016/j.ajhg.2009.03.007 PubMed DOI PMC
Nurbaeva M. K., Eckstein M., Concepcion A. R., Smith C. E., Srikanth S., Paine M. L., et al. (2015). Dental enamel cells express functional SOCE channels. Sci. Rep. 5, 15803. 10.1038/srep15803 PubMed DOI PMC
Ogawa T., Tomatsu S., Fukuda S., Yamagishi A., Rezvi G. M., Sukegawa K., et al. (1995). Mucopolysaccharidosis IVA: Screening and identification of mutations of the N-acetylgalactosamine-6-sulfate sulfatase gene. Hum. Mol. Genet. 4, 341–349. 10.1093/hmg/4.3.341 PubMed DOI
O’Sullivan J., Bitu C. C., Daly S. B., Urquhart J. E., Barron M. J., Bhaskar S. S., et al. (2011). Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. Am. J. Hum. Genet. 88, 616–620. 10.1016/j.ajhg.2011.04.005 PubMed DOI PMC
Ozdemir D., Hart P. S., Firatli E., Aren G., Ryu O. H., Hart T. C. (2005a). Phenotype of ENAM mutations is dosage-dependent. J. Dent. Res. 84, 1036–1041. 10.1177/154405910508401113 PubMed DOI PMC
Ozdemir D., Hart P. S., Ryu O. H., Choi S. J., Ozdemir-Karatas M., Firatli E., et al. (2005b). MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J. Dent. Res. 84, 1031–1035. 10.1177/154405910508401112 PubMed DOI PMC
Papagerakis P., Lin H.-K., Lee K. Y., Hu Y., Simmer J. P., Bartlett J. D., et al. (2008). Premature stop codon in MMP20 causing amelogenesis imperfecta. J. Dent. Res. 87, 56–59. 10.1177/154405910808700109 PubMed DOI PMC
Parker N. J., Begley C. G., Smith P. J., Fox R. M. (1996). Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253–256. 10.1006/geno.1996.0553 PubMed DOI
Parry D. A., Brookes S. J., Logan C. V., Poulter J. A., El-Sayed W., Al-Bahlani S., et al. (2012). Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am. J. Hum. Genet. 91, 565–571. 10.1016/j.ajhg.2012.07.020 PubMed DOI PMC
Parry D. A., Holmes T. D., Gamper N., El-Sayed W., Hettiarachchi N. T., Ahmed M., et al. (2016a). A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency. J. Allergy Clin. Immunol. 137, 955–957. 10.1016/j.jaci.2015.08.051 PubMed DOI PMC
Parry D. A., Mighell A. J., El-Sayed W., Shore R. C., Jalili I. K., Dollfus H., et al. (2009). Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am. J. Hum. Genet. 84, 266–273. 10.1016/j.ajhg.2009.01.009 PubMed DOI PMC
Parry D. A., Poulter J. A., Logan C. V., Brookes S. J., Jafri H., Ferguson C. H., et al. (2013). Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. Am. J. Hum. Genet. 92, 307–312. 10.1016/j.ajhg.2013.01.003 PubMed DOI PMC
Parry D. A., Smith C. E. L., El-Sayed W., Poulter J. A., Shore R. C., Logan C. V., et al. (2016b). Mutations in the pH-sensing G-protein-coupled receptor GPR68 cause amelogenesis imperfecta. Am. J. Hum. Genet. 99, 984–990. 10.1016/j.ajhg.2016.08.020 PubMed DOI PMC
Pavlic A., Waltimo-Sirén J. (2009). Clinical and microstructural aberrations of enamel of deciduous and permanent teeth in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Arch. Oral Biol. 54, 658–665. 10.1016/j.archoralbio.2009.03.009 PubMed DOI
Peracha H., Sawamoto K., Averill L., Kecskemethy H., Theroux M., Thacker M., et al. (2018). Molecular genetics and metabolism, special edition: Diagnosis, diagnosis and prognosis of Mucopolysaccharidosis IVA. Mol. Genet. Metab. 125, 18–37. 10.1016/j.ymgme.2018.05.004 PubMed DOI PMC
