Cutting Force-Vibration Interactions in Precise-and Micromilling Processes: A Critical Review on Prediction Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
09I03-03-V04-00056
EU NextGenerationEU
PubMed
40805418
PubMed Central
PMC12348374
DOI
10.3390/ma18153539
PII: ma18153539
Knihovny.cz E-zdroje
- Klíčová slova
- cutting forces, micromilling, precise machining, vibrations,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force-tool displacement interactions in precise and micromilling manufacturing systems. Therefore, this literature review aims to fill this research gap and focuses on the critical literature review regarding the current state of the art within the prediction methods of cutting forces and machining system's displacements/vibrations during precise and micromilling techniques. In the first part, a currently available cutting force, as well as the static and dynamic machining system displacement models applied in precise and micromilling conditions are presented. In the next stage, a relationship between the geometrical elements of cut and generated cutting forces and tool displacements are discussed, based on the recent literature. A subsequent part concerns the formulation of the generalized analytical models for a prediction of cutting forces and vibrations during precise and micromilling conditions. In the last stage, the conclusions and outlook are formulated based on the conducted analysis of the literature. In this context, this paper constitutes a synthetic work presenting current trends in the prediction of precise milling and micromilling mechanics.
Zobrazit více v PubMed
Guo Q., Liu Z., Yang Z., Jiang Y., Sun Y., Xu J., Zhao W., Wang W., Wang W., Ren Q., et al. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. J. Manuf. Process. 2024;126:285–331. doi: 10.1016/j.jmapro.2024.07.112. DOI
Li H., Wu B. Development of a hybrid cutting force model for micromilling of brass. Int. J. Mech. Sci. 2016;115–116:586–595. doi: 10.1016/j.ijmecsci.2016.08.002. DOI
Xue B., Zhang J., Sun Q., Geng Y., Yan Y., Cui H. Diffraction characteristics and formation mechanism of nanogratings in tip-based down-milling. Int. J. Mech. Sci. 2024;266:108996. doi: 10.1016/j.ijmecsci.2024.108996. DOI
Zhang Y., Li S., Zhu K. Generic instantaneous force modeling and comprehensive real engagement identification in micro-milling. Int. J. Mech. Sci. 2020;176:105504. doi: 10.1016/j.ijmecsci.2020.105504. DOI
Wang D., Ren J., Tian W. A method for the prediction of cutting force for 5-axis ball-end milling of workpieces with curved surfaces. Int. J. Adv. Manuf. Technol. 2020;107:2023–2039. doi: 10.1007/s00170-020-05030-5. DOI
Denkena B., Krüger M., Bachrathy D., Stepan G. Model based reconstruction of milled surface topography from measured cutting forces. Int. J. Mach. Tools Manuf. 2012;54–55:25–33. doi: 10.1016/j.ijmachtools.2011.12.007. DOI
Cui Z., Liu H., Wu L., Cao Z., Zong W. Cutting force and surface quality in ultra-precision milling of oxygen-free copper under different cutting strategies. J. Manuf. Process. 2024;131:2420–2442. doi: 10.1016/j.jmapro.2024.10.056. DOI
Brito L.C., Gomes M.C., de Oliveira D., Bacci da Silva M., Viana Duarte M.A. Vibration features for indirect monitoring of end micromilling process. Precis. Eng. 2023;79:7–15. doi: 10.1016/j.precisioneng.2022.08.012. DOI
Li S., Li Y., Li Y., Chen D. Study of different cutting fluids effect on the coupling characteristics of milling noise-vibration and surface roughness of TA2 pure titanium. J. Manuf. Process. 2024;118:103–115. doi: 10.1016/j.jmapro.2024.03.034. DOI
Sheikhi M.R., Gürgen S., Li J. Vibration suppression and surface quality enhancement in milling thin-walled structures using shear thickening fluids. J. Manuf. Process. 2024;131:2219–2229. doi: 10.1016/j.jmapro.2024.10.038. DOI
Wang D., Penter L., Hänel A., Ihlenfeldt S., Wiercigroch M. Stability enhancement and chatter suppression in continuous radial immersion milling. Int. J. Mech. Sci. 2022;235:107711. doi: 10.1016/j.ijmecsci.2022.107711. DOI
Zhang S.J., To S. The effects of spindle vibration on surface generation in ultra-precision raster milling. Int. J. Mach. Tools Manuf. 2013;71:52–56. doi: 10.1016/j.ijmachtools.2013.04.005. DOI
Mann B.P., Edes B.T., Easley S.J., Young K.A., Ma K. Chatter vibration and surface location error prediction for helical end mills. Int. J. Mach. Tools Manuf. 2008;48:350–361. doi: 10.1016/j.ijmachtools.2007.10.003. DOI
Deng D., Zhang Z., Wan W., Ma Q., Sun J. Investigation on burr formation characteristics in micro milling of Ω-shaped reentrant microchannels. J. Manuf. Process. 2022;80:754–764. doi: 10.1016/j.jmapro.2022.06.012. DOI
