Vibration Measurements on a Six-Axis Collaborative Robotic Arm-Part I
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UJEP-IGA-JR-2021-48-003-2
Internal Grant Agency of Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic
PubMed
36772669
PubMed Central
PMC9919816
DOI
10.3390/s23031629
PII: s23031629
Knihovny.cz E-zdroje
- Klíčová slova
- dominant frequency, six-axis robotic arm, vibration and noise,
- Publikační typ
- časopisecké články MeSH
This article deals with the design of a methodology for vibration and noise measurement on a six-axis collaborative robotic arm. A vibration and noise measurement methodology is proposed for six robot positions. In each position, measurements were performed under defined equal boundary conditions. The boundary conditions were related to the velocities of the joints and the load on the robotic arm. The second part of the article is an evaluation of the initial experimental results. So far, only the acceleration of the sixth joint of the robotic arm-Wrist 3-has been measured. The aim of the measurements was to verify if the methodology presented can be used for vibration measurements. From the evaluation of the experimental measurements, it was determined that the given methodology can be used for vibration measurements. It was also found that the acceleration is transmitted in the axes other than the axis of motion of the robotic arm. In future experiments, the vibration at the other joints of the robotic arm will be measured and the noise of the robotic arm will be measured to confirm whether the proposed methodology is indeed functional.
Zobrazit více v PubMed
Borys S., Kaczmarek W., Laskowski D., Polak R. Experimental Study of the Vibration of the Spot Welding Gun at a Robotic Station. Appl. Sci. 2022;12:12209. doi: 10.3390/app122312209. DOI
Zuccon G., Doria A., Bottin M., Rosati G. Planar Model for Vibration Analysis of Cable Rehabilitation Robots. Robotics. 2022;11:154. doi: 10.3390/robotics11060154. DOI
Soukup J., Volek J. CD-ROM National Conference with International Participation Engineering Mechanics 2003. 1st ed. Volume 9. Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic; Svratka, Czech Republic: 2003. Transversal impal of elastic rod on thin elastic isotropic and orthotropic rectangular plate; pp. 384–385. 11–15 May 2003.
Huffington N.J., Hoppmann W.J. On the transverse vibrations of rectangular orthotropic bases. J. Appl. Mech. 1958;25:389–395. doi: 10.1115/1.4011833. DOI
Leitmann M.J. The Linear Theory of Viscoelasticity. Encyklopedia of Physics; Berlin, Germany: 1973.
Kučera V. Algebraická Tezorie Diskrétního Lineárního Řízení. 1st ed. Volume 333 s Academia Česká republika; Praha, Czech Republic: 1978.
Andérez González J., Vescovini R. Simplified Approach to Nonlinear Vibration Analysis of Variable Stiffness Plates. J. Compos. Sci. 2023;7:30. doi: 10.3390/jcs7010030. DOI
Blatnický M., Dižo J., Sága M., Gerlici J., Kuba E. Design of a Mechanical Part of an Automated Platform for Oblique Manipulation. Appl. Sci. 2020;10:8467. doi: 10.3390/app10238467. DOI
Smutný J. Měření a Analýza Hluku a Vibrací s Využitím Moderních Matematických Metod. 1st ed. Volume 64. ECON Publishing; Brno, Česká republika: 2000.
Vibrace Působící na Člověka—Měřicí přístroje. CSN EN ISO; Plzen, Czech Republic: 2005. Praha, J.E.S.; Ed.; 93 s.; Třídící znak 2005364806.
Apetaur M. Akustika Strojů, Strojních Celků a Výrobních Prostor. 1st ed. Univerzita J. E. Purkyně; Ústí nad Labem, Česká Republika: 2007. 235 s.
Smetana C. Hluk a Vibrace: Měření a Hodnocení. 1st ed. Sdělovací technika; Praha, Česká republika: 1998. 188 s.
Klimenda F., Cizek R., Suszynski M. Measurement of a Vibration on a Robotic Vehicle. Sensors. 2022;22:8649. doi: 10.3390/s22228649. PubMed DOI PMC
Lin J.-L., Huang H.-P., Lin C.-Y. Iterative Learning Control for Vibration Suppression of a Robotic Arm. Appl. Sci. 2023;13:828. doi: 10.3390/app13020828. DOI
Blatnicky M., Dizo J., Gerlici J., Saga M., Lack T., Kuba E. Design of a Robotic Manipulator for Handling Products of Automotive Industry. Int. J. Adv. Robot. Syst. 2020;17:1729–8814. doi: 10.1177/1729881420906290. DOI
Klimenda F., Sterba J., Cernohlavek V., Ponikelsky J., Maran P. Draft of robotic workstation for laser engraving. Manuf. Technol. 2021;21:357–363. doi: 10.21062/mft.2021.049. DOI
Klimenda F., Skocilas J., Skocilasova B., Soukup J., Cizek R. Vertical Oscillation of Railway Vehicle Chassis with Asymmetry Effect Consideration. Sensors. 2022;22:4033. doi: 10.3390/s22114033. PubMed DOI PMC
Sohn J.W., Ruth J.S., Yuk D.-G., Choi S.-B. Application of Shape Memory Alloy Actuators to Vibration and Motion Control of Structural Systems: A Review. Appl. Sci. 2023;13:995. doi: 10.3390/app13020995. DOI
Lu C., Dashtabi M.M., Nikbakht H., Khoshmehr M.T., Akca B.I. Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever. Sensors. 2023;23:924. doi: 10.3390/s23020924. PubMed DOI PMC
Blatnicky M., Dizo J., Blatnická M., Svoboda M. Design of a Robot Manipulator Working Screw Revolutions; Proceedings of the 23rd International Conference Engineering Mechanics 2017; Svratka, Czech Republic. 15–18 May 2017; pp. 166–169.
Svoboda M., Chalupa M., Jelen K., Lopot F., Kubový P., Sapieta M., Krobot Z., Suszyński M. Load Measurement of the Cervical Vertebra C7 and the Head of Passengers of a Car While Driving across Uneven Terrain. Sensors. 2021;21:3849. doi: 10.3390/s21113849. PubMed DOI PMC
UNIVERSAL ROBOTS: User Manual—UR10 CB-SERIES—SW3.15—English International (EN) [(accessed on 25 December 2022)]. Available online: https://www.universal-robots.com/download/manuals-cb-series/user/ur10/315/user-manual-ur10-cb-series-sw315-english-international-en/
Hu Q., Zhang Y., Xie X., Su W., Li Y., Shan L., Yu X. Optimal Placement of Vibration Sensors for Industrial Robots Based on Bayesian Theory. Appl. Sci. 2022;12:6086. doi: 10.3390/app12126086. DOI
Bottin M., Cocuzza S., Comand N., Doria A. Modeling and Identification of an Industrial Robot with a Selective Modal Approach. Appl. Sci. 2020;10:4619. doi: 10.3390/app10134619. DOI
Badkoobehhezaveh H., Fotouhi R., Zhang Q., Bitner D. Vibration Analysis of a 5-DOF Long-Reach Robotic Arm. Vibration. 2022;5:585–602. doi: 10.3390/vibration5030034. DOI
Innovative Approaches to Material Selection and Testing in Additive Manufacturing