Pereverzev A., Komarova S. V., Korcok J., Armstrong S., Tremblay G. B., Dixon S. J., et al. (2008). Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone 42, 150–161. 10.1016/j.bone.2007.08.044 PubMed DOI
Perniola R. (2018). Twenty years of AIRE. Front. Immunol. 9, 98. 10.3389/fimmu.2018.00098 PubMed DOI PMC
Picard C., McCarl C.-A., Papolos A., Khalil S., Lüthy K., Hivroz C., et al. (2009). STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980. 10.1056/NEJMoa0900082 PubMed DOI PMC
Plaisancié J., Collet C., Pelletier V., Perdomo Y., Studer F., Fradin M., et al. (2015). MSX2 gene duplication in a patient with eye development defects. Ophthalmic Genet. 36, 353–358. 10.3109/13816810.2014.886270 PubMed DOI
Pollak C., Floy M., Say B. (2003). Sensorineural hearing loss and enamel hypoplasia with subtle nail findings: Another family with heimler’s syndrome. Clin. Dysmorphol. 12, 55–58. 10.1097/00019605-200301000-00010 PubMed DOI
Polok B., Escher P., Ambresin A., Chouery E., Bolay S., Meunier I., et al. (2009). Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 84, 259–265. 10.1016/j.ajhg.2009.01.006 PubMed DOI PMC
Portsteffen H., Beyer A., Becker E., Epplen C., Pawlak A., Kunau W.-H., et al. (1997). Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat. Genet. 17, 449–452. 10.1038/ng1297-449 PubMed DOI
Poulter J. A., Brookes S. J., Shore R. C., Smith C. E. L., Abi Farraj L., Kirkham J., et al. (2014a). A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum. Mol. Genet. 23, 2189–2197. 10.1093/hmg/ddt616 PubMed DOI PMC
Poulter J. A., Murillo G., Brookes S. J., Smith C. E. L., Parry D. A., Silva S., et al. (2014b). Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 23, 5317–5324. 10.1093/hmg/ddu247 PubMed DOI PMC
Prasad M. K., Geoffroy V., Vicaire S., Jost B., Dumas M., Le Gras S., et al. (2016a). A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J. Med. Genet. 53, 98–110. 10.1136/jmedgenet-2015-103302 PubMed DOI PMC
Prasad M. K., Laouina S., El Alloussi M., Dollfus H., Bloch-Zupan A. (2016b). Amelogenesis imperfecta: 1 family, 2 phenotypes, and 2 mutated genes. J. Dent. Res. 95, 1457–1463. 10.1177/0022034516663200 PubMed DOI
Price J. A., Bowden D. W., Tim Wright J., Pettenati M. J., Hart T. C. (1998). Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum. Mol. Genet. 7, 563–569. 10.1093/hmg/7.3.563 PubMed DOI
Raine J., Winter R. M., Davey A., Tucker S. M. (1989). Unknown syndrome: Microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J. Med. Genet. 26, 786–788. 10.1136/jmg.26.12.786 PubMed DOI PMC
Rao S., Witkop C. J. (1971). Inherited defects in tooth structure. Birth Defects Orig. Artic. Ser. 7, 153–184. PubMed
Rapp R. S., Hodgkin W. E. (1968). Anhidrotic ectodermal dysplasia: Autosomal dominant inheritance with palate and lip anomalies. J. Med. Genet. 5, 269–272. 10.1136/jmg.5.4.269 PubMed DOI PMC
Ratbi I., Falkenberg K. D., Sommen M., Al-Sheqaih N., Guaoua S., Vandeweyer G., et al. (2015). Heimler syndrome is caused by hypomorphic mutations in the peroxisome-biogenesis genes PEX1 and PEX6. Am. J. Hum. Genet. 97, 535–545. 10.1016/j.ajhg.2015.08.011 PubMed DOI PMC
