Load Measurement of the Cervical Vertebra C7 and the Head of Passengers of a Car While Driving across Uneven Terrain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34199638
PubMed Central
PMC8199783
DOI
10.3390/s21113849
PII: s21113849
Knihovny.cz E-zdroje
- Klíčová slova
- car, dynamic load, experiment, human, measurement,
- MeSH
- automobily * MeSH
- dopravní nehody MeSH
- dospělí MeSH
- krční obratle MeSH
- lidé MeSH
- řízení motorových vozidel * MeSH
- zrychlení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The article deals with the measurement of dynamic effects that are transmitted to the driver (passenger) when driving in a car over obstacles. The measurements were performed in a real environment on a defined track at different driving speeds and different distributions of obstacles on the road. The reaction of the human organism, respectively the load of the cervical vertebrae and the heads of the driver and passenger, was measured. Experimental measurements were performed for different variants of driving conditions on a 28-year-old and healthy man. The measurement's main objective was to determine the acceleration values of the seats in the vehicle in the vertical movement of parts of the vehicle cabin and to determine the dynamic effects that are transmitted to the driver and passenger in a car when driving over obstacles. The measurements were performed in a real environment on a defined track at various driving speeds and diverse distributions of obstacles on the road. The acceleration values on the vehicle's axles and the structure of the driver's and front passenger's seats, under the buttocks, at the top of the head (Vertex Parietal Bone) and the C7 cervical vertebra (Vertebra Cervicales), were measured. The result of the experiment was to determine the maximum magnitudes of acceleration in the vertical direction on the body of the driver and the passenger of the vehicle when passing a passenger vehicle over obstacles. The analysis of the experiment's results is the basis for determining the future direction of the research.
Faculty of Mechanical Engineering Poznan University of Technology 60 965 Poznan Poland
Faculty of Mechanical Engineering University of Žilina 010 26 Žilina Slovakia
Faculty of Military Technology University of Defence 662 10 Brno Czech Republic
Zobrazit více v PubMed
Dylevský I. Funkční Anatomie—1. Vyd. Grada; Praha, Czech Republic: 2009. p. 544.
Battaglia G., Giustino V., Iovane A., Bellafiore M., Martines F., Patti A., Palma A. Influence of occlusal vertical dimension on cervical spine mobility in sports. Acta Med. 2016;32:1589.
Rubin C., Pope M., Fritton J.C., Magnusson M., Hansson T., Mcleod K. Transmissibility of 15-Hertz to 35-Hertz Vibrations to the Human Hip and Lumbar Spine: Determining the Physiologic Feasibility of Delivering Low-Level Anabolic Mechanical Stimuli to Skeletal Regionsat Greatest Risk of Fracture Because of Osteoporosis. Spine. 2008;28 doi: 10.1097/01.BRS.0000102682.61791.C9. PubMed DOI
Jandák Z. Vibrace Přenášené na Člověka. State Health Institute. [(accessed on 4 January 2021)];2007 Available online: http://www.szu.cz/tema/pracovni-prostredi/vibrace-prenasene-nacloveka.
Hrubý J., Krobot Z. Hodnocení zraňujícího účinku volně uložených předmětů ve vozidle při dopravní nehodě. Úrazová Chir. 2018;2018:116–135.
Hnízdil J. Bolesti Zad Jako Životní Realita: Jejich Příčiny, Diagnostika, Terapie, a Prevence. Triton; Praha, Czech Republic: 2000. p. 167.
