Cutting Force-Vibration Interactions in Precise-and Micromilling Processes: A Critical Review on Prediction Methods

. 2025 Jul 28 ; 18 (15) : . [epub] 20250728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40805418

Grantová podpora
09I03-03-V04-00056 EU NextGenerationEU

In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force-tool displacement interactions in precise and micromilling manufacturing systems. Therefore, this literature review aims to fill this research gap and focuses on the critical literature review regarding the current state of the art within the prediction methods of cutting forces and machining system's displacements/vibrations during precise and micromilling techniques. In the first part, a currently available cutting force, as well as the static and dynamic machining system displacement models applied in precise and micromilling conditions are presented. In the next stage, a relationship between the geometrical elements of cut and generated cutting forces and tool displacements are discussed, based on the recent literature. A subsequent part concerns the formulation of the generalized analytical models for a prediction of cutting forces and vibrations during precise and micromilling conditions. In the last stage, the conclusions and outlook are formulated based on the conducted analysis of the literature. In this context, this paper constitutes a synthetic work presenting current trends in the prediction of precise milling and micromilling mechanics.

Zobrazit více v PubMed

Guo Q., Liu Z., Yang Z., Jiang Y., Sun Y., Xu J., Zhao W., Wang W., Wang W., Ren Q., et al. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. J. Manuf. Process. 2024;126:285–331. doi: 10.1016/j.jmapro.2024.07.112. DOI

Li H., Wu B. Development of a hybrid cutting force model for micromilling of brass. Int. J. Mech. Sci. 2016;115–116:586–595. doi: 10.1016/j.ijmecsci.2016.08.002. DOI

Xue B., Zhang J., Sun Q., Geng Y., Yan Y., Cui H. Diffraction characteristics and formation mechanism of nanogratings in tip-based down-milling. Int. J. Mech. Sci. 2024;266:108996. doi: 10.1016/j.ijmecsci.2024.108996. DOI

Zhang Y., Li S., Zhu K. Generic instantaneous force modeling and comprehensive real engagement identification in micro-milling. Int. J. Mech. Sci. 2020;176:105504. doi: 10.1016/j.ijmecsci.2020.105504. DOI

Wang D., Ren J., Tian W. A method for the prediction of cutting force for 5-axis ball-end milling of workpieces with curved surfaces. Int. J. Adv. Manuf. Technol. 2020;107:2023–2039. doi: 10.1007/s00170-020-05030-5. DOI

Denkena B., Krüger M., Bachrathy D., Stepan G. Model based reconstruction of milled surface topography from measured cutting forces. Int. J. Mach. Tools Manuf. 2012;54–55:25–33. doi: 10.1016/j.ijmachtools.2011.12.007. DOI

Cui Z., Liu H., Wu L., Cao Z., Zong W. Cutting force and surface quality in ultra-precision milling of oxygen-free copper under different cutting strategies. J. Manuf. Process. 2024;131:2420–2442. doi: 10.1016/j.jmapro.2024.10.056. DOI

Brito L.C., Gomes M.C., de Oliveira D., Bacci da Silva M., Viana Duarte M.A. Vibration features for indirect monitoring of end micromilling process. Precis. Eng. 2023;79:7–15. doi: 10.1016/j.precisioneng.2022.08.012. DOI

Li S., Li Y., Li Y., Chen D. Study of different cutting fluids effect on the coupling characteristics of milling noise-vibration and surface roughness of TA2 pure titanium. J. Manuf. Process. 2024;118:103–115. doi: 10.1016/j.jmapro.2024.03.034. DOI

Sheikhi M.R., Gürgen S., Li J. Vibration suppression and surface quality enhancement in milling thin-walled structures using shear thickening fluids. J. Manuf. Process. 2024;131:2219–2229. doi: 10.1016/j.jmapro.2024.10.038. DOI

Wang D., Penter L., Hänel A., Ihlenfeldt S., Wiercigroch M. Stability enhancement and chatter suppression in continuous radial immersion milling. Int. J. Mech. Sci. 2022;235:107711. doi: 10.1016/j.ijmecsci.2022.107711. DOI

Zhang S.J., To S. The effects of spindle vibration on surface generation in ultra-precision raster milling. Int. J. Mach. Tools Manuf. 2013;71:52–56. doi: 10.1016/j.ijmachtools.2013.04.005. DOI

Mann B.P., Edes B.T., Easley S.J., Young K.A., Ma K. Chatter vibration and surface location error prediction for helical end mills. Int. J. Mach. Tools Manuf. 2008;48:350–361. doi: 10.1016/j.ijmachtools.2007.10.003. DOI

Deng D., Zhang Z., Wan W., Ma Q., Sun J. Investigation on burr formation characteristics in micro milling of Ω-shaped reentrant microchannels. J. Manuf. Process. 2022;80:754–764. doi: 10.1016/j.jmapro.2022.06.012. DOI

Wu Y., Chen N., Bian R., He N., Li Z., Li L. Investigations on burr formation mechanisms in micro milling of high-aspect-ratio titanium alloy ti-6al-4v structures. Int. J. Mech. Sci. 2020;185:105884. doi: 10.1016/j.ijmecsci.2020.105884. DOI