Rathi N., Mattoo K., Bhatnagar S. (2014). Extending the use of a diagnostic occlusal splint to overcome existing lacunae of vertical dimension transfer in full mouth rehabilitation cases. Am. J. Med. Case Rep. 2, 291–297. 10.12691/ajmcr-2-12-9 DOI
Reese M. G., Eeckman F. H., Kulp D., Haussler D. (1997). Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323. 10.1089/cmb.1997.4.311 PubMed DOI
Reuber B. E., Germain-Lee E., Collins C. S., Morrell J. C., Ameritunga R., Moser H. W., et al. (1997). Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17, 445–448. 10.1038/ng1297-445 PubMed DOI
Rey T., Tarabeux J., Gerard B., Delbarre M., Le Béchec A., Stoetzel C., et al. (2019). Protocol GenoDENT: Implementation of a new NGS panel for molecular diagnosis of genetic disorders with orodental involvement. Methods Mol. Biol. 1922, 407–452. 10.1007/978-1-4939-9012-2_36 PubMed DOI
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17, 405–424. 10.1038/gim.2015.30 PubMed DOI PMC
Rinne T., Hamel B., van Bokhoven H., Brunner H. G. (2006). Pattern of p63 mutations and their phenotypes-update. Am. J. Med. Genet. A 140, 1396–1406. 10.1002/ajmg.a.31271 PubMed DOI
Robinson C. (2014). Enamel maturation: A brief background with implications for some enamel dysplasias. Front. Physiol. 5, 388. 10.3389/fphys.2014.00388 PubMed DOI PMC
Rølling I., Clausen N., Nyvad B., Sindet-Pedersen S. (1999). Dental findings in three siblings with Morquio’s syndrome. Int. J. Paediatr. Dent. 9, 219–224. 10.1046/j.1365-263x.1999.00127.x PubMed DOI
Ruspita I., Das P., Xia Y., Kelangi S., Miyoshi K., Noma T., et al. (2020). An msx2-sp6-follistatin pathway operates during late stages of tooth development to control amelogenesis. Front. Physiol. 11, 582610. 10.3389/fphys.2020.582610 PubMed DOI PMC
Sabbioni S., Veronese A., Trubia M., Taramelli R., Barbanti-Brodano G., Croce C. M., et al. (1999). Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet Celll Genet. 86, 214–218. 10.1159/000015341 PubMed DOI
Sawamoto K., Álvarez González J. V., Piechnik M., Otero F. J., Couce M. L., Suzuki Y., et al. (2020). Mucopolysaccharidosis IVA: Diagnosis, treatment, and management. Int. J. Mol. Sci. 21. 1517. 10.3390/ijms21041517 PubMed DOI PMC
Scherer S. W., Heng H. H. Q., Robinson G. W., Mahon K. A., Evans J. P., Tsui L.-C. (1995). Assignment of the human homolog of mouse Dlx3 to Chromosome 17q21.3-q22 by analysis of somatic cell hybrids and fluorescence in situ hybridization. Mamm. Genome 6, 310–311. 10.1007/BF00352432 PubMed DOI
Schossig A., Bloch-Zupan A., Lussi A., Wolf N. I., Raskin S., Cohen M., et al. (2017). SLC13A5 is the second gene associated with Kohlschütter-Tönz syndrome. J. Med. Genet. 54, 54–62. 10.1136/jmedgenet-2016-103988 PubMed DOI
Schossig A., Wolf N. I., Fischer C., Fischer M., Stocker G., Pabinger S., et al. (2012). Mutations in ROGDI cause kohlschütter-tönz syndrome. Am. J. Hum. Genet. 90, 701–707. 10.1016/j.ajhg.2012.02.012 PubMed DOI PMC
Schulze C. (1970). “Developmental abnormalities of the teeth and jaws,” in Thoma’s oral pathology. Editors Gorlin R. J., Goldman H. M. (St Louis: C. V. Mosby; ), 112–122.
