Innovative Approaches to Material Selection and Testing in Additive Manufacturing

. 2025 Jan 02 ; 18 (1) : . [epub] 20250102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39795789

Grantová podpora
UJEP-SGS-2023-48-002-2 SGS grant support - Jan Evangelista Purkyně University in Ústí nad Labem

This study focuses on selecting a suitable 3D printer and defining experimental methods to gather the necessary data for determining the optimal filament material for printing components of the VEX GO and VEX IQ robotic kits. The aim is to obtain the required data to identify an appropriate filament material and set 3D printing parameters to achieve the desired mechanical properties of the parts while maintaining cost-effectiveness. Another key objective is achieving optimal operational functionality, ensuring the required part performance with minimal printing costs. It is desirable for the modeled and printed parts to exhibit the required mechanical properties while maintaining economic efficiency. Another crucial aspect is achieving optimal functionality of the produced parts with minimal printing costs. This will be assessed by analyzing the impact of key 3D printing technology parameters, focusing in this research phase on material selection. The criteria for selecting filament materials include ease of printability under the conditions of primary and secondary schools, simplicity of printing, minimal need for post-processing, and adequate mechanical properties verified through experimental measurements and destructive tests on original parts from VEX GO and VEX IQ kits. The study analyzed various filaments regarding their mechanical properties, printability, and cost-effectiveness. The most significant practical contribution of this study is selecting a suitable filament material tested through a set of destructive tests, emphasizing maintaining the mechanical properties required for the real-life application of the parts. This includes repetitive assembly and disassembly of various robotic model constructions and their activation for demonstration purposes and applications of STEM/STEAM/STREAM methods in the educational process to achieve the properties of original components. Additionally, the study aims to set up 3D printing such that even a beginner-level operator, such as a primary or secondary school student under the supervision of their teacher or a teacher with minimal knowledge and experience in 3D printing, can successfully execute it. Further ongoing research focuses on evaluating the effects of characteristic 3D printing parameters, such as infill and perimeter, on the properties of 3D-printed parts through additional measurements and analyses.

Zobrazit více v PubMed

Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI

Pervaiz S., Qureshi T.A., Kashwani G., Kannan S. 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Materials. 2021;14:4520. doi: 10.3390/ma14164520. PubMed DOI PMC

Nicholson W.J. The Chemistry of Polymers. Royal Society of Chemistry; Cambridge, UK: 2017. ISBN-13 978-1782628323.

Iftekar S.F., Aabid A., Amir A., Baig M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers. 2023;15:2519. doi: 10.3390/polym15112519. PubMed DOI PMC

Jiang B., Chen Q., Yang J. Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys. Int. J. Adv. Manuf. Technol. 2020;110:2631–2649. doi: 10.1007/s00170-020-06021-2. DOI

de la Peña Zarzuelo I., Soeane M.J.F., Bermúdez B.L. Industry 4.0 in the Port and Maritime Industry: A Literature Review. J. Ind. Inf. Integr. 2020;20:100173. doi: 10.1016/j.jii.2020.100173. DOI

Khoo Z.X., Teoh J.E.M., Liu Y., Chua C.K., Yang S., An J., Leong K.F., Yeong W.Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp. 2015;10:103–122. doi: 10.1080/17452759.2015.1097054. DOI

Garbatov Y., Scattareggia Marchese S., Epasto G., Crupi V. Flexural Response of Additive-Manufactured Honeycomb Sandwiches for Marine Structural Applications. Ocean. Eng. 2024;302:117732. doi: 10.1016/j.oceaneng.2024.117732. DOI

Peng X., He H., Jia Y., Liu H., Geng Y., Huang B., Luo C. Shape Memory Effect of Three-Dimensional Printed Products Based on Polypropylene/Nylon 6 Alloy. J. Mater. Sci. 2019;54:9235–9246. doi: 10.1007/s10853-019-03366-2. DOI