Wu Y., Chen N., Bian R., He N., Li Z., Li L. Investigations on burr formation mechanisms in micro milling of high-aspect-ratio titanium alloy ti-6al-4v structures. Int. J. Mech. Sci. 2020;185:105884. doi: 10.1016/j.ijmecsci.2020.105884. DOI
Yadav R., Chakladar N.D., Paul S. Micro-milling of Ti-6Al-4V with controlled burr formation. Int. J. Mech. Sci. 2022;231:107582. doi: 10.1016/j.ijmecsci.2022.107582. DOI
Zhang X., Yu T., Wang W., Zhao J. Improved analytical prediction of burr formation in micro end milling. Int. J. Mech. Sci. 2019;151:461–470. doi: 10.1016/j.ijmecsci.2018.12.005. DOI
Becze C.E., Clayton P., Chen L., El-Wardany T.I., Elbestawi M.A. High-speed five-axis milling of hardened tool steel. Int. J. Mach. Tools Manuf. 2000;40:869–885. doi: 10.1016/S0890-6955(99)00092-9. DOI
Twardowski P., Legutko S., Krolczyk G.M., Hloch S. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling. Adv. Mech. Eng. 2015;7:1687814015590216. doi: 10.1177/1687814015590216. DOI
Lopez de Lacalle L.N., Lamikiz A., Sanchez J.A., Salgado M.A. Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int. J. Mach. Tools Manuf. 2007;47:388–400. doi: 10.1016/j.ijmachtools.2006.03.010. DOI
Wojciechowski S., Maruda R.W., Krolczyk G.M., Nieslony P. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. 2017;51:582–596. doi: 10.1016/j.precisioneng.2017.10.014. DOI
Budak E., Altintas Y., Armarego E.J.A. Prediction of milling force coefficients from orthogonal cutting data. Trans. ASME J. Manuf. Sci. Eng. 1996;118:216–224. doi: 10.1115/1.2831014. DOI
Dornfeld D., Lee D.E. Precision Manufacturing. Springer; New York, NY, USA: 2008.
Fontaine M., Devillez A., Moufki A., Dudzinski D. Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. Int. J. Mach. Tools Manuf. 2006;46:367–380. doi: 10.1016/j.ijmachtools.2005.05.011. DOI
Fontaine M., Moufki A., Devillez A., Dudzinski D. Modelling of cutting forces in ball-end milling with tool-surface inclination. Part I: Predictive force model and experimental validation. J. Mater. Process. Technol. 2007;189:73–84. doi: 10.1016/j.jmatprotec.2007.01.006. DOI
Chiou C.H., Hong M.S., Ehmann K.F. Instantaneous shear plane based cutting force model for end milling. J. Mater. Process. Technol. 2005;170:164–180. doi: 10.1016/j.jmatprotec.2005.04.115. DOI
Kienzle O. Prediction of forces and power in machine tools for metal-cutting. VDI-Z. 1952;94:299–305.
Kline W.A., DeVor R.E. The effect of runout on cutting geometry and forces in end milling. Int. J. Mach. Tool Des. Res. 1983;23:123–140. doi: 10.1016/0020-7357(83)90012-4. DOI
Kline W.A., DeVor R.E. The prediction of cutting forces in end milling with application to cornering cuts. Int. J. Mach. Tool Des. Res. 1982;22:7–22. doi: 10.1016/0020-7357(82)90016-6. DOI
Ko J.H., Cho D.-W. 3D ball-end milling force model using instantaneous cutting force coefficients. J. Manuf. Sci. Eng. 2005;127:1–12. doi: 10.1115/1.1826077. DOI
Lee P., Altintas Y. Prediction of ball–end milling forces from orthogonal cutting data. Int. J. Mach. Tools Manuf. 1996;36:1059–1072. doi: 10.1016/0890-6955(95)00081-X. DOI
Rao V.S., Rao P.V.M. Effect of workpiece curvature on cutting forces and surface error in machining of curved geometries. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006;220:1399–1407. doi: 10.1243/09544054JEM397. DOI
Kim J.D., Kim D.S. Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J. Mater. Process. Technol. 1995;49:387–398. doi: 10.1016/0924-0136(94)01345-2. DOI
Kim C.-J., Mayor J.R., Ni J. A static model of chip formation in microscale milling. J. Manuf. Sci. Eng. 2004;126:710–718. doi: 10.1115/1.1813475. DOI
Zhang X., Yu T., Wang W. Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int. J. Mech. Sci. 2018;136:124–133. doi: 10.1016/j.ijmecsci.2017.12.019. DOI
Biró I., Szalay T. Extension of empirical specific cutting force model for the process of fine chip-removing milling. Int. J. Adv. Manuf. Technol. 2017;88:2735–2743. doi: 10.1007/s00170-016-8957-x. DOI
Yuan Y., Jing X., Ehmann K.F., Cao J., Li H., Zhang D. Modeling of cutting forces in micro end-milling. J. Manuf. Process. 2018;31:844–858. doi: 10.1016/j.jmapro.2018.01.012. DOI
Liu T., Zhang K., Wang G., Wang C. Prediction of Nonlinear Micro-milling force with a novel minimum uncut chip thickness model. Micromachines. 2021;12:1495. doi: 10.3390/mi12121495. PubMed DOI PMC
Wang P., Bai Q., Cheng K., Zhao L., Ding H. The modelling and analysis of micro-milling forces for fabricating thin-walled micro-parts considering machining dynamics. Machines. 2022;10:217. doi: 10.3390/machines10030217. DOI