Sewerin S., Piontek J., Schönauer R., Grunewald S., Rauch A., Neuber S., et al. (2022). Defective claudin-10 causes a novel variation of HELIX syndrome through compromised tight junction strand assembly. Genes. Dis. 9, 1301–1314. 10.1016/j.gendis.2021.06.006 PubMed DOI PMC
Seymen F., Kim Y. J., Lee Y. J., Kang J., Kim T.-H., Choi H., et al. (2016). Recessive mutations in ACPT, encoding testicular acid phosphatase, cause hypoplastic amelogenesis imperfecta. Am. J. Hum. Genet. 99, 1199–1205. 10.1016/j.ajhg.2016.09.018 PubMed DOI PMC
Seymen F., Lee K.-E., Koruyucu M., Gencay K., Bayram M., Tuna E. B., et al. (2014a). ENAM mutations with incomplete penetrance. J. Dent. Res. 93, 988–992. 10.1177/0022034514548222 PubMed DOI PMC
Seymen F., Lee K.-E., Koruyucu M., Gencay K., Bayram M., Tuna E. B., et al. (2015a). Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta. Oral Dis. 21, 456–461. 10.1111/odi.12303 PubMed DOI PMC
Seymen F., Lee K.-E., Tran Le C. G., Yildirim M., Gencay K., Lee Z. H., et al. (2014b). Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta. J. Dent. Res. 93, 366–370. 10.1177/0022034514523786 PubMed DOI
Seymen F., Park J.-C., Lee K.-E., Lee H.-K., Lee D.-S., Koruyucu M., et al. (2015b). Novel MMP20 and KLK4 mutations in amelogenesis imperfecta. J. Dent. Res. 94, 1063–1069. 10.1177/0022034515590569 PubMed DOI
Seymen F., Zhang H., Kasimoglu Y., Koruyucu M., Simmer J. P., Hu J. C.-C., et al. (2021). Novel mutations in GPR68 and SLC24A4 cause hypomaturation amelogenesis imperfecta. J. Pers. Med. 12, 13. 10.3390/jpm12010013 PubMed DOI PMC
Shaheen R., Ansari S., Alshammari M. J., Alkhalidi H., Alrukban H., Eyaid W., et al. (2013). A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J. Med. Genet. 50, 431–436. 10.1136/jmedgenet-2013-101527 PubMed DOI
Shapiro M. B., Senapathy P. (1987). RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174. 10.1093/nar/15.17.7155 PubMed DOI PMC
Shore R. C., Bäckman B., Elcock C., Brook A. H., Brookes S. J., Kirkham J. (2010). The structure and composition of deciduous enamel affected by local hypoplastic autosomal dominant amelogenesis imperfecta resulting from an ENAM mutation. Cells Tissues Organs 191, 301–306. 10.1159/000258703 PubMed DOI
Simmer J. P., Hu J. C.-C., Hu Y., Zhang S., Liang T., Wang S.-K., et al. (2021). A genetic model for the secretory stage of dental enamel formation. J. Struct. Biol. 213, 107805. 10.1016/j.jsb.2021.107805 PubMed DOI PMC
Simmer J. P., Hu Y., Lertlam R., Yamakoshi Y., Hu J. C.-C. (2009). Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J. Biol. Chem. 284, 19110–19121. 10.1074/jbc.M109.013623 PubMed DOI PMC
Simon D. B., Lu Y., Choate K. A., Velazquez H., Al-Sabban E., Praga M., et al. (1999). Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106. 10.1126/science.285.5424.103 PubMed DOI
Simpson M. A., Hsu R., Keir L. S., Hao J., Sivapalan G., Ernst L. M., et al. (2007). Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am. J. Hum. Genet. 81, 906–912. 10.1086/522240 PubMed DOI PMC
Simpson M. A., Scheuerle A., Hurst J., Patton M. A., Stewart H., Crosby A. H. (2009). Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin. Genet. 75, 271–276. 10.1111/j.1399-0004.2008.01118.x PubMed DOI
Slegtenhorst M. van, Hoogt R. de, Hermans C., Nellist M., Janssen B., Verhoef S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808. 10.1126/science.277.5327.805 PubMed DOI
Smith C. E. L., Kirkham J., Day P. F., Soldani F., McDerra E. J., Poulter J. A., et al. (2017a). A fourth KLK4 mutation is associated with enamel hypomineralisation and structural abnormalities. Front. Physiol. 8, 333. 10.3389/fphys.2017.00333 PubMed DOI PMC
Smith C. E. L., Murillo G., Brookes S. J., Poulter J. A., Silva S., Kirkham J., et al. (2016). Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum. Mol. Genet. 25, 3578–3587. 10.1093/hmg/ddw203 PubMed DOI PMC
