Impact of Ce/Zr Ratio in the Nanostructured Ceria and Zirconia Composites on the Selective CO2 Adsorption

. 2023 Aug 26 ; 13 (17) : . [epub] 20230826

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37686936

Grantová podpora
КП-06-КОСТ/11 Bulgarian National Science Fund
IC-HU/02/2022-2023 bilateral grant agreement between the Bulgarian Academy of Sciences and the Hungarian Academy of Sciences
CA20127 European Cooperation in Science and Technology
INFRAMAT Bulgarian Ministry of Education and Science

High surface-area, mesoporous CeO2, ZrO2, and Ce-Zr composite nanoparticles were developed using the hydrothermal template-assisted synthesis method. Samples were characterized using XRD, N2 physisorption, TEM, XPS, and FT-IR spectroscopic methods. The CO2 adsorption ability of the obtained materials was tested under dynamic and equilibrium conditions. A high CO2 adsorption capacity in CO2/N2 flow or CO2/N2/H2O was determined for all studied adsorbents depending on their composition flow. A higher CO2 adsorption was registered for Ce-Zr composite nanomaterials due to the presence of strong O2- base sites and enriched surface oxygen species. The role of the Ce/Zr ratio is the process of the formation of highly active and selective adsorption sites is discussed. The calculated heat of adsorption revealed the processes of chemisorption and physisorption. Experimental data could be appropriately described by the Yoon-Nelson kinetic model. The composites reused in five adsorption/desorption cycles showed a high stability with a slight decrease in CO2 adsorption capacities in dry flow and in the presence of water vapor.

Zobrazit více v PubMed

Azmi A.A., Aziz M.A.A. Mesoporous adsorbent for CO2 capture application under mild condition: A review. J. Environ. Chem. Eng. 2019;7:103022. doi: 10.1016/j.jece.2019.103022. DOI

Belmabkhout Y., Guillerm V., Eddaoudi M. Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chem. Eng. J. 2016;296:386–397. doi: 10.1016/j.cej.2016.03.124. DOI

Davis S.J., Caldeira K., Matthews H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science. 2010;329:1330–1333. doi: 10.1126/science.1188566. PubMed DOI

Satterthwaite D. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008;20:539–549. doi: 10.1177/0956247808096127. DOI

Bhave A., Taylor R.H., Fennell P., Livingston W.R., Shah N., Mac Dowell N., Dennis J., Kraft M., Pourkashanian M., Insa M., et al. Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets. Appl. Energy. 2017;190:481–489. doi: 10.1016/j.apenergy.2016.12.120. DOI

Yu C.-H., Huang C.-H., Tan C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012;12:745–769. doi: 10.4209/aaqr.2012.05.0132. DOI

Li H., Yan D., Zhang Z., Lichtfouse E. Prediction of CO2 absorption by physical solvents using a chemoinformatics-based machine learning model. Environ. Chem. Lett. 2019;17:1397–1404. doi: 10.1007/s10311-019-00874-0. DOI

Li H., Zhang Z. Mining the intrinsic trends of CO2 solubility in blended solutions. J. CO2 Util. 2018;26:496–502. doi: 10.1016/j.jcou.2018.06.008. DOI

Rochelle G.T. Amine scrubbing for CO2 capture. Science. 2009;325:1652–1654. doi: 10.1126/science.1176731. PubMed DOI

Yeh J.T., Resnik K.P., Rygle K., Pennline H.W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process. Technol. 2005;86:1533–1546. doi: 10.1016/j.fuproc.2005.01.015. DOI

Chen S., Zhu M., Fu Y., Huang Y., Tao Z., Li W. Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas. Appl. Energy. 2017;191:87–98. doi: 10.1016/j.apenergy.2017.01.031. DOI

Lakhi K.S., Cha W.S., Joseph S., Wood B.J., Aldeyab S.S., Lawrence G., Choy J.-H., Vinu A. Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catal. Today. 2015;243:209–217. doi: 10.1016/j.cattod.2014.08.036. DOI