Yadav R., Chakladar N.D., Paul S. Micro-milling of Ti-6Al-4V with controlled burr formation. Int. J. Mech. Sci. 2022;231:107582. doi: 10.1016/j.ijmecsci.2022.107582. DOI

Zhang X., Yu T., Wang W., Zhao J. Improved analytical prediction of burr formation in micro end milling. Int. J. Mech. Sci. 2019;151:461–470. doi: 10.1016/j.ijmecsci.2018.12.005. DOI

Becze C.E., Clayton P., Chen L., El-Wardany T.I., Elbestawi M.A. High-speed five-axis milling of hardened tool steel. Int. J. Mach. Tools Manuf. 2000;40:869–885. doi: 10.1016/S0890-6955(99)00092-9. DOI

Twardowski P., Legutko S., Krolczyk G.M., Hloch S. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling. Adv. Mech. Eng. 2015;7:1687814015590216. doi: 10.1177/1687814015590216. DOI

Lopez de Lacalle L.N., Lamikiz A., Sanchez J.A., Salgado M.A. Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int. J. Mach. Tools Manuf. 2007;47:388–400. doi: 10.1016/j.ijmachtools.2006.03.010. DOI

Wojciechowski S., Maruda R.W., Krolczyk G.M., Nieslony P. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. 2017;51:582–596. doi: 10.1016/j.precisioneng.2017.10.014. DOI

Budak E., Altintas Y., Armarego E.J.A. Prediction of milling force coefficients from orthogonal cutting data. Trans. ASME J. Manuf. Sci. Eng. 1996;118:216–224. doi: 10.1115/1.2831014. DOI

Dornfeld D., Lee D.E. Precision Manufacturing. Springer; New York, NY, USA: 2008.

Fontaine M., Devillez A., Moufki A., Dudzinski D. Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int. J. Mach. Tools Manuf. 2006;46:367–380. doi: 10.1016/j.ijmachtools.2005.05.011. DOI

Fontaine M., Moufki A., Devillez A., Dudzinski D. Modelling of cutting forces in ball-end milling with tool-surface inclination. Part I: Predictive force model and experimental validation. J. Mater. Process. Technol. 2007;189:73–84. doi: 10.1016/j.jmatprotec.2007.01.006. DOI

Chiou C.H., Hong M.S., Ehmann K.F. Instantaneous shear plane based cutting force model for end milling. J. Mater. Process. Technol. 2005;170:164–180. doi: 10.1016/j.jmatprotec.2005.04.115. DOI

Kienzle O. Prediction of forces and power in machine tools for metal-cutting. VDI-Z. 1952;94:299–305.

Kline W.A., DeVor R.E. The effect of runout on cutting geometry and forces in end milling. Int. J. Mach. Tool Des. Res. 1983;23:123–140. doi: 10.1016/0020-7357(83)90012-4. DOI

Kline W.A., DeVor R.E. The prediction of cutting forces in end milling with application to cornering cuts. Int. J. Mach. Tool Des. Res. 1982;22:7–22. doi: 10.1016/0020-7357(82)90016-6. DOI

Ko J.H., Cho D.-W. 3D ball-end milling force model using instantaneous cutting force coefficients. J. Manuf. Sci. Eng. 2005;127:1–12. doi: 10.1115/1.1826077. DOI

Lee P., Altintas Y. Prediction of ball–end milling forces from orthogonal cutting data. Int. J. Mach. Tools Manuf. 1996;36:1059–1072. doi: 10.1016/0890-6955(95)00081-X. DOI

Rao V.S., Rao P.V.M. Effect of workpiece curvature on cutting forces and surface error in machining of curved geometries. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006;220:1399–1407. doi: 10.1243/09544054JEM397. DOI

Kim J.D., Kim D.S. Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J. Mater. Process. Technol. 1995;49:387–398. doi: 10.1016/0924-0136(94)01345-2. DOI

Kim C.-J., Mayor J.R., Ni J. A static model of chip formation in microscale milling. J. Manuf. Sci. Eng. 2004;126:710–718. doi: 10.1115/1.1813475. DOI

Zhang X., Yu T., Wang W. Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int. J. Mech. Sci. 2018;136:124–133. doi: 10.1016/j.ijmecsci.2017.12.019. DOI

Biró I., Szalay T. Extension of empirical specific cutting force model for the process of fine chip-removing milling. Int. J. Adv. Manuf. Technol. 2017;88:2735–2743. doi: 10.1007/s00170-016-8957-x. DOI

Yuan Y., Jing X., Ehmann K.F., Cao J., Li H., Zhang D. Modeling of cutting forces in micro end-milling. J. Manuf. Process. 2018;31:844–858. doi: 10.1016/j.jmapro.2018.01.012. DOI

Liu T., Zhang K., Wang G., Wang C. Prediction of Nonlinear Micro-milling force with a novel minimum uncut chip thickness model. Micromachines. 2021;12:1495. doi: 10.3390/mi12121495. PubMed DOI PMC

Wang P., Bai Q., Cheng K., Zhao L., Ding H. The modelling and analysis of micro-milling forces for fabricating thin-walled micro-parts considering machining dynamics. Machines. 2022;10:217. doi: 10.3390/machines10030217. DOI