Smith C. E. L., Poulter J. A., Brookes S. J., Murillo G., Silva S., Brown C. J., et al. (2019). Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta. J. Dent. Res. 98, 698–704. 10.1177/0022034519835205 PubMed DOI PMC
Smith C. E. L., Whitehouse L. L. E., Poulter J. A., Wilkinson Hewitt L., Nadat F., Jackson B. R., et al. (2020). A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum. Mol. Genet. 29, 1417–1425. 10.1093/hmg/ddaa041 PubMed DOI PMC
Smith C. E., Whitehouse L. L., Poulter J. A., Brookes S. J., Day P. F., Soldani F., et al. (2017b). Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta. Eur. J. Hum. Genet. 25, 1015–1019. 10.1038/ejhg.2017.79 PubMed DOI PMC
Spedicati B., Cocca M., Palmisano R., Faletra F., Barbieri C., Francescatto M., et al. (2021). Natural human knockouts and mendelian disorders: Deep phenotyping in Italian isolates. Eur. J. Hum. Genet. 29, 1272–1281. 10.1038/s41431-021-00850-9 PubMed DOI PMC
Sripathomsawat W., Tanpaiboon P., Heering J., Dötsch V., Hennekam R. C. M., Kantaputra P. (2011). Phenotypic analysis of Arg227 mutations of TP63 with emphasis on dental phenotype and micturition difficulties in EEC syndrome. Am J M Genet A 155, 228–232. 10.1002/ajmg.a.33768 PubMed DOI
Su X., Chakravarti D., Cho M. S., Liu L., Gi Y. J., Lin Y.-L., et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990. 10.1038/nature09459 PubMed DOI PMC
Suh J., Choi H. S., Kwon A., Chae H. W., Lee J.-S., Kim H.-S. (2019). A novel compound heterozygous mutation of the AIRE gene in a patient with autoimmune polyendocrine syndrome type 1. Ann. Pediatr. Endocrinol. Metab. 24, 248–252. 10.6065/apem.2019.24.4.248 PubMed DOI PMC
Sun S., Yu M., Fan Z., Yeh I.-T., Feng H., Liu H., et al. (2019). DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochem. Biophys. Res. Commun. 516, 171–176. 10.1016/j.bbrc.2019.06.029 PubMed DOI
Sutton V. R., van Bokhoven H. (2010). “TP63-Related disorders,” in GeneReviews® [Internet]. Editors Adam M. P., Everman D. B., Mirzaa G. M., Pagon R. A., Wallace S. E., Bean L. J. H., et al. (Seattle (WA): University of Washington, Seattle; ), 1993–2022. PubMed
Tabata M. J., Matsumura T., Liu J. G., Wakisaka S., Kurisu K. (1996). Expression of cytokeratin 14 in ameloblast-lineage cells of the developing tooth of rat, both in vivo and in vitro . Arch. Oral Biol. 41, 1019–1027. 10.1016/s0003-9969(96)00087-8 PubMed DOI
Tanaka A., Weinel S., Nagy N., O’Driscoll M., Lai-Cheong J. E., Kulp-Shorten C. L., et al. (2012). Germline mutation in ATR in autosomal- dominant oropharyngeal cancer syndrome. Am. J. Hum. Genet. 90, 511–517. 10.1016/j.ajhg.2012.01.007 PubMed DOI PMC
Tanimoto K., Le T., Zhu L., Witkowska H. E., Robinson S., Hall S., et al. (2008). Reduced amelogenin-MMP20 interactions in amelogenesis imperfecta. J. Dent. Res. 87, 451–455. 10.1177/154405910808700516 PubMed DOI PMC
The 1000 Geno mes Project Consortium Gibbs R. A., Boerwinkle E., Doddapaneni H., Han Y., Korchina V., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74. 10.1038/nature15393 PubMed DOI PMC
Tomura H., Wang J.-Q., Liu J.-P., Komachi M., Damirin A., Mogi C., et al. (2008). Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J. Bone Min. Res. 23, 1129–1139. 10.1359/jbmr.080236 PubMed DOI
Torres L. H. S., de-Azevedo-Vaz S. L., Barroso D. R. C., Silva D. N., Velloso T. R. G., de Barros L. A. P. (2018). Enamel-renal-syndrome: Case report. Spec. Care Dent. 38 (3), 172–175. 10.1111/scd.12288 PubMed DOI
Toyosawa S., Fujiwara T., Ooshima T., Shintani S., Sato A., Ogawa Y., et al. (2000). Cloning and characterization of the human ameloblastin gene. Gene 256, 1–11. 10.1016/S0378-1119(00)00379-6 PubMed DOI
Tucci A., Kara E., Schossig A., Wolf N. I., Plagnol V., Fawcett K., et al. (2013). Kohlschütter-Tönz syndrome: Mutations in ROGDI and evidence of genetic heterogeneity. Hum. Mutat. 34 (2), 296–300. 10.1002/humu.22241 PubMed DOI PMC