Hiremath V., Shavi R., Seo J.G. Controlled oxidation state of Ti in MgO-TiO2 composite for CO2 capture. Chem. Eng. J. 2017;308:177–183. doi: 10.1016/j.cej.2016.09.052. DOI

Yoshikawa K., Kaneeda M., Nakamura H. Development of Novel CeO2-based CO2 adsorbent and analysis on its CO2 adsorption and desorption mechanism. Energy Procedia. 2017;114:2481–2487. doi: 10.1016/j.egypro.2017.03.1400. DOI

Xu H., Hou X. Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells. Int. J. Hydrog. 2007;32:4397–4401. doi: 10.1016/j.ijhydene.2007.05.041. DOI

Kozerozhets V., Panasyuk G.P., Semenov E.A., Voroshilov I.L., Avdeeva V.V., Buzanov G.A., Danchevskaya M.N., Kolmakova A.A., Malinina E.A. A new approach to the synthesis of nanosized powder CaO and its application as precursor for the synthesis of calcium borates. Ceram. Int. 2022;48:7522–7532. doi: 10.1016/j.ceramint.2021.11.296. DOI

Arifutzzaman A., Musa I.N., Aroua M.K., Saidur R.M. Xene based activated carbon novel nano-sandwich for efficient CO2 adsorption in fixed-bed column. J. CO2 Util. 2023;68:102353. doi: 10.1016/j.jcou.2022.102353. DOI

Ligero A., Calero M., Martín-Lara M.Á., Blázquez G., Solís R.R., Pérez A. Fixed-bed CO2 adsorption onto activated char from the pyrolysis of a non-recyclable plastic mixture from real urban residues. J. CO2 Util. 2023;73:102517. doi: 10.1016/j.jcou.2023.102517. DOI

Kozerozhets I.V., Panasyuk G.P., Semenov E.A., Buzanov G.A., Avdeeva V.V., Danchevskaya M.N., Tsvetov N.S., Shapovalov S.S., Vasil’ev M.G. Function of the Non-Crystalline X-Ray Amorphous Phase of Highly Dispersed Powder of CaO in Adsorption of CO2 and H2O. Russ. J. Gen. Chem. 2021;91:S98–S105. doi: 10.1134/S1070363222020232. DOI

Buckeridge J., Scanlon D.O., Walsh A., Catlow C.R.A., Sokol A.A. Dynamical response and instability in ceria under lattice expansion. Phys. Rev. B. 2013;87:214304. doi: 10.1103/PhysRevB.87.214304. DOI

Sharan R., Dutta A. Structural analysis of Zr4+ doped ceria, a possible material for ammonia detection in ppm level. J. Alloys Compd. 2017;693:936–944. doi: 10.1016/j.jallcom.2016.09.267. DOI

Chuang C.-C., Hsiang H.-I., Yen F.-S., Chen C.-C., Yang S.-J. Phase evolution and reduction behavior of Ce0.6Zr0.4O2 powders prepared using the chemical co-precipitation method. Ceram. Int. 2013;39:1717–1722. doi: 10.1016/j.ceramint.2012.08.016. DOI

Trovarelli A., Zamar F., Llorca J., Leitenburg C., Dolcetti G., Kiss J.T. Nanophase Fluorite-Structured CeO2–ZrO2 Catalysts Prepared by High-Energy Mechanical Milling. J. Catal. 1997;169:490–502. doi: 10.1006/jcat.1997.1705. DOI

Rumruangwong M., Wongkasemjit S. Synthesis of ceria–zirconia mixed oxide from cerium and zirconium glycolates via sol–gel process and its reduction property. Appl. Organomet. Chem. 2006;20:615–625. doi: 10.1002/aoc.1106. DOI

Sajeevan A.C., Sajith V. Synthesis of stable cerium zirconium oxide nanoparticle—Diesel suspension and investigation of its effects on diesel properties and smoke. Fuel. 2016;183:155–163. doi: 10.1016/j.fuel.2016.06.048. DOI

Reddy G.K., Gunugunuri K.R., Ibram G., Ferreira J. Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: Characterization and CO oxidation. J. Mater. Sci. 2009;44:2743–2751. doi: 10.1007/s10853-009-3358-2. DOI

Liu J., Zhao Z., Xu C., Liu J. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis. Chin. J. Catal. 2019;40:1438–1487. doi: 10.1016/S1872-2067(19)63400-5. DOI

Mukherjee D., Rao B.G., Reddy B.M. CO and soot oxidation activity of doped ceria: Influence of dopants. Appl. Catal. B. 2016;197:105–115. doi: 10.1016/j.apcatb.2016.03.042. DOI

Campos P.T.A., Oliveira C.F., Lima J.P.V., Queiroz Silva D.R., Dias S.C.L., Dias J.A. Cerium–zirconium mixed oxide synthesized by sol-gel method and its effect on the oxygen vacancy and specific surface area. J. Solid State Chem. 2022;307:122752. doi: 10.1016/j.jssc.2021.122752. DOI

Reddy B.M., Bharali P., Saikia P., Park S.E., van den Berg M.W.E., Muhler M., Grünert W. Structural Characterization and Catalytic Activity of Nanosized CexM1-xO2 (M = Zr and Hf) Mixed Oxides. J. Phys. Chem. C. 2008;112:11729–11737. doi: 10.1021/jp802674m. DOI

Shih S.-J., Wu Y.-Y., Chou Y.-J., Borisenko K.B. Nanoscale control of composition in cerium and zirconium mixed oxide nanoparticles. Mater. Chem. Phys. 2012;135:749–754. doi: 10.1016/j.matchemphys.2012.05.054. DOI

Nagai Y., Yamamoto T., Tanaka T., Yoshida S., Nonaka T., Okamoto T., Suda A., Sugiura M. X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1) Catal. Today. 2002;74:225–234. doi: 10.1016/S0920-5861(02)00025-1. DOI

Yoshioka T., Dosaka K., Sato T., Okuwaki A., Tanno S., Miura T. Preparation of spherical ceria-doped tetragonal zirconia by the spray-pyrolysis method. J. Mater. Sci. 1992;11:51–55. doi: 10.1007/BF00720779. DOI

Schulz H., Stark W.J., Maciejewski M., Pratsinis S.E., Baiker A. Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: Structural properties and enhanced oxygen exchange capacity. J. Mater. Chem. 2003;13:2979–2984. doi: 10.1039/b307754c. DOI

Aguirre S.B., Vargas L., Rodriguez J.R., Estrada M., Castillon F., Lopez M., Simakova I., Simakov A. One-pot synthesis of uniform hollow nanospheres of Ce–Zr–O mixed oxides by spray pyrolysis. Micropor. Mesopor. Mater. 2020;294:109886. doi: 10.1016/j.micromeso.2019.109886. DOI

Alifanti B.B.M., Blangenois N., Naud J., Grange P., Delmon B. Characterization of CeO2−ZrO2 Mixed Oxides. Comparison of the Citrate and Sol−Gel Preparation Methods. Chem. Mater. 2003;15:395–403. doi: 10.1021/cm021274j. DOI

Sugiura M., Ozawa M., Suda A., Suzuki T., Kanazawa T. Development of Innovative Three-Way Catalysts Containing Ceria–Zirconia Solid Solutions with High Oxygen Storage/Release Capacity. Bull. Chem. Soc. Jpn. 2005;78:752–767. doi: 10.1246/bcsj.78.752. DOI

Boaro M., Colussi S., Trovarelli A. Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization. Front. Chem. Sec. Phys. Chem. Chem. Phys. 2019;7:28. doi: 10.3389/fchem.2019.00028. PubMed DOI PMC

Chen W., Fan L., Jiang X., Guo J., Liu H., Tian M. Preparation of CexZr1–xO2 by Different Methods and Its Catalytic Oxidation Activity for Diesel Soot. ACS Omega. 2022;7:16352–16360. doi: 10.1021/acsomega.1c07308. PubMed DOI PMC