Chen N., Li L., Wu J., Qian J., He N., Reynaerts D. Research on the ploughing force in micro milling of soft-brittle crystals. Int. J. Mech. Sci. 2019;155:315–322. doi: 10.1016/j.ijmecsci.2019.03.004. DOI
Zhou L., Deng B., Peng F., Yang M., Yan R. Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics. Int. J. Mech. Sci. 2020;169:105343. doi: 10.1016/j.ijmecsci.2019.105343. DOI
Hao Y., Liu Y. Analysis of milling surface roughness prediction for thin-walled parts with curved surface. Int. J. Adv. Manuf. Technol. 2017;93:2289–2297. doi: 10.1007/s00170-017-0615-4. DOI
Honeycutt A., Schmitz T.L. A Study of Milling Surface Quality during Period-2 Bifurcations. Procedia Manuf. 2017;10:183–193. doi: 10.1016/j.promfg.2017.07.046. DOI
Mori T., Hiramatsu T., Shamoto E. Simultaneous double-sided milling of flexible plates with high accuracy and high efficiency suppression of forced chatter vibration with synchronized single-tooth cutters. Precis. Eng. 2011;35:416–423. doi: 10.1016/j.precisioneng.2011.02.002. DOI
Shan C., Lv X., Duan W. Effect of tool inclination angle on the elastic deformation of thin-walled parts in multi-axis ball-end milling. Procedia CIRP. 2016;56:311–315. doi: 10.1016/j.procir.2016.10.024. DOI
Wang Z., Wang B., Yuan J. Modeling of surface topography based on cutting vibration in ball-end milling of thin-walled parts. Int. J. Adv. Manuf. Technol. 2018;101:1837–1854. doi: 10.1007/s00170-018-3095-2. DOI
Peng F., Wu J., Fang Z., Yuan S., Yan R., Bai Q. Modeling and controlling of surface micro-topography feature in micro-ball-end milling. Int. J. Adv. Manuf. Technol. 2013;67:2657–2670. doi: 10.1007/s00170-012-4681-3. DOI
Chen H.-Q., Wang Q.-H. Modeling and simulation of the surface topography in ball-end milling based on biharmonic spline interpolation. Int. J. Adv. Manuf. Technol. 2018;99:2451–2466. doi: 10.1007/s00170-018-2615-4. DOI
Chen W., Xie W., Huo D., Yang K. A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect. Int. J. Mech. Sci. 2018;144:146–157. doi: 10.1016/j.ijmecsci.2018.05.050. DOI
Miao H., Li C., Liu C., Wang C., Zhang X., Sun W. Machined surface prediction and reliability analysis in peripheral milling operations. Int. J. Mech. Sci. 2024;272:109193. doi: 10.1016/j.ijmecsci.2024.109193. DOI
Yuan X., Fan Y., Liang Z., Wang S., Mao X., Xie X., Yang A., Liu H., Xu Y. Prediction of measured surface topography with forced vibration effects. Measurement. 2024;229:114469. doi: 10.1016/j.measurement.2024.114469. DOI
Wojciechowski S., Twardowski P. The influence of tool wear on the vibrations during ball end milling of hardened steel. Procedia CIRP. 2014;14:587–592. doi: 10.1016/j.procir.2014.03.108. DOI
Iglesias A., Munoa J., Ciurana J., Dombovari Z., Stepan G. Analytical expressions for chatter analysis in milling operations with one dominant mode. J. Sound Vib. 2016;375:403–421. doi: 10.1016/j.jsv.2016.04.015. DOI
Zheng C.M., Junz Wang J.-J. Stability prediction in radial immersion for milling with symmetric structure. Int. J. Mach. Tools Manuf. 2013;75:72–81. doi: 10.1016/j.ijmachtools.2013.08.007. DOI
Zhou K., Feng P., Xu C., Zhang J., Wu Z. High-order full discretization methods for milling stability prediction by interpolating the delay term of time delayed differential equations. Int. J. Adv. Manuf. Technol. 2017;93:2201–2214. doi: 10.1007/s00170-017-0692-4. DOI
Chen Q., Li W., Ren Y., Zhou Z. 3D chatter stability of high-speed micromilling by considering nonlinear cutting coefficients, and process damping. J. Manuf. Process. 2020;57:552–565. doi: 10.1016/j.jmapro.2020.07.016. DOI
Singh K.K., Kartik V., Singh R. Modeling dynamic stability in high-speed micromilling of Ti-6Al-4V via velocity and chip load dependent cutting coefficients. Int. J. Mach. Tools Manuf. 2015;96:56–66. doi: 10.1016/j.ijmachtools.2015.06.002. DOI
Singh K.K., Kartik V., Singh R. Stability modeling with dynamic run-out in high speed micromilling of Ti6Al4V. Int. J. Mech. Sci. 2019;150:677–690. doi: 10.1016/j.ijmecsci.2018.11.001. DOI
Soori M., Arezoo B., Habibi M. Virtual machining considering dimensional, geometrical and tool deflection errors in three-axis CNC milling machines. J. Manuf. Syst. 2014;33:498–507. doi: 10.1016/j.jmsy.2014.04.007. DOI
Dorgeloh T., Beinhauer A., Riemer O., Brinksmeier E. Microfluidic balancing concepts for ultraprecision high speed applications. Procedia CIRP. 2016;46:185–188. doi: 10.1016/j.procir.2016.03.174. DOI
Peterka J., Kováč M., Zvončan M. Influence of tool balancing on machined surface quality in high speed machining. J. Prod. Eng. 2011;15:11–14.
Saha S., Deb S., Bandyopadhyay P.P. Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. Int. J. Mech. Sci. 2021;212:106844. doi: 10.1016/j.ijmecsci.2021.106844. DOI
Saha S., Deb S., Bandyopadhyay P.P. Tool wear induced burr formation and concomitant reduction in MQL wetting capability in micro-milling. Int. J. Mech. Sci. 2023;245:108095. doi: 10.1016/j.ijmecsci.2022.108095. DOI
Zhang C., Guo S., Zhang H., Zhou L. Modeling and predicting for surface topography considering tool wear in milling process. Int. J. Adv. Manuf. Technol. 2013;68:2849–2860. doi: 10.1007/s00170-013-4989-7. DOI
Zhang C., Zhang H., Li Y., Zhou L. Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process. Int. J. Adv. Manuf. Technol. 2015;77:735–749. doi: 10.1007/s00170-014-6485-0. DOI
Zhang X., Yu T., Zhao J. Surface generation modeling of micro milling process with stochastic tool wear. Precis. Eng. 2020;61:170–181. doi: 10.1016/j.precisioneng.2019.10.015. DOI
Jiang X., Ding J., Wang C., Hong L., Yao W., Yu W. Influence of tool wear on geometric surface modeling for TC4 titanium alloy milling. J. Manuf. Process. 2024;131:797–814. doi: 10.1016/j.jmapro.2024.09.070. DOI
Wojciechowski S., Twardowski P. Tool life and process dynamics in high speed ball end milling of hardened steel. Procedia CIRP. 2012;1:289–294. doi: 10.1016/j.procir.2012.04.052. DOI
De Aguiar M.M., Diniz A.E., Pederiva R. Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. Int. J. Mach. Tools Manuf. 2013;68:1–10. doi: 10.1016/j.ijmachtools.2013.01.002. DOI
Klocke F., Lung D., Puls H. FEM-Modelling of the thermal workpiece deformation in dry turning. Procedia CIRP. 2013;8:240–245. doi: 10.1016/j.procir.2013.06.096. DOI
Creighton E., Honegger A., Tulsian A., Mukhopadhyay D. Analysis of thermal errors in a high-speed micro-milling spindle. Int. J. Mach. Tools Manuf. 2010;50:386–393. doi: 10.1016/j.ijmachtools.2009.11.002. DOI
Chen W., Teng X., Huo D., Wang Q. An improved cutting force model for micro milling considering machining dynamics. 1006. Int. J. Adv. Manuf. Technol. 2017;93:3005–3016. doi: 10.1007/s00170-017-0706-2. DOI
Gozu E., Karpat Y. Uncertainty analysis of force coefficients during micromilling of titanium alloy. Int. J. Adv. Manuf. Technol. 2017;93:839–855. doi: 10.1007/s00170-017-0567-8. DOI
Park S.S., Malekian M. Mechanistic modeling and accurate measurement of micro end milling forces. CIRP Ann.—Manuf. Technol. 2009;58:49–52. doi: 10.1016/j.cirp.2009.03.060. DOI
Zhang X., Ehmann K.F., Yu T., Wang W. Cutting forces in micro end milling processes. Int. J. Mach. Tools Manuf. 2016;107:21–40. doi: 10.1016/j.ijmachtools.2016.04.012. DOI
Budak E. Analytical models for high performance milling, Part I: Cutting forces, structural deformations and tolerance integrity. Int. J. Mach. Tools Manuf. 2006;46:1478–1488. doi: 10.1016/j.ijmachtools.2005.09.009. DOI
Denkena B., Vehmeyer J., Niederwestberg D., Maaß P. Identification of the specific cutting force for geometrically defined cutting edges and varying cutting conditions. Int. J. Mach. Tools Manuf. 2014;82–83:42–49. doi: 10.1016/j.ijmachtools.2014.03.009. DOI
Gradisek J., Kalveram M., Weinert K. Mechanistic identification of specific force coefficients for a general end mill. Int. J. Mach. Tools Manuf. 2004;44:401–414. doi: 10.1016/j.ijmachtools.2003.10.001. DOI
Lamikiz A., López de Lacalle L.N., Sanchez J.A., Salgado M.A. Cutting force estimation in sculptured surface milling. Int. J. Mach. Tools Manuf. 2004;44:1511–1526. doi: 10.1016/j.ijmachtools.2004.05.004. DOI
Ozturk B., Lazoglu I., Erdim H. Machining of free-form surfaces. Part II: Calibration and forces. Int. J. Mach. Tools Manuf. 2006;46:736–746. doi: 10.1016/j.ijmachtools.2005.07.037. DOI
Wojciechowski S. The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int. J. Mach. Tools Manuf. 2015;89:110–123. doi: 10.1016/j.ijmachtools.2014.10.006. DOI
Grossi N., Sallese L., Scippa A., Campatelli G. Speed-varying cutting force coefficient identification in milling. Precis. Eng. 2015;42:321–334. doi: 10.1016/j.precisioneng.2015.04.006. DOI
Rubeo M.A., Schmitz T.L. Milling Force Modeling: A Comparison of Two Approaches. Procedia Manuf. 2016;5:90–105. doi: 10.1016/j.promfg.2016.08.010. DOI
Tsai M.Y., Chang S.Y., Hung J.P., Wang C.C. Investigation of milling cutting forces and cutting coefficient for aluminum 6060-T6. Comput. Electr. Eng. 2016;51:320–330. doi: 10.1016/j.compeleceng.2015.09.016. DOI
Gonzalo O., Beristain J., Jauregi H., Sanz C. A method for the identification of the specific force coefficients for mechanistic milling simulation. Int. J. Mach. Tools Manuf. 2010;50:765–774. doi: 10.1016/j.ijmachtools.2010.05.009. DOI
Wan M., Lu M.-S., Zhang W.-H., Yang Y. A new ternary-mechanism model for the prediction of cutting forces in flat end milling. Int. J. Mach. Tools Manuf. 2012;57:34–45. doi: 10.1016/j.ijmachtools.2012.02.003. DOI
Zhang X., Zhang J., Pang B., Zhao W.-H. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int. J. Mach. Tools Manuf. 2016;104:26–36. doi: 10.1016/j.ijmachtools.2015.12.003. DOI
Zhou L., Peng F.Y., Yan R., Yao P.F., Yang C.C., Li B. Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int. J. Mach. Tools Manuf. 2015;97:29–41. doi: 10.1016/j.ijmachtools.2015.07.001. DOI
Srinivasa Y.V., Shunmugam M.S. Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int. J. Mach. Tools Manuf. 2013;67:18–27. doi: 10.1016/j.ijmachtools.2012.12.004. DOI
Bo L., Yanlong C., Wenhua C., Jun P. Geometry simulation and evaluation of the surface topography in five-axis ball-end milling. Int. J. Adv. Manuf. Technol. 2017;93:1651–1667. doi: 10.1007/s00170-017-0505-9. DOI
Abdelmoneim M.E.S., Scrutton R.F. Tool edge roundness and stable build up formation in finish machining. Trans. ASME J. Eng. Ind. 1974;96:1258–1267. doi: 10.1115/1.3438504. DOI
Waldorf D.J., DeVor R.E., Kapoor S.G. A slip line field for ploughing during orthogonal cutting. Trans. ASME J. Manuf. Sci. Eng. 1998;120:693–699. doi: 10.1115/1.2830208. DOI
Jun B.G., Liu X., DeVor R.E., Kapoor S.G. Investigation of the Dynamics of Microend Milling. Part I: Model Development. J. Manuf. Sci. Eng. 2006;128:893–900. doi: 10.1115/1.2193546. DOI
Fang N. Slip-Line Modeling of Machining With a Rounded-Edge Tool. Part I: New Model and Theory. J. Mech. Phys. Solids. 2003;51:715–742. doi: 10.1016/S0022-5096(02)00060-1. DOI
Afazov S.M., Ratchev S.M., Segal J., Popov A.A. Chatter modelling in micro-milling by considering process nonlinearities. Int. J. Mach. Tools Manuf. 2012;56:28–38. doi: 10.1016/j.ijmachtools.2011.12.010. DOI
Afazov S.M., Ratchev S.M., Segal J. Modelling and simulation of micro-milling cutting forces. J. Mater. Process. Technol. 2010;210:2154–2162. doi: 10.1016/j.jmatprotec.2010.07.033. DOI
Afazov S.M., Zdebski D., Ratchev S.M., Segal J., Liu S. Effects of micro-milling conditions on the cutting forces and process stability. J. Mater. Process. Technol. 2013;213:671–684. doi: 10.1016/j.jmatprotec.2012.12.001. DOI
Jin X., Altintas Y. Prediction of micro-milling forces with finite element method. J. Mater. Process. Technol. 2012;212:542–552. doi: 10.1016/j.jmatprotec.2011.05.020. DOI
Lai X.M., Li H.T., Li C.F., Lin Z.Q., Ni J. Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 2008;48:1–14. doi: 10.1016/j.ijmachtools.2007.08.011. DOI
Jin X., Altintas Y. Slip-line field model of micro-cutting process with round tool edge effect. J. Mater. Process. Technol. 2011;211:339–355. doi: 10.1016/j.jmatprotec.2010.10.006. DOI
Karpat Y. Investigation of the effect of cutting tool edge radius on material separation due to ductile fracture in machining. Int. J. Mech. Sci. 2009;51:541–546. doi: 10.1016/j.ijmecsci.2009.05.005. DOI
Liu K., Melkote S. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 2007;49:650–660. doi: 10.1016/j.ijmecsci.2006.09.012. DOI
Liu K., Melkote S. Material strengthening mechanisms and their contribution to size effect in micro-cutting. J. Manuf. Sci. Eng. 2006;128:730–738. doi: 10.1115/1.2193548. DOI
Ding H., Shen N., Shin Y.C. Experimental evaluation and modeling analysis of micromilling of hardened H13 tool steels. J. Manuf. Sci. Eng. 2011;133:041007. doi: 10.1115/1.4004499. DOI
Zhou Y., Tian Y., Jing X., Ehmann K.F. A novel instantaneous uncut chip thickness model for mechanistic cutting force model in micro-end-milling. Int. J. Adv. Manuf. Technol. 2017;93:2305–2319. doi: 10.1007/s00170-017-0638-x. DOI
Luo S., Jun M.B.G., Dong Z. Numerical Simulation of Chip Ploughing Volume and Forces in 5-axis CNC Micro-milling Using Flat-end Mills. Procedia Manuf. 2016;5:348–361. doi: 10.1016/j.promfg.2016.08.030. DOI
Bao W.Y., Tansel I.N. Modeling micro-end-milling operations. Part I: Analytical cutting force model. Int. J. Mach. Tools Manuf. 2000;40:2155–2173. doi: 10.1016/S0890-6955(00)00054-7. DOI
Li H.Z., Liu K., Li X.P. A new method for determining the undeformed chip thickness in milling. J. Mater. Process. Technol. 2001;113:378–384. doi: 10.1016/S0924-0136(01)00586-6. DOI
Perez H., Vizan A., Hernandez J.C., Guzman M. Estimation of cutting forces in micromilling through the determination of specific cutting pressures. J. Mater. Process. Technol. 2007;190:18–22. doi: 10.1016/j.jmatprotec.2007.03.118. DOI
Urbikain G., Artetxe E., López de Lacalle L.N. Numerical simulation of milling forces with barrel-shaped tools considering runout and tool inclination angles. Appl. Math. Model. 2017;47:619–636. doi: 10.1016/j.apm.2017.03.001. DOI
Zhu K., Zhang Y. Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int. J. Mach. Tools Manuf. 2017;118–119:37–48. doi: 10.1016/j.ijmachtools.2017.04.001. DOI
Zhu Z., Yan R., Peng F., Duan X., Zhou L., Song K., Guo C. Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling. Int. J. Mach. Tools Manuf. 2016;101:35–51. doi: 10.1016/j.ijmachtools.2015.11.001. DOI
Omar O.E.E.K., El-Wardany T., Ng E., Elbestawi M.A. An improved cutting force and surface topography prediction model in end milling. Int. J. Mach. Tools Manuf. 2007;47:1263–1275. doi: 10.1016/j.ijmachtools.2006.08.021. DOI
Sastry S., Kapoor S.G., DeVor R.E. Compensation of progressive radial run-out in face-milling by spindle speed variation. Int. J. Mach. Tools Manuf. 2000;40:1121–1139. doi: 10.1016/S0890-6955(99)00115-7. DOI
Desai K., Agarwal P.K., Rao P.V.M. Process geometry modelling with cutter runout for milling ofcurved surfaces. Int. J. Mach. Tools Manuf. 2009;49:1015–1028. doi: 10.1016/j.ijmachtools.2009.05.007. DOI
Moges T.M., Desai K.A., Rao P.V.M. Improved Process Geometry Model with Cutter Runout and Elastic Recovery in Micro-End Milling. Procedia Manuf. 2016;5:478–494. doi: 10.1016/j.promfg.2016.08.040. DOI
Rodríguez P., Labarga J.E. A new model for the prediction of cutting forces in micro-end-milling operations. J. Mater. Process. Technol. 2013;213:261–268. doi: 10.1016/j.jmatprotec.2012.09.009. DOI
Wojciechowski S., Matuszak M., Powałka B., Madajewski M., Maruda R.W., Królczyk G.M. Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int. J. Mach. Tools Manuf. 2019;147:103466. doi: 10.1016/j.ijmachtools.2019.103466. DOI
Sutherland J.W., DeVor R.E. Improved method for cutting force and surface error prediction in flexible end milling systems. J. Eng. Ind. 1986;108:269–279. doi: 10.1115/1.3187077. DOI
Jun B.G., DeVor R.E., Kapoor S.G. Investigation of the Dynamics of Micro end Milling. Part II: Model Validation and Interpretation. J. Manuf. Sci. Eng. 2006;128:901–912. doi: 10.1115/1.2335854. DOI
Budak E., Altintas Y. Modeling and avoidance of static deformations in peripheral milling of plates. Int. J. Mach. Tool Des. Res. 1995;35:459–476. doi: 10.1016/0890-6955(94)P2628-S. DOI
Kops L., Vo D.T. Determination of the equivalent diameter of an endmill based on its compliance. Ann. CIRP. 1990;39:93–96. doi: 10.1016/S0007-8506(07)61010-5. DOI