Chen N., Li L., Wu J., Qian J., He N., Reynaerts D. Research on the ploughing force in micro milling of soft-brittle crystals. Int. J. Mech. Sci. 2019;155:315–322. doi: 10.1016/j.ijmecsci.2019.03.004. DOI

Zhou L., Deng B., Peng F., Yang M., Yan R. Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics. Int. J. Mech. Sci. 2020;169:105343. doi: 10.1016/j.ijmecsci.2019.105343. DOI

Hao Y., Liu Y. Analysis of milling surface roughness prediction for thin-walled parts with curved surface. Int. J. Adv. Manuf. Technol. 2017;93:2289–2297. doi: 10.1007/s00170-017-0615-4. DOI

Honeycutt A., Schmitz T.L. A Study of Milling Surface Quality during Period-2 Bifurcations. Procedia Manuf. 2017;10:183–193. doi: 10.1016/j.promfg.2017.07.046. DOI

Mori T., Hiramatsu T., Shamoto E. Simultaneous double-sided milling of flexible plates with high accuracy and high efficiency suppression of forced chatter vibration with synchronized single-tooth cutters. Precis. Eng. 2011;35:416–423. doi: 10.1016/j.precisioneng.2011.02.002. DOI

Shan C., Lv X., Duan W. Effect of tool inclination angle on the elastic deformation of thin-walled parts in multi-axis ball-end milling. Procedia CIRP. 2016;56:311–315. doi: 10.1016/j.procir.2016.10.024. DOI

Wang Z., Wang B., Yuan J. Modeling of surface topography based on cutting vibration in ball-end milling of thin-walled parts. Int. J. Adv. Manuf. Technol. 2018;101:1837–1854. doi: 10.1007/s00170-018-3095-2. DOI

Peng F., Wu J., Fang Z., Yuan S., Yan R., Bai Q. Modeling and controlling of surface micro-topography feature in micro-ball-end milling. Int. J. Adv. Manuf. Technol. 2013;67:2657–2670. doi: 10.1007/s00170-012-4681-3. DOI

Chen H.-Q., Wang Q.-H. Modeling and simulation of the surface topography in ball-end milling based on biharmonic spline interpolation. Int. J. Adv. Manuf. Technol. 2018;99:2451–2466. doi: 10.1007/s00170-018-2615-4. DOI

Chen W., Xie W., Huo D., Yang K. A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect. Int. J. Mech. Sci. 2018;144:146–157. doi: 10.1016/j.ijmecsci.2018.05.050. DOI

Miao H., Li C., Liu C., Wang C., Zhang X., Sun W. Machined surface prediction and reliability analysis in peripheral milling operations. Int. J. Mech. Sci. 2024;272:109193. doi: 10.1016/j.ijmecsci.2024.109193. DOI

Yuan X., Fan Y., Liang Z., Wang S., Mao X., Xie X., Yang A., Liu H., Xu Y. Prediction of measured surface topography with forced vibration effects. Measurement. 2024;229:114469. doi: 10.1016/j.measurement.2024.114469. DOI

Wojciechowski S., Twardowski P. The influence of tool wear on the vibrations during ball end milling of hardened steel. Procedia CIRP. 2014;14:587–592. doi: 10.1016/j.procir.2014.03.108. DOI

Iglesias A., Munoa J., Ciurana J., Dombovari Z., Stepan G. Analytical expressions for chatter analysis in milling operations with one dominant mode. J. Sound Vib. 2016;375:403–421. doi: 10.1016/j.jsv.2016.04.015. DOI

Zheng C.M., Junz Wang J.-J. Stability prediction in radial immersion for milling with symmetric structure. Int. J. Mach. Tools Manuf. 2013;75:72–81. doi: 10.1016/j.ijmachtools.2013.08.007. DOI

Zhou K., Feng P., Xu C., Zhang J., Wu Z. High-order full discretization methods for milling stability prediction by interpolating the delay term of time delayed differential equations. Int. J. Adv. Manuf. Technol. 2017;93:2201–2214. doi: 10.1007/s00170-017-0692-4. DOI

Chen Q., Li W., Ren Y., Zhou Z. 3D chatter stability of high-speed micromilling by considering nonlinear cutting coefficients, and process damping. J. Manuf. Process. 2020;57:552–565. doi: 10.1016/j.jmapro.2020.07.016. DOI

Singh K.K., Kartik V., Singh R. Modeling dynamic stability in high-speed micromilling of Ti-6Al-4V via velocity and chip load dependent cutting coefficients. Int. J. Mach. Tools Manuf. 2015;96:56–66. doi: 10.1016/j.ijmachtools.2015.06.002. DOI

Singh K.K., Kartik V., Singh R. Stability modeling with dynamic run-out in high speed micromilling of Ti6Al4V. Int. J. Mech. Sci. 2019;150:677–690. doi: 10.1016/j.ijmecsci.2018.11.001. DOI

Soori M., Arezoo B., Habibi M. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. J. Manuf. Syst. 2014;33:498–507. doi: 10.1016/j.jmsy.2014.04.007. DOI

Dorgeloh T., Beinhauer A., Riemer O., Brinksmeier E. Microfluidic balancing concepts for ultraprecision high speed applications. Procedia CIRP. 2016;46:185–188. doi: 10.1016/j.procir.2016.03.174. DOI

Peterka J., Kováč M., Zvončan M. Influence of tool balancing on machined surface quality in high speed machining. J. Prod. Eng. 2011;15:11–14.