Colorado H.A., Velásquez E.I.G., Monteiro S.N. Sustainability of Additive Manufacturing: The Circular Economy of Materials and Environmental Perspectives. J. Mater. Res. Technol. 2020;9:8221–8234. doi: 10.1016/j.jmrt.2020.04.062. DOI

Falkonakis I., Lotfian S., Yeter B. Multi-Criteria Decision Analysis of an Innovative Additive Manufacturing Technique for Onboard Maintenance. Sustainability. 2024;16:3763. doi: 10.3390/su16093763. DOI

Habib M., Lantgios I., Hornbostel K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D Appl. Phys. 2022;55:423002. doi: 10.1088/1361-6463/ac8687. DOI

Wang F., Xue Y., Chen X., Zhang P., Shan L., Duan Q., Xing J., Lan Y., Lu B., Liu J. 3D Printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 2023;34:314471. doi: 10.1002/adfm.202314471. DOI

Fales A. Edukační Robotika; Proceedings of the International Conference “Experimental and Calculation Methods in Engineering 2023”; Usti nad Labem, Czech Republic. 14–16 June 2023; pp. 169–172.

Oh J.-S., Oh M.-J., Han Z., Seo H.-S. Effects of Fiber Orientation on the Bearing Strength of 3D-Printed Composite Materials Produced by Fused Filament Fabrication. Polymers. 2024;16:3591. doi: 10.3390/polym16243591. PubMed DOI PMC

Kočí J. Jak Tisknout na Pláty se Zrnitým Práškovým Povrchem? In Josefprusa.cz [Online]. © Josef Prusa. 2019. [(accessed on 29 September 2024)]. Available online: https://josefprusa.cz/jak-tisknout-na-texturovanou-podlozku/

Sapieta M., Dekýš V., Štalmach O., Sapietová A., Svoboda M. Detection of elastic deformation in metal materials in infrared spectral range. Materials. 2021;14:5359. doi: 10.3390/ma14185359. PubMed DOI PMC

Ponikelsky J., Cernohlavek V., Sterba J., Houska P. Research of Robots in Cooperative Mode in Human Body Part Detection. Manuf. Technol. 2023;23:99–109. doi: 10.21062/mft.2023.007. DOI

Klimenda F., Sterba J., Cernohlavek V., Ponikelsky J., Maran P. Draft of robotic workstation for laser engraving. Manuf. Technol. 2021;21:357–363. doi: 10.21062/mft.2021.049. DOI

Piekarska W., Saternus Z., Sapieta M., Kopas P. Polish-Slovak Scientific Conference on Machine Modelling and Simulations. Volume 254. Édition Diffusion Presse Sciences; London, UK: 2019. The influence of joining technique on the deformation of laser welded T-joints. 23; pp. 1–9. MATEC Web of Conferences.

Vondrášek D., Hadraba D., Matějka R., Lopot F., Svoboda M., Jelen K. Uniaxial tensile testing device for measuring mechanical properties of biological tissue with stress-relaxation test under a confocal microscope. Manuf. Technol. 2018;18:866–872. doi: 10.21062/ujep/192.2018/a/1213-2489/MT/18/5/866. DOI

Koçar O., Anaç N., Baysal E., Parmaksız F., Akgül İ. Investigation of Mechanical Properties and Color Changes of 3D-Printed Parts with Different Infill Ratios and Colors After Aging. Materials. 2024;17:5908. doi: 10.3390/ma17235908. PubMed DOI PMC

Wulff J., Merle C.L., Hahnel S., Rosentritt M. Wear Behavior and Water Sorption of Additively Manufactured Resin-Based Splint Materials. Materials. 2024;17:5880. doi: 10.3390/ma17235880. PubMed DOI PMC

Cernohlavek V., Klimenda F., Houska P., Suszyński M. Vibration Measurements on a Six-Axis Collaborative Robotic Arm—Part I. Sensors. 2023;23:1629. doi: 10.3390/s23031629. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace