Vertical Oscillation of Railway Vehicle Chassis with Asymmetry Effect Consideration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35684653
PubMed Central
PMC9185285
DOI
10.3390/s22114033
PII: s22114033
Knihovny.cz E-zdroje
- Klíčová slova
- experimental results, kinematic excitation, motion equations, symmetry and asymmetry loading, vehicle model,
- Publikační typ
- časopisecké články MeSH
This paper deals with the problem of vertical oscillation of rail and road vehicles under symmetrical and asymmetrical loading and symmetrical and asymmetrical kinematic excitation. The term asymmetry is understood as the asymmetric distribution of vehicle mass and elastic and dissipative elements with respect to the axes of geometric symmetry, including asymmetric kinematic excitation. The various models used (spatial, planar, quarter-plane) are discussed and their analytical solutions are outlined. The theory of the spatial model is applied to the chassis of a model railway vehicle. The basic relations for the calculation of the equations of motion of this vehicle are given. In the next section, the experimental solution of a four-axle platform rail car is described and the measurements of vertical displacement and accelerations when crossing wedges (representing unevenness) are given.
Zobrazit více v PubMed
Mitschke M. Dynamik der Kraftfahrzeng. 4th ed. Springer; Berlin/Heidelberg, Germany: 2004. p. 806.
Rus L. Ph.D. Thesis. VÚML ČKD; Praha, Czech Republic: 1988. Dynamic of Railway Vehicles. (In Czech)
Rajalingham C., Rakheja S. Influence of Suspension Damper Asymmetry on Vehicle Vibration Response to Ground Excitation. J. Sound Vib. 2003;266:1117–1129. doi: 10.1016/S0022-460X(03)00054-3. DOI
Karnopp D. Vehicle Stability. Marcel Dekker; New York, NY, USA: 2004.
Biggs J.M., Testa B. Introduction to Structural Dynamics. McGraw-Hill; New York, NY, USA: 1964.
Knothe K., Stichel M. Rail Vehicle Dynamics. Springer International Publishing; Cham, Switzerland: 2017. DOI
Iwnicki S., Spiryagin M., Cole C., Mcsweeney T., editors. Handbook of Railway Vehicle Dynamics. CRC Press; Boca Raton, FL, USA: 2019. DOI
Dumitriu M., Gheti M.A., Bondera I., Cofaru N.F., Inta M. On the longitudinal vibration of the railway bogie; Proceedings of the MATEC Web of Conferences; Online. 21 August 2019; DOI
Chelli F., Corradi R. On rail vehicle vibrations induced by track unevenness: Analysis of the excitation mechanism. J. Sound Vib. 2011;330:3744–3765. doi: 10.1016/j.jsv.2011.02.025. DOI
Giorgio D., Cheli F., Collina A., Corradi R., Melzi S. The Development of a Numerical Model for Railway Vehicles Comfort Assessment through Comparison with Experimental Measurements. Veh. Syst. Dyn. 2002;38:165–183. doi: 10.1076/vesd.38.3.165.8287. DOI
Lin J., Wang K., Zhai W. Impact vibration behavior of railway vehicles: A state-of-the-art overview. Acta Mech. Sin. 2021;37:1193–1221. doi: 10.1007/s10409-021-01140-9. DOI
Gongquan T., Wen Z., Jin X., Yang X. Polygonisation of railway wheels: A critical review. Railw. Eng. Sci. 2020;28:317–345. doi: 10.1007/s40534-020-00222-x. DOI
Ren Z.S. An investigation on wheel/rail impact dynamics with a three-dimensional flat model. Veh. Syst. Dyn. 2018;57:269–285. doi: 10.1080/00423114.2018.1460853. DOI
Auersch L. Different Types of Continuous Track Irregularities as Sources of Train-Induced Ground Vibration and the Importance of the Random Variation of the Track Support. Appl. Sci. 2022;12:1463. doi: 10.3390/app12031463. DOI
Aris T., Berg M., Stichel S. Analysing the correlation between vehicle responses and track irregularities using dynamic simulations and measurements. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2020;234:170–182. doi: 10.1177/0954409719840450. DOI
Wen R.K. Dynamic response of beams traversed by two-axle loads. J. Eng. Mech. Div. 1960;86:91–112. doi: 10.1061/JMCEA3.0000180. DOI
Švejnoch V. Theory of Railway Vehicles. ČVUT Praha; Prague, Czech Republic: 1991. (In Czech)
Zhai W. Vehicle–Track Coupled Dynamics. Springer; Singapore: 2020. DOI
Pacejka H.B. Proceedings of the IUTAM Sympozium. Pelft; Praha, Czech Republic: 1975. The Dynamics of Vehicles on Roads and on Railway Tracks.
Vlk F. Motor Vehicle Dynamics. Nakladatelství Vlk; Brno, Czech Republic: 2001. (In Czech)
Timoshenko S.P. On the forced vibrations of bridges. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1922;43:1018–1019. doi: 10.1080/14786442208633953. DOI
Soukup J., Volek J. Vibration of Mechanical Systems—Vehicles. Vol. 227. University of Jan Evangelista Purkyně; Ústí nad Labem, Czech Republic: 2008.
Bauer R. Diploma Thesis. Steyer-Daimler-Puch AG; Steyr, Austria: 1987. Erzeugung von Räumlichen Fahrbahnmodellen für Komfortunter-Schungen im Labor.
Ellis J.R. Road Vehicle Dynamics. USA: 1989.
Festa M., Stalter F., Tavornmas A., Gauterin F. Human Response to Vehicle Vibrations and Acoustics during Transient Road Excitations. Vibration. 2021;4:357–368. doi: 10.3390/vibration4020023. DOI
Abuabiah M., Dabbas Y., Herzallah L., Alsurakji I.H., Assad M., Plapper P. Analytical Study on the Low-Frequency Vibrations Isolation System for Vehicle’s Seats Using Quasi-Zero-Stiffness Isolator. Appl. Sci. 2022;12:2418. doi: 10.3390/app12052418. DOI
Volek J., Soukup J., Skočilasová B. 80-7044-492-4Investigation of the Vibration of a Spatially Elastic Rigid Plate Considering the Effects of Asymmetry, Linear Damping and the General Excitation Function I: Internation Seminar Dynamic of Rigid and Elastic Bodies 2003, Ústí n. L. 12–13. 2003;11:83–90. UTRV UJEP Ústí n. L. (In Czech)
Shi H., Wu P., Luo R., Zeng J. Estimation of the Damping Effects of Suspension Systems on Railway Vehicles Using Wedge Tests. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2016;230:392–406. doi: 10.1177/0954409714542861. DOI
Vibration Measurements on a Six-Axis Collaborative Robotic Arm-Part I
Measurement of a Vibration on a Robotic Vehicle