Saha S., Deb S., Bandyopadhyay P.P. Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. Int. J. Mech. Sci. 2021;212:106844. doi: 10.1016/j.ijmecsci.2021.106844. DOI

Saha S., Deb S., Bandyopadhyay P.P. Tool wear induced burr formation and concomitant reduction in MQL wetting capability in micro-milling. Int. J. Mech. Sci. 2023;245:108095. doi: 10.1016/j.ijmecsci.2022.108095. DOI

Zhang C., Guo S., Zhang H., Zhou L. Modeling and predicting for surface topography considering tool wear in milling process. Int. J. Adv. Manuf. Technol. 2013;68:2849–2860. doi: 10.1007/s00170-013-4989-7. DOI

Zhang C., Zhang H., Li Y., Zhou L. Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process. Int. J. Adv. Manuf. Technol. 2015;77:735–749. doi: 10.1007/s00170-014-6485-0. DOI

Zhang X., Yu T., Zhao J. Surface generation modeling of micro milling process with stochastic tool wear. Precis. Eng. 2020;61:170–181. doi: 10.1016/j.precisioneng.2019.10.015. DOI

Jiang X., Ding J., Wang C., Hong L., Yao W., Yu W. Influence of tool wear on geometric surface modeling for TC4 titanium alloy milling. J. Manuf. Process. 2024;131:797–814. doi: 10.1016/j.jmapro.2024.09.070. DOI

Wojciechowski S., Twardowski P. Tool life and process dynamics in high speed ball end milling of hardened steel. Procedia CIRP. 2012;1:289–294. doi: 10.1016/j.procir.2012.04.052. DOI

De Aguiar M.M., Diniz A.E., Pederiva R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. Int. J. Mach. Tools Manuf. 2013;68:1–10. doi: 10.1016/j.ijmachtools.2013.01.002. DOI

Klocke F., Lung D., Puls H. FEM-Modelling of the thermal workpiece deformation in dry turning. Procedia CIRP. 2013;8:240–245. doi: 10.1016/j.procir.2013.06.096. DOI

Creighton E., Honegger A., Tulsian A., Mukhopadhyay D. Analysis of thermal errors in a high-speed micro-milling spindle. Int. J. Mach. Tools Manuf. 2010;50:386–393. doi: 10.1016/j.ijmachtools.2009.11.002. DOI

Chen W., Teng X., Huo D., Wang Q. An improved cutting force model for micro milling considering machining dynamics. 1006. Int. J. Adv. Manuf. Technol. 2017;93:3005–3016. doi: 10.1007/s00170-017-0706-2. DOI

Gozu E., Karpat Y. Uncertainty analysis of force coefficients during micromilling of titanium alloy. Int. J. Adv. Manuf. Technol. 2017;93:839–855. doi: 10.1007/s00170-017-0567-8. DOI

Park S.S., Malekian M. Mechanistic modeling and accurate measurement of micro end milling forces. CIRP Ann.—Manuf. Technol. 2009;58:49–52. doi: 10.1016/j.cirp.2009.03.060. DOI

Zhang X., Ehmann K.F., Yu T., Wang W. Cutting forces in micro end milling processes. Int. J. Mach. Tools Manuf. 2016;107:21–40. doi: 10.1016/j.ijmachtools.2016.04.012. DOI

Budak E. Analytical models for high performance milling, Part I: Cutting forces, structural deformations and tolerance integrity. Int. J. Mach. Tools Manuf. 2006;46:1478–1488. doi: 10.1016/j.ijmachtools.2005.09.009. DOI

Denkena B., Vehmeyer J., Niederwestberg D., Maaß P. Identification of the specific cutting force for geometrically defined cutting edges and varying cutting conditions. Int. J. Mach. Tools Manuf. 2014;82–83:42–49. doi: 10.1016/j.ijmachtools.2014.03.009. DOI

Gradisek J., Kalveram M., Weinert K. Mechanistic identification of specific force coefficients for a general end mill. Int. J. Mach. Tools Manuf. 2004;44:401–414. doi: 10.1016/j.ijmachtools.2003.10.001. DOI

Lamikiz A., López de Lacalle L.N., Sanchez J.A., Salgado M.A. Cutting force estimation in sculptured surface milling. Int. J. Mach. Tools Manuf. 2004;44:1511–1526. doi: 10.1016/j.ijmachtools.2004.05.004. DOI

Ozturk B., Lazoglu I., Erdim H. Machining of free-form surfaces. Part II: Calibration and forces. Int. J. Mach. Tools Manuf. 2006;46:736–746. doi: 10.1016/j.ijmachtools.2005.07.037. DOI

Wojciechowski S. The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int. J. Mach. Tools Manuf. 2015;89:110–123. doi: 10.1016/j.ijmachtools.2014.10.006. DOI

Grossi N., Sallese L., Scippa A., Campatelli G. Speed-varying cutting force coefficient identification in milling. Precis. Eng. 2015;42:321–334. doi: 10.1016/j.precisioneng.2015.04.006. DOI

Rubeo M.A., Schmitz T.L. Milling Force Modeling: A Comparison of Two Approaches. Procedia Manuf. 2016;5:90–105. doi: 10.1016/j.promfg.2016.08.010. DOI

Tsai M.Y., Chang S.Y., Hung J.P., Wang C.C. Investigation of milling cutting forces and cutting coefficient for aluminum 6060-T6. Comput. Electr. Eng. 2016;51:320–330. doi: 10.1016/j.compeleceng.2015.09.016. DOI

Gonzalo O., Beristain J., Jauregi H., Sanz C. A method for the identification of the specific force coefficients for mechanistic milling simulation. Int. J. Mach. Tools Manuf. 2010;50:765–774. doi: 10.1016/j.ijmachtools.2010.05.009. DOI

Wan M., Lu M.-S., Zhang W.-H., Yang Y. A new ternary-mechanism model for the prediction of cutting forces in flat end milling. Int. J. Mach. Tools Manuf. 2012;57:34–45. doi: 10.1016/j.ijmachtools.2012.02.003. DOI

Zhang X., Zhang J., Pang B., Zhao W.-H. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int. J. Mach. Tools Manuf. 2016;104:26–36. doi: 10.1016/j.ijmachtools.2015.12.003. DOI

Zhou L., Peng F.Y., Yan R., Yao P.F., Yang C.C., Li B. Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int. J. Mach. Tools Manuf. 2015;97:29–41. doi: 10.1016/j.ijmachtools.2015.07.001. DOI

Srinivasa Y.V., Shunmugam M.S. Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int. J. Mach. Tools Manuf. 2013;67:18–27. doi: 10.1016/j.ijmachtools.2012.12.004. DOI

Bo L., Yanlong C., Wenhua C., Jun P. Geometry simulation and evaluation of the surface topography in five-axis ball-end milling. Int. J. Adv. Manuf. Technol. 2017;93:1651–1667. doi: 10.1007/s00170-017-0505-9. DOI

Abdelmoneim M.E.S., Scrutton R.F. Tool edge roundness and stable build up formation in finish machining. Trans. ASME J. Eng. Ind. 1974;96:1258–1267. doi: 10.1115/1.3438504. DOI

Waldorf D.J., DeVor R.E., Kapoor S.G. A slip line field for ploughing during orthogonal cutting. Trans. ASME J. Manuf. Sci. Eng. 1998;120:693–699. doi: 10.1115/1.2830208. DOI

Jun B.G., Liu X., DeVor R.E., Kapoor S.G. Investigation of the Dynamics of Microend Milling. Part I: Model Development. J. Manuf. Sci. Eng. 2006;128:893–900. doi: 10.1115/1.2193546. DOI

Fang N. Slip-Line Modeling of Machining With a Rounded-Edge Tool. Part I: New Model and Theory. J. Mech. Phys. Solids. 2003;51:715–742. doi: 10.1016/S0022-5096(02)00060-1. DOI

Afazov S.M., Ratchev S.M., Segal J., Popov A.A. Chatter modelling in micro-milling by considering process nonlinearities. Int. J. Mach. Tools Manuf. 2012;56:28–38. doi: 10.1016/j.ijmachtools.2011.12.010. DOI

Afazov S.M., Ratchev S.M., Segal J. Modelling and simulation of micro-milling cutting forces. J. Mater. Process. Technol. 2010;210:2154–2162. doi: 10.1016/j.jmatprotec.2010.07.033. DOI

Afazov S.M., Zdebski D., Ratchev S.M., Segal J., Liu S. Effects of micro-milling conditions on the cutting forces and process stability. J. Mater. Process. Technol. 2013;213:671–684. doi: 10.1016/j.jmatprotec.2012.12.001. DOI

Jin X., Altintas Y. Prediction of micro-milling forces with finite element method. J. Mater. Process. Technol. 2012;212:542–552. doi: 10.1016/j.jmatprotec.2011.05.020. DOI

Lai X.M., Li H.T., Li C.F., Lin Z.Q., Ni J. Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 2008;48:1–14. doi: 10.1016/j.ijmachtools.2007.08.011. DOI

Jin X., Altintas Y. Slip-line field model of micro-cutting process with round tool edge effect. J. Mater. Process. Technol. 2011;211:339–355. doi: 10.1016/j.jmatprotec.2010.10.006. DOI

Karpat Y. Investigation of the effect of cutting tool edge radius on material separation due to ductile fracture in machining. Int. J. Mech. Sci. 2009;51:541–546. doi: 10.1016/j.ijmecsci.2009.05.005. DOI

Liu K., Melkote S. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 2007;49:650–660. doi: 10.1016/j.ijmecsci.2006.09.012. DOI

Liu K., Melkote S. Material strengthening mechanisms and their contribution to size effect in micro-cutting. J. Manuf. Sci. Eng. 2006;128:730–738. doi: 10.1115/1.2193548. DOI

Ding H., Shen N., Shin Y.C. Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels. J. Manuf. Sci. Eng. 2011;133:041007. doi: 10.1115/1.4004499. DOI

Zhou Y., Tian Y., Jing X., Ehmann K.F. A novel instantaneous uncut chip thickness model for mechanistic cutting force model in micro-end-milling. Int. J. Adv. Manuf. Technol. 2017;93:2305–2319. doi: 10.1007/s00170-017-0638-x. DOI