Utami T. W., Miyoshi K., Hagita H., Yanuaryska R. D., Horiguchi T., Noma T. (2011). Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J. Biomed. Biotechnol. 2011, 320987. 10.1155/2011/320987 PubMed DOI PMC
Vahidnezhad H., Youssefian L., Zeinali S., Saeidian A. H., Sotoudeh S., Mozafari N., et al. (2017). Dystrophic epidermolysis bullosa: COL7A1 mutation landscape in a multi-ethnic cohort of 152 extended families with high degree of customary consanguineous marriages. J. Investig. Dermatol 137, 660–669. 10.1016/j.jid.2016.10.023 PubMed DOI
van Bakel I., Sepp T., Ward S., Yates J. R. W., Green A. J. (1997). Mutations in the TSC2 gene: Analysis of the complete coding sequence using the protein truncation test (PTT). Hum. Mol. Genet. 6, 1409–1414. 10.1093/hmg/6.9.1409 PubMed DOI
Vieira G. H., Rodriguez J. D., Carmona-Mora P., Cao L., Gamba B. F., Carvalho D. R., et al. (2012). Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith-Magenis syndrome. Eur. J. Hum. Genet. 20, 148–154. 10.1038/ejhg.2011.167 PubMed DOI PMC
Vig M., Peinelt C., Beck A., Koomoa D. L., Rabah D., Koblan-Huberson M., et al. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223. 10.1126/science.1127883 PubMed DOI PMC
Wang S.-K., Choi M., Richardson A. S., Reid B. M., Lin B. P., Wang S. J., et al. (2014b). ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum. Mol. Genet. 23, 2157–2163. 10.1093/hmg/ddt611 PubMed DOI PMC
Wang S.-K., Hu Y., Simmer J. P., Seymen F., Estrella N. M. R. P., Pal S., et al. (2013). Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J. Dent. Res. 92, 266–271. 10.1177/0022034513475626 PubMed DOI PMC
Wang S.-K., Zhang H., Chavez M. B., Hu Y., Seymen F., Koruyucu M., et al. (2020). Dental malformations associated with biallelic MMP20 mutations. Mol. Genet. Genomic Med. 8, e1307. 10.1002/mgg3.1307 PubMed DOI PMC
Wang S., Choi M., Richardson A. S., Reid B. M., Seymen F., Yildirim M., et al. (2014a). STIM1 and SLC24A4 are critical for enamel maturation. J. Dent. Res. 93, 94S-100S–100S. 10.1177/0022034514527971 PubMed DOI PMC
Wang X., Zhao Y., Yang Y., Qin M. (2015). Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta. PLoS One 10, e0116514. 10.1371/journal.pone.0116514 PubMed DOI PMC
Wazen R. M., Viegas-Costa L. C., Fouillen A., Moffatt P., Adair-Kirk T. L., Senior R. M., et al. (2016). Laminin γ2 knockout mice rescued with the human protein exhibit enamel maturation defects. Matrix Biol. 52 (54), 207–218. 10.1016/j.matbio.2016.03.002 PubMed DOI
Weinmann J. P., Svoboda J. F., Woods R. W. (1945). Hereditary disturbances of enamel formation and Calcification**From the research department, loyola university, school of Dentistry, chicago College of dental surgery, and the department of health and welfare, bureau of health, division of dental health, augusta, Maine. J. Am. Dent. Assoc. 32, 397–418. 10.14219/jada.archive.1945.0063 DOI
Whitehouse L. L. E., Smith C. E. L., Poulter J. A., Brown C. J., Patel A., Lamb T., et al. (2019). Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis. 25, 182–191. 10.1111/odi.12955 PubMed DOI PMC
Wimalarathna A., Abeyasinghe U., Jayasooriya P., Herath C. (2020). Amelogenesis imperfecta: A literature review based guide to diagnosis and management. J. M. Dent. 10, 94–101. 10.46875/jmd.v10i3.532 DOI
Witkop C. J. (1988). Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: Problems in classification. J. Oral Pathol. 17, 547–553. 10.1111/j.1600-0714.1988.tb01332.x PubMed DOI
Witkop C. J. (1957). Hereditary defects in enamel and dentin. Acta Genet. Stat. Med. 7, 236–239. 10.1159/000150974 PubMed DOI
Witkop C. J. (1971). Manifestations of genetic diseases in the human pulp. Oral Surg. Oral Med. Oral Pathol. 32, 278–316. 10.1016/0030-4220(71)90232-5 PubMed DOI
Witkop C. J., Sauk J. J. (1976). “Heritable defects of enamel,” in Oral facial genetics. Editors Stewart R., Prescott G. (St. Louis: C.V. Mosby Company; ), 151–226.