Kivanc E., Budak E. Structural modeling of end mills for form error and stability analysis. Int. J. Mach. Tools Manuf. 2004;44:1151–1161. doi: 10.1016/j.ijmachtools.2004.04.002. DOI
Kim G.M., Kim B.H., Chu C.N. Estimation of cutter deflection and form error in ball-end milling processes. Int. J. Mach. Tools Manuf. 2003;43:917–924. doi: 10.1016/S0890-6955(03)00056-7. DOI
López de Lacalle L.N., Lamikiz A., Sanchez J.A., Salgado M.A. Effects of tool deflection in the high-speed milling of inclined surfaces. Int. J. Adv. Manuf. Technol. 2004;24:621–631. doi: 10.1007/s00170-003-1723-x. DOI
Graham E., Mehrpouya M., Park S.S. Robust prediction of chatter stability in milling based on the analytical chatter stability. J. Manuf. Process. 2013;15:508–517. doi: 10.1016/j.jmapro.2013.08.005. DOI
Insperger T., Gradisek J., Kalveram M., Stepan G., Winert K., Govekar E. Machine Tool Chatter and Surface Location Error in Milling Processes. J. Manuf. Sci. Eng. 2006;128:913–920. doi: 10.1115/1.2280634. DOI
Park S.S., Rahnama R. Robust chatter stability in micro-milling operations. CIRP Ann.—Manuf. Technol. 2010;59:391–394. doi: 10.1016/j.cirp.2010.03.023. DOI
Wang J.J., Uhlmann E., Oberschmidt D., Sung C.F., Perfilov I. Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Ann.—Manuf. Technol. 2016;65:113–116. doi: 10.1016/j.cirp.2016.04.088. DOI
Rahnama R., Sajjadi M., Park S.S. Suppression of Chatter in Micro Milling with Process Damping. J. Mater. Process. Technol. 2009;209:5766–5776. doi: 10.1016/j.jmatprotec.2009.06.009. DOI
Wojciechowski S., Tabaszewski M., Krolczyk G.M., Maruda R.W. The study on dynamic properties of monolithic ball end mills with various slenderness. E3S Web Conf. 2017;19:03014. doi: 10.1051/e3sconf/20171903014. DOI
Graham E., Mehrpouya M., Nagamune R., Park S.S. Robust prediction of chatter stability in micro milling comparing edge theorem and LMI. CIRP J. Manuf. Sci. Technol. 2014;7:29–39. doi: 10.1016/j.cirpj.2013.09.002. DOI
Park S.S., Altintas Y., Movahhedy M. Receptance coupling for endmills. Int. J. Mach. Tools Manuf. 2003;43:889–896. doi: 10.1016/S0890-6955(03)00088-9. DOI
Eynian M. Prediction of vibration frequencies in milling using modified Nyquist method. CIRP J. Manuf. Sci. Technol. 2015;11:73–81. doi: 10.1016/j.cirpj.2015.08.006. DOI
Yılmaz E.E., Budak E., Özgüven H.N. Modeling and Measurement of Micro End Mill Dynamics Using Inverse Stability Approach. Procedia CIRP. 2016;46:242–245. doi: 10.1016/j.procir.2016.04.114. DOI
Uhlmann E., Mahr F. A Time Domain Simulation Approach for Micro Milling Processes. Procedia CIRP. 2012;4:22–28. doi: 10.1016/j.procir.2012.10.005. DOI
Yuan M., Wang X., Jiao L., Yi J., Liu S. Prediction of dimension error based on the deflection of cutting tool in micro ball-end milling. Int. J. Adv. Manuf. Technol. 2017;93:825–837. doi: 10.1007/s00170-017-0474-z. DOI
Mamedov A., Layegh K.S.E., Lazoglu I. Machining forces and tool deflections in micro milling. Procedia CIRP. 2013;8:147–151. doi: 10.1016/j.procir.2013.06.080. DOI
Matuszak M., Kochmański P., Powałka B. Workpiece Grain Size Influence on the Vibration in Micro-milling. In: Ševĉik L., Lepšík P., Petrů M., Mašín I., Martonka R., editors. Modern Methods of Construction Design. Springer; Cham, Switzerland: 2014. Lecture Notes in Mechanical, Engineering.
Mittal R.K., Kulkarni S.S., Singh R.K. Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V. J. Manuf. Process. 2017;28:413–421. doi: 10.1016/j.jmapro.2017.04.007. DOI
Altintas Y., Weck M. Chatter Stability of Metal Cutting and Grinding. Ann. CIRP. 2004;53:619–642. doi: 10.1016/S0007-8506(07)60032-8. DOI
Opitz H. Investigation and calculation of the chatter behavior of lathes and milling machines. Ann. CIRP. 1970;18:335–343.
Tlusty J. Manufacturing Processes and Equipment. Prentice Hall; New York, NY, USA: 2000.
Jorgensen B.R., Shin Y.C. Dynamics of spindle bearing systems at high speeds including cutting load effects. J. Manuf. Sci. Eng. 1998;120:387–394. doi: 10.1115/1.2830138. DOI
Movahhedy M.R., Mosaddegh P. Prediction of chatter in high speed milling including gyroscopic effects. Int. J. Mach. Tools Manuf. 2006;46:996–1001. doi: 10.1016/j.ijmachtools.2005.07.043. DOI
Altintas Y., Eynian M., Onozuka H. Identification of Dynamic Cutting Force Coefficients and Chatter Stability with Process Damping. Ann. CIRP. 2008;57:371–374. doi: 10.1016/j.cirp.2008.03.048. DOI
Haung C.Y., Junz Wang J.J. Mechanistic Modeling of Process damping in peripheral milling. ASME J. Manuf. Sci. Eng. 2007;129:12–20. doi: 10.1115/1.2335857. DOI
Wojciechowski S., Mrozek K. Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int. J. Mech. Sci. 2017;134:424–435. doi: 10.1016/j.ijmecsci.2017.10.032. DOI
Cernohlavek V., Klimenda F., Houska P., Suszyński M. Vibration Measurements on a Six-Axis Collaborative Robotic Arm—Part I. Sensors. 2023;23:1629. doi: 10.3390/s23031629. PubMed DOI PMC
Meller A., Suszynski M., Legutko S., Trączyński M., Cernohlavek V. Studies on a Robotised Process for Forging Steel Synchronizer Rings in the Context of Forging Tool Life. Manuf. Technol. 2023;23:88–98. doi: 10.21062/mft.2023.002. DOI
Klimenda F., Cizek R., Suszyński M. Measurement of a Vibration on a Robotic Vehicle. Sensors. 2022;22:8649. doi: 10.3390/s22228649. PubMed DOI PMC
Suszyński M., Wiśniewski M., Wojciechowicz K., Trączyński M., Butlewski M., Cernohlavek V., Talar R. Study of Positioning Accuracy Parameters in Selected Configurations of a Modular Industrial Robot—Part 1. Sensors. 2025;25:108. doi: 10.3390/s25010108. PubMed DOI PMC
Cen L., Melkote S.N. Effect of Robot Dynamics on the Machining Forces in Robotic Milling. Procedia Manuf. 2017;10:486–496. doi: 10.1016/j.promfg.2017.07.034. DOI
Cvitanic T., Nguyen V., Melkote S.N. Pose Optimization in Robotic Machining Using Static and Dynamic Stiffness Models. Robot. Comput.-Integr. Manuf. 2020;66:101992. doi: 10.1016/j.rcim.2020.101992. DOI
Diaz Posada J.R., Schneider U., Sridhar A., Verl A. Automatic Motion Generation for Robotic Milling Optimizing Stiffness with Sample-Based Planning. Machines. 2017;5:3. doi: 10.3390/machines5010003. DOI
Liao Z.-Y., Wang Q.-H., Xie H.-L., Li J.-R., Zhou X.-F., Pan T.-H. Optimization of Robot Posture and Workpiece Setup in Robotic Milling with Stiffness Threshold. IEEE/ASME Trans. Mechatron. 2022;27:582–593. doi: 10.1109/TMECH.2021.3068599. DOI
Mun C.H., Rezvani S., Lee J., Park S., Park H.W., Lee J. Indirect measurement of cutting forces during robotic milling using multiple sensors and a machine learning-based system identifier. J. Manuf. Process. 2022;85:963–976. doi: 10.1016/j.jmapro.2022.12.019. DOI
Bisu C.-F., Cherif M., Gérard A., K’Nevez J.-Y. Dynamic Behavior Analysis for a Six-Axis Industrial Machining Robot. arXiv. 2012 doi: 10.4028/www.scientific.net/AMR.423.65.1201.4443 DOI
Leonesio M., Villagrossi E., Beschi M., Marini A., Bianchi G., Pedrocchi N., Molinari Tosatti L., Grechishnikov V., Ilyukhin Y., Isaev A. Vibration analysis of robotic milling tasks. Procedia CIRP. 2018;67:262–267. doi: 10.1016/j.procir.2017.12.210. DOI
Raparelli Sahu G.N., Otto A., Ihlenfeldt S. Improving Robotic Milling Performance through Active Damping of Low-Frequency Structural Modes. J. Manuf. Mater. Process. 2024;8:160. doi: 10.3390/jmmp8040160. DOI
Pan Z., Zhang H. Analysis and Suppression of Chatter in Robotic Machining Process; Proceedings of the 2007 International Conference on Control, Automation and Systems (ICCAS); Seoul, Republic of Korea. 17–20 October 2007; pp. 595–600.
Kenan Deng, Dong Gao, Chang Zhao, Yong Lu, Prediction of in-process frequency response function and chatter stability considering pose and feedrate in robotic milling. Robot. Comput.-Integr. Manuf. 2023;82:102548. doi: 10.1016/j.rcim.2023.102548. DOI
Rainsberger R.B., Fong J.T., Marcal P.V. Effect of mesh quality in finite element analysis of crack-tip stresses in a circumferential surface crack of a pipe elbow weldment; Proceedings of the ICF 2017—14th International Conference on Fracture; Rhodes, Greece. 18–23 June 2017; pp. 425–426.
Zhuang X., Heaney C., Augarde C. On error control in the element-free Galerkin method. Eng. Anal. Bound. Elem. 2012;36:351–360. doi: 10.1016/j.enganabound.2011.06.011. DOI
Dheeravongkit A., Shimada K. Inverse adaptation of a Hex-dominant mesh for large deformation finite element analysis. CAD Comput. Aided Des. 2007;39:427–438. doi: 10.1016/j.cad.2007.02.012. DOI
Kannan R., Hendry S., Debney P. Structures Congress 2018: Buildings and Disaster Management, Proceedings of the Structures Congress 2018, Fort Worth, TX, USA, 19–21 April 2018. Structural Engineering Institute of ASCE; Reston, VA, USA: 2018. What Is Your Structural Model Not Telling You? Finding Hidden Modelling Errors and Inaccuracies in Your Analysis Results; p. 58.
Navarro-Jiménez J.M., Nadal E., Ródenas J.J. Recovery-based accuracy assessment of numerical analysis results in linear elasticity. A code for moving least squares recovery based on physics. Adv. Appl. Mech. 2025;60:179–200.
Sankararaman S., Ling Y., Shantz C., Mahadevan S. Fatigue crack growth analysis under uncertainty; Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, FL, USA. 12–15 April 2010; 2010-2517.
Wang J.D., Howard I.M. Error analysis on finite element modeling of involute spur gears. J. Mech. Des. 2006;128:90–97. doi: 10.1115/1.2114891. DOI