Hori C.E., Permana H., Ng K.Y.S., Brenner A., More K., Rahmoeller K.M., Belton D. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Appl. Catal. B Environ. 1998;16:105–117. doi: 10.1016/S0926-3373(97)00060-X. DOI

Ai C., Zhang Y., Wang P., Wang W. Catalytic Combustion of Diesel Soot on Ce/Zr Series Catalysts Prepared by Sol-Gel Method. Catalysts. 2019;9:646. doi: 10.3390/catal9080646. DOI

Bêche E., Charvin P., Perarnau D., Abanades S., Flamant G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz) Surf. Interface Anal. 2008;40:264–267. doi: 10.1002/sia.2686. DOI

Jampaiah D., Ippolito S.J., Sabri Y.M., Tardio J., Selvakannan P.R., Nafady A., Reddy B.M., Bhargava S.K. Ceria–zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption. Catal. Sci. Technol. 2016;6:1792–1803. doi: 10.1039/C5CY01534K. DOI

Rao M.V.R., Shripathi T. Photoelectron spectroscopic study of X-ray induced reduction of CeO2. J. Electron Spectrosc. Relat. Phenom. 1997;87:121–126. doi: 10.1016/s0368-2048(97)00087-x. DOI

Galtayries A., Sporken R., Riga J., Blanchard G., Caudano R. XPS comparative study of ceria/zirconia mixed oxides: Powders and thin film characterisation. J. Electron Spectrosc. Relat. Phenom. 1998;88–91:951–956. doi: 10.1016/S0368-2048(97)00134-5. DOI

Shan W., Liu F., He H., Shi X., Zhang C. An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust. Catal. Today. 2012;184:160–165. doi: 10.1016/j.cattod.2011.11.013. DOI

Zhang R., Zhong Q., Zhao W., Yu L., Qu H. Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature. Appl. Surf. Sci. 2014;289:237–244. doi: 10.1016/j.apsusc.2013.10.143. DOI

Tsunekawa S., Asami K., Ito S., Yashima M., Sugimoto T. XPS study of the phase transition in pure zirconium oxide nanocrystallites. Appl. Surf. Sci. 2005;252:1651–1656. doi: 10.1016/j.apsusc.2005.03.183. DOI

Tsoncheva T., Ivanova R., Henych J., Dimitrov M., Kormunda M., Kovacheva D., Scotti N., Dal Santo V. Effect of preparation procedure on the formation of nanostructured ceria–zirconia mixed oxide catalysts for ethyl acetate oxidation:Homogeneous precipitation with urea vs template-assisted hydrothermal synthesis. Appl. Catal. A. 2015;502:418–432. doi: 10.1016/j.apcata.2015.05.034. DOI

Daturi M., Binet C., Lavalley J.C., Blanchard G. Surface FTIR investigations on CexZr1-xO2 system. Surf. Interface Anal. 2000;30:273–277. doi: 10.1002/1096-9918(200008)30:1<273::AID-SIA715>3.0.CO;2-G. DOI

Li M., Tumuluri U., Wu Z., Dai S. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces. Chem. Sus. Chem. 2015;8:3651–3660. doi: 10.1002/cssc.201500899. PubMed DOI

Daturi M., Binet C., Lavalley J.-C., Galtayries A., Sporken R. Surface investigation on CexZr1-xO2 compounds. Phys. Chem. Chem. Phys. 1999;1:5717–5724. doi: 10.1039/a905758g. DOI

Yoshikawa K., Sato H., Kaneeda M., Kondo J.N. Synthesis and analysis of CO2 adsorbents based on cerium oxide. J. CO2 Util. 2014;8:34–38. doi: 10.1016/j.jcou.2014.10.001. DOI

Bhatta L.K.G., Subramanyam S., Chengala M.D., Bhatta U.M., Pandita N., Venkatesh K. Investigation of CO2 adsorption on carbon material derived from Mesua ferrea L. seed cake. J. Environ. Chem. Eng. 2015;3:2957–2965. doi: 10.1016/j.jece.2015.10.006. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...