Fritz M. Description of the Relation between the Forces Acting in the Lumbar Spine and Whole-Body Vibrations by Means of Transfer Functions. Clin. Biomech. 2000;15:234–240. doi: 10.1016/S0268-0033(99)00071-6. PubMed DOI
Bovenzi M., Pinto I., Stacchini N. Low back pain in port machinerry operators. J. Sound Vib. 2002;253:3–20. doi: 10.1006/jsvi.2001.4246. DOI
Kumar A., Varghese M., Mohan D., Mahajan P., Gulati P., Kale S. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. Spine. 1999;24:2506–2515. doi: 10.1097/00007632-199912010-00013. PubMed DOI
Alperowitch-Najenson D., Santo Y., Masharawi Y., Katz-Leurer D. Low Back Pain among Professional Bus Drivers: Ergonomic and Occupational-Psychosocial Risk Factors. Israel Med. Assoc. J. 2010;12:26–31. PubMed
Robb M.J., Mansfield N.J. Self-reported musculoskeletal problems amonit professional truck drivers. Ergonomics. 2007;50:814–827. doi: 10.1080/00140130701220341. PubMed DOI
Netterstron B., Juel K. Low back trouble among urban bus drivers in Denmark. Scand. J. Soc. Med. 1989;17:203–206. doi: 10.1177/140349488901700211. PubMed DOI
Donnelly C.J., Callghan J.P., Durkin J.L. The Effect of an Active Lumbar System on the Seating Comfort of Officers in Police Fleet Vehicles. Int. J. Occup. Saf. Ergon. 2009;3:295–307. doi: 10.1080/10803548.2009.11076809. PubMed DOI
Chen J.-C., Dennerlein J., Chang C.C., Chang W., Christiani D.C. Seat inclination, use of lumbar support and low-back pain of taxi drivers. Scand. J. Work Environ. Health. 2005:258–265. doi: 10.5271/sjweh.881. PubMed DOI
Ravnik D. Komplexita Biomateriálů a Tkáňových Struktur. Univerzita Karlova, Fakulta Tělesné Výchovy a Sportu; Praha, Czech Republic: 2002. Vliv vibrací na lokální hemodynamiku krve.
Krobot Z., Hrubý J., Neumann V., Túró T. The Injurious Effects of Freely Transported Objects on a Crew in Military Vehicles during Traffic Acidents; Proceedings of the ICMT 2019—7th International Conference on Military Technologies; Brno, Czech Republic. 30–31 May 2019; Brno, Czech Republic: University of Defence; 2019. p. 8870080.
Kajiwara Y., Kimura H. Predicting the Coping Skills of Older Drivers in the Face of Unexpected Situation. Sensors. 2021;21:2099. doi: 10.3390/s21062099. PubMed DOI PMC
Černohlávek V., Svoboda M., Štěrba J., Chalupa M., Sapieta M. Analytical and experimental solution of vibrations of a system of bound bodies. Manuf. Technol. 2020;20:699–707. doi: 10.21062/mft.2020.116. DOI
Pelclová D., Lebedová J., Fenclová Z., Lukáš E. Nemoci z Povolání a Intoxikace. Karolinum; Praha, Czech Republic: 2006.
Harrison D.D., Harrison S.O., Arthur A., Croft C. Sitting Biomechanics, Part I1: Optimal Car Driver’s Seat and Optimal Driver’s Spinal Model: Review of the literature. J. Manip. Physiol. Ther. 2000;23:37–47. doi: 10.1016/S0161-4754(00)90112-X. PubMed DOI
Zhao Y., Wang X. A Review of Low-Frequency Active Vibration Control of Seat suspension Systems. Appl. Sci. 2019;9:3326. doi: 10.3390/app9163326. DOI
Quoc M., Krzikala D., Mesicek J., Petru J., Smiraus J., Sliva A., Poruba Z. On Aluminum Honeycomb Impact Attenuator Designs for Formula Student Competitions. Symmetry. 2020;12:1647. doi: 10.3390/sym12101647. DOI
Peng Q., Xu P., Yuan H., Ma H., Xue J., He Z., Li S. Analysis of Vibration Monitoring Data of Flexible Suspension Lifting Structure Based on Time-Varying Theory. Sensors. 2020;20:6586. doi: 10.3390/s20226586. PubMed DOI PMC
Svoboda M., Chalupa M., Jelen K., Kubový P., Sapieta M. Loading of the Musculoskeletal System of a Person While Driving in a Passenger Car. ECS Trans. 2019;95:449–456. doi: 10.1149/09501.0449ecst. DOI
Lehnen N.C., Haase R., Faber J., Rüber T., Vatter H., Radbruch A., Schmeel F.C. Detection of Degenerative Changes on MR Images of the Lumbar Spine with a Convolutional Neural Network: A Feasibility Study. Diagnostics. 2021;11:902. doi: 10.3390/diagnostics11050902. PubMed DOI PMC
Zhang X., Xu X., Wang J., Wang C., Yan Y., Wu A., Ren Y. Public-Health-Driven Microfluidic Technologies: From Separation to Detection. Micromachines. 2021;12:391. doi: 10.3390/mi12040391. PubMed DOI PMC
Vibration Measurements on a Six-Axis Collaborative Robotic Arm-Part I
Measurement of a Vibration on a Robotic Vehicle