Luo S., Jun M.B.G., Dong Z. Numerical Simulation of Chip Ploughing Volume and Forces in 5-axis CNC Micro-milling Using Flat-end Mills. Procedia Manuf. 2016;5:348–361. doi: 10.1016/j.promfg.2016.08.030. DOI

Bao W.Y., Tansel I.N. Modeling micro-end-milling operations. Part I: Analytical cutting force model. Int. J. Mach. Tools Manuf. 2000;40:2155–2173. doi: 10.1016/S0890-6955(00)00054-7. DOI

Li H.Z., Liu K., Li X.P. A new method for determining the undeformed chip thickness in milling. J. Mater. Process. Technol. 2001;113:378–384. doi: 10.1016/S0924-0136(01)00586-6. DOI

Perez H., Vizan A., Hernandez J.C., Guzman M. Estimation of cutting forces in micromilling through the determination of specific cutting pressures. J. Mater. Process. Technol. 2007;190:18–22. doi: 10.1016/j.jmatprotec.2007.03.118. DOI

Urbikain G., Artetxe E., López de Lacalle L.N. Numerical simulation of milling forces with barrel-shaped tools considering runout and tool inclination angles. Appl. Math. Model. 2017;47:619–636. doi: 10.1016/j.apm.2017.03.001. DOI

Zhu K., Zhang Y. Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int. J. Mach. Tools Manuf. 2017;118–119:37–48. doi: 10.1016/j.ijmachtools.2017.04.001. DOI

Zhu Z., Yan R., Peng F., Duan X., Zhou L., Song K., Guo C. Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling. Int. J. Mach. Tools Manuf. 2016;101:35–51. doi: 10.1016/j.ijmachtools.2015.11.001. DOI

Omar O.E.E.K., El-Wardany T., Ng E., Elbestawi M.A. An improved cutting force and surface topography prediction model in end milling. Int. J. Mach. Tools Manuf. 2007;47:1263–1275. doi: 10.1016/j.ijmachtools.2006.08.021. DOI

Sastry S., Kapoor S.G., DeVor R.E. Compensation of progressive radial run-out in face-milling by spindle speed variation. Int. J. Mach. Tools Manuf. 2000;40:1121–1139. doi: 10.1016/S0890-6955(99)00115-7. DOI

Desai K., Agarwal P.K., Rao P.V.M. Process geometry modelling with cutter runout for milling ofcurved surfaces. Int. J. Mach. Tools Manuf. 2009;49:1015–1028. doi: 10.1016/j.ijmachtools.2009.05.007. DOI

Moges T.M., Desai K.A., Rao P.V.M. Improved Process Geometry Model with Cutter Runout and Elastic Recovery in Micro-End Milling. Procedia Manuf. 2016;5:478–494. doi: 10.1016/j.promfg.2016.08.040. DOI

Rodríguez P., Labarga J.E. A new model for the prediction of cutting forces in micro-end-milling operations. J. Mater. Process. Technol. 2013;213:261–268. doi: 10.1016/j.jmatprotec.2012.09.009. DOI

Wojciechowski S., Matuszak M., Powałka B., Madajewski M., Maruda R.W., Królczyk G.M. Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int. J. Mach. Tools Manuf. 2019;147:103466. doi: 10.1016/j.ijmachtools.2019.103466. DOI

Sutherland J.W., DeVor R.E. Improved method for cutting force and surface error prediction in flexible end milling systems. J. Eng. Ind. 1986;108:269–279. doi: 10.1115/1.3187077. DOI

Jun B.G., DeVor R.E., Kapoor S.G. Investigation of the Dynamics of Micro end Milling. Part II: Model Validation and Interpretation. J. Manuf. Sci. Eng. 2006;128:901–912. doi: 10.1115/1.2335854. DOI

Budak E., Altintas Y. Modeling and avoidance of static deformations in peripheral milling of plates. Int. J. Mach. Tool Des. Res. 1995;35:459–476. doi: 10.1016/0890-6955(94)P2628-S. DOI

Kops L., Vo D.T. Determination of the equivalent diameter of an endmill based on its compliance. Ann. CIRP. 1990;39:93–96. doi: 10.1016/S0007-8506(07)61010-5. DOI

Kivanc E., Budak E. Structural modeling of end mills for form error and stability analysis. Int. J. Mach. Tools Manuf. 2004;44:1151–1161. doi: 10.1016/j.ijmachtools.2004.04.002. DOI

Kim G.M., Kim B.H., Chu C.N. Estimation of cutter deflection and form error in ball-end milling processes. Int. J. Mach. Tools Manuf. 2003;43:917–924. doi: 10.1016/S0890-6955(03)00056-7. DOI

López de Lacalle L.N., Lamikiz A., Sanchez J.A., Salgado M.A. Effects of tool deflection in the high-speed milling of inclined surfaces. Int. J. Adv. Manuf. Technol. 2004;24:621–631. doi: 10.1007/s00170-003-1723-x. DOI

Graham E., Mehrpouya M., Park S.S. Robust prediction of chatter stability in milling based on the analytical chatter stability. J. Manuf. Process. 2013;15:508–517. doi: 10.1016/j.jmapro.2013.08.005. DOI