Wright J. T., Carrion I. A., Morris C. (2015). The molecular basis of hereditary enamel defects in humans. J. Dent. Res. 94, 52–61. 10.1177/0022034514556708 PubMed DOI PMC
Wright J. T. (2023). Enamel phenotypes: Genetic and environmental determinants. Genes. 14, 545. 10.3390/genes14030545 PubMed DOI PMC
Wright J. T., Puranik C. P., Farrington F. (2016). Oral phenotype and variation in focal dermal hypoplasia. Am. J. Med. Genet. C Semin. Med. Genet. 172C, 52–58. 10.1002/ajmg.c.31478 PubMed DOI
Yamada N., Fukuda S., Tomatsu S., Muller V., Hopwood J. J., Nelson J., et al. (1998). Molecular heterogeneity in mucopolysaccharidosis IVA in Australia and Northern Ireland: Nine novel mutations including T312S, a common allele that confers a mild phenotype. Hum. Mutat. 11 (3), 202–208. 10.1002/(SICI)1098-1004(1998)11:3<202::AID-HUMU4>3.0.CO;2-J PubMed DOI
Yamaguti P. M., Neves F. de A. R., Hotton D., Bardet C., Dure-Molla M. de L., Castro L. C., et al. (2017). Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J. Med. Genet. 54, 26–37. 10.1136/jmedgenet-2016-103956 PubMed DOI
Yamazaki D., Funato Y., Miura J., Sato S., Toyosawa S., Furutani K., et al. (2013). Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: A mouse model. PLoS Genet. 9, e1003983. 10.1371/journal.pgen.1003983 PubMed DOI PMC
Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R. T., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718. 10.1038/19539 PubMed DOI
Yang M., Mailhot G., Birnbaum M. J., MacKay C. A., Mason-Savas A., Odgren P. R. (2006). Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J. Biol. Chem. 281, 23598–23605. 10.1074/jbc.M602191200 PubMed DOI
Yenamandra V. K., Vellarikkal S. K., Chowdhury M. R., Jayarajan R., Verma A., Scaria V., et al. (2018). Genotype-phenotype correlations of dystrophic epidermolysis bullosa in India: Experience from a tertiary care centre. Acta Derm. Venereol. 98, 873–879. 10.2340/00015555-2929 PubMed DOI
Yeo G., Burge C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394. 10.1089/1066527041410418 PubMed DOI
Yuan J. P., Zeng W., Huang G. N., Worley P. F., Muallem S. (2007). STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat. Cell. Biol. 9, 636–645. 10.1038/ncb1590 PubMed DOI PMC
Yuen W. Y., Pasmooij A. M. G., Stellingsma C., Jonkman M. F. (2012). Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm. Venereol. 92, 695–696. 10.2340/00015555-1341 PubMed DOI
Zanetti A., D’Avanzo F., AlSayed M., Brusius-Facchin A. C., Chien Y. H., Giugliani R., et al. (2021). Molecular basis of mucopolysaccharidosis IVA (Morquio A syndrome): A review and classification of GALNS gene variants and reporting of 68 novel variants. Hum. Mutat. 42 (11), 1384–1398. 10.1002/humu.24270 PubMed DOI PMC
Zhang H., Koruyucu M., Seymen F., Kasimoglu Y., Kim J.-W., Tinawi S., et al. (2019). WDR72 mutations associated with amelogenesis imperfecta and acidosis. J. Dent. Res. 98, 541–548. 10.1177/0022034518824571 PubMed DOI PMC
Zhang Z., Suzuki Y., Shimozawa N., Fukuda S., Imamura A., Tsukamoto T., et al. (1999). Genomic structure and identification of 11 novel mutations of the PEX6 (peroxisome assembly factor-2) gene in patients with peroxisome biogenesis disorders. Hum. Mutat. 13, 487–496. 10.1002/(SICI)1098-1004(1999)13:6<487::AID-HUMU9>3.0.CO;2-T PubMed DOI
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D. M. (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683. 10.1126/science.1207056 PubMed DOI PMC
ClinicalTrials.gov
NCT02397824, NCT01746121