Insperger T., Gradisek J., Kalveram M., Stepan G., Winert K., Govekar E. Machine Tool Chatter and Surface Location Error in Milling Processes. J. Manuf. Sci. Eng. 2006;128:913–920. doi: 10.1115/1.2280634. DOI

Park S.S., Rahnama R. Robust chatter stability in micro-milling operations. CIRP Ann.—Manuf. Technol. 2010;59:391–394. doi: 10.1016/j.cirp.2010.03.023. DOI

Wang J.J., Uhlmann E., Oberschmidt D., Sung C.F., Perfilov I. Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Ann.—Manuf. Technol. 2016;65:113–116. doi: 10.1016/j.cirp.2016.04.088. DOI

Rahnama R., Sajjadi M., Park S.S. Suppression of Chatter in Micro Milling with Process Damping. J. Mater. Process. Technol. 2009;209:5766–5776. doi: 10.1016/j.jmatprotec.2009.06.009. DOI

Wojciechowski S., Tabaszewski M., Krolczyk G.M., Maruda R.W. The study on dynamic properties of monolithic ball end mills with various slenderness. E3S Web Conf. 2017;19:03014. doi: 10.1051/e3sconf/20171903014. DOI

Graham E., Mehrpouya M., Nagamune R., Park S.S. Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J. Manuf. Sci. Technol. 2014;7:29–39. doi: 10.1016/j.cirpj.2013.09.002. DOI

Park S.S., Altintas Y., Movahhedy M. Receptance coupling for endmills. Int. J. Mach. Tools Manuf. 2003;43:889–896. doi: 10.1016/S0890-6955(03)00088-9. DOI

Eynian M. Prediction of vibration frequencies in milling using modified Nyquist method. CIRP J. Manuf. Sci. Technol. 2015;11:73–81. doi: 10.1016/j.cirpj.2015.08.006. DOI

Yılmaz E.E., Budak E., Özgüven H.N. Modeling and Measurement of Micro End Mill Dynamics Using Inverse Stability Approach. Procedia CIRP. 2016;46:242–245. doi: 10.1016/j.procir.2016.04.114. DOI

Uhlmann E., Mahr F. A Time Domain Simulation Approach for Micro Milling Processes. Procedia CIRP. 2012;4:22–28. doi: 10.1016/j.procir.2012.10.005. DOI

Yuan M., Wang X., Jiao L., Yi J., Liu S. Prediction of dimension error based on the deflection of cutting tool in micro ball-end milling. Int. J. Adv. Manuf. Technol. 2017;93:825–837. doi: 10.1007/s00170-017-0474-z. DOI

Mamedov A., Layegh K.S.E., Lazoglu I. Machining forces and tool deflections in micro milling. Procedia CIRP. 2013;8:147–151. doi: 10.1016/j.procir.2013.06.080. DOI

Matuszak M., Kochmański P., Powałka B. Workpiece Grain Size Influence on the Vibration in Micro-milling. In: Ševĉik L., Lepšík P., Petrů M., Mašín I., Martonka R., editors. Modern Methods of Construction Design. Springer; Cham, Switzerland: 2014. Lecture Notes in Mechanical, Engineering.

Mittal R.K., Kulkarni S.S., Singh R.K. Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V. J. Manuf. Process. 2017;28:413–421. doi: 10.1016/j.jmapro.2017.04.007. DOI

Altintas Y., Weck M. Chatter Stability of Metal Cutting and Grinding. Ann. CIRP. 2004;53:619–642. doi: 10.1016/S0007-8506(07)60032-8. DOI

Opitz H. Investigation and calculation of the chatter behavior of lathes and milling machines. Ann. CIRP. 1970;18:335–343.

Tlusty J. Manufacturing Processes and Equipment. Prentice Hall; New York, NY, USA: 2000.

Jorgensen B.R., Shin Y.C. Dynamics of spindle bearing systems at high speeds including cutting load effects. J. Manuf. Sci. Eng. 1998;120:387–394. doi: 10.1115/1.2830138. DOI

Movahhedy M.R., Mosaddegh P. Prediction of chatter in high speed milling including gyroscopic effects. Int. J. Mach. Tools Manuf. 2006;46:996–1001. doi: 10.1016/j.ijmachtools.2005.07.043. DOI

Altintas Y., Eynian M., Onozuka H. Identification of Dynamic Cutting Force Coefficients and Chatter Stability with Process Damping. Ann. CIRP. 2008;57:371–374. doi: 10.1016/j.cirp.2008.03.048. DOI

Haung C.Y., Junz Wang J.J. Mechanistic Modeling of Process damping in peripheral milling. ASME J. Manuf. Sci. Eng. 2007;129:12–20. doi: 10.1115/1.2335857. DOI

Wojciechowski S., Mrozek K. Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int. J. Mech. Sci. 2017;134:424–435. doi: 10.1016/j.ijmecsci.2017.10.032. DOI

Cernohlavek V., Klimenda F., Houska P., Suszyński M. Vibration Measurements on a Six-Axis Collaborative Robotic Arm—Part I. Sensors. 2023;23:1629. doi: 10.3390/s23031629. PubMed DOI PMC

Meller A., Suszynski M., Legutko S., Trączyński M., Cernohlavek V. Studies on a Robotised Process for Forging Steel Synchronizer Rings in the Context of Forging Tool Life. Manuf. Technol. 2023;23:88–98. doi: 10.21062/mft.2023.002. DOI

Klimenda F., Cizek R., Suszyński M. Measurement of a Vibration on a Robotic Vehicle. Sensors. 2022;22:8649. doi: 10.3390/s22228649. PubMed DOI PMC

Suszyński M., Wiśniewski M., Wojciechowicz K., Trączyński M., Butlewski M., Cernohlavek V., Talar R. Study of Positioning Accuracy Parameters in Selected Configurations of a Modular Industrial Robot—Part 1. Sensors. 2025;25:108. doi: 10.3390/s25010108. PubMed DOI PMC

Cen L., Melkote S.N. Effect of Robot Dynamics on the Machining Forces in Robotic Milling. Procedia Manuf. 2017;10:486–496. doi: 10.1016/j.promfg.2017.07.034. DOI

Cvitanic T., Nguyen V., Melkote S.N. Pose Optimization in Robotic Machining Using Static and Dynamic Stiffness Models. Robot. Comput.-Integr. Manuf. 2020;66:101992. doi: 10.1016/j.rcim.2020.101992. DOI

Diaz Posada J.R., Schneider U., Sridhar A., Verl A. Automatic Motion Generation for Robotic Milling Optimizing Stiffness with Sample-Based Planning. Machines. 2017;5:3. doi: 10.3390/machines5010003. DOI

Liao Z.-Y., Wang Q.-H., Xie H.-L., Li J.-R., Zhou X.-F., Pan T.-H. Optimization of Robot Posture and Workpiece Setup in Robotic Milling with Stiffness Threshold. IEEE/ASME Trans. Mechatron. 2022;27:582–593. doi: 10.1109/TMECH.2021.3068599. DOI

Mun C.H., Rezvani S., Lee J., Park S., Park H.W., Lee J. Indirect measurement of cutting forces during robotic milling using multiple sensors and a machine learning-based system identifier. J. Manuf. Process. 2022;85:963–976. doi: 10.1016/j.jmapro.2022.12.019. DOI

Bisu C.-F., Cherif M., Gérard A., K’Nevez J.-Y. Dynamic Behavior Analysis for a Six-Axis Industrial Machining Robot. arXiv. 2012 doi: 10.4028/www.scientific.net/AMR.423.65.1201.4443 DOI

Leonesio M., Villagrossi E., Beschi M., Marini A., Bianchi G., Pedrocchi N., Molinari Tosatti L., Grechishnikov V., Ilyukhin Y., Isaev A. Vibration analysis of robotic milling tasks. Procedia CIRP. 2018;67:262–267. doi: 10.1016/j.procir.2017.12.210. DOI

Raparelli Sahu G.N., Otto A., Ihlenfeldt S. Improving Robotic Milling Performance through Active Damping of Low-Frequency Structural Modes. J. Manuf. Mater. Process. 2024;8:160. doi: 10.3390/jmmp8040160. DOI

Pan Z., Zhang H. Analysis and Suppression of Chatter in Robotic Machining Process; Proceedings of the 2007 International Conference on Control, Automation and Systems (ICCAS); Seoul, Republic of Korea. 17–20 October 2007; pp. 595–600.

Kenan Deng, Dong Gao, Chang Zhao, Yong Lu, Prediction of in-process frequency response function and chatter stability considering pose and feedrate in robotic milling. Robot. Comput.-Integr. Manuf. 2023;82:102548. doi: 10.1016/j.rcim.2023.102548. DOI

Rainsberger R.B., Fong J.T., Marcal P.V. Effect of mesh quality in finite element analysis of crack-tip stresses in a circumferential surface crack of a pipe elbow weldment; Proceedings of the ICF 2017—14th International Conference on Fracture; Rhodes, Greece. 18–23 June 2017; pp. 425–426.

Zhuang X., Heaney C., Augarde C. On error control in the element-free Galerkin method. Eng. Anal. Bound. Elem. 2012;36:351–360. doi: 10.1016/j.enganabound.2011.06.011. DOI

Dheeravongkit A., Shimada K. Inverse adaptation of a Hex-dominant mesh for large deformation finite element analysis. CAD Comput. Aided Des. 2007;39:427–438. doi: 10.1016/j.cad.2007.02.012. DOI

Kannan R., Hendry S., Debney P. Structures Congress 2018: Buildings and Disaster Management, Proceedings of the Structures Congress 2018, Fort Worth, TX, USA, 19–21 April 2018. Structural Engineering Institute of ASCE; Reston, VA, USA: 2018. What Is Your Structural Model Not Telling You? Finding Hidden Modelling Errors and Inaccuracies in Your Analysis Results; p. 58.

Navarro-Jiménez J.M., Nadal E., Ródenas J.J. Recovery-based accuracy assessment of numerical analysis results in linear elasticity. A code for moving least squares recovery based on physics. Adv. Appl. Mech. 2025;60:179–200.

Sankararaman S., Ling Y., Shantz C., Mahadevan S. Fatigue crack growth analysis under uncertainty; Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, FL, USA. 12–15 April 2010; 2010-2517.

Wang J.D., Howard I.M. Error analysis on finite element modeling of involute spur gears. J. Mech. Des. 2006;128:90–97. doi: 10.1115/1.2114891. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...