Study of Positioning Accuracy Parameters in Selected Configurations of a Modular Industrial Robot-Part 1
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39796899
PubMed Central
PMC11722867
DOI
10.3390/s25010108
PII: s25010108
Knihovny.cz E-zdroje
- Klíčová slova
- industrial robot, modular robot, robot accuracy, robot configuration,
- Publikační typ
- časopisecké články MeSH
This article presents the fundamental principles of robot accuracy. It characterizes a modular robot, describes the measurement setup, and outlines the methodology for evaluating positioning accuracy across different configurations of the modular robot (four, five, and six modules) under varying loads of 6, 10, and 16 kg. An analysis was conducted on the impact of load changes on four- and five-module configurations, as well as the effect of configuration changes on the robot's performance with 6 and 10 kg loads. The findings indicate that both the number of modules and the load affect positioning accuracy. This article highlights the importance of selecting the optimal configuration based on planned industrial tasks to ensure the highest precision and operational efficiency.
Zobrazit více v PubMed
Von Neumann J., Burks A.W. Theory of Self-Reproducing Automata. University of Illinois Press; Champaign, IL, USA: 1966.
Zhang C., Zhu P., Lin Y., Jiao Z., Zou J. Modular Soft Robotics: Modular Units, Connection Mechanisms, and Applications. Adv. Intell. Syst. 2020;2:1900166. doi: 10.1002/aisy.201900166. DOI
Cernohlavek V., Klimenda F., Houska P., Suszyński M. Vibration Measurements on a Six-Axis Collaborative Robotic Arm—Part I. Sensors. 2023;23:1629. doi: 10.3390/s23031629. PubMed DOI PMC
Suszyński M., Wojciechowski J., Żurek J. No Clamp Robotic Assembly with Use of Point Cloud Data from Low-Cost Triangulation Scanner. Teh. Vjesn. -Tech. Gaz. 2018;25:904–909. doi: 10.17559/TV-20160922092849. DOI
Wojciechowski J., Suszyński M. Optical scanner assisted robotic assembly. Assem. Autom. 2017;37/4:434–441. doi: 10.1108/AA-07-2016-068. DOI
Dai Y., Xiang C.-F., Liu Z.-X., Li Z.-L., Qu W.-Y., Zhang Q.-H. Modular Robotic Design and Reconfiguring Path Planning. Appl. Sci. 2022;12:723. doi: 10.3390/app12020723. DOI
Siciliano B., Khatib O. Robotics and the Handbook. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1–6.
Liang G., Wu D., Tu Y., Lam T.L. Decoding Modular Reconfigurable Robots: A Survey on Mechanisms and Design. Int. J. Rob. Res. 2024 doi: 10.1177/02783649241283847. DOI
Yang G., Chen I.-M. Modular Robots: Theory and Practice. Springer; Singapore: 2022.
Liu Y., Li Y., Zhuang Z., Song T. Improvement of Robot Accuracy with an Optical Tracking System. Sensors. 2020;20:6341. doi: 10.3390/s20216341. PubMed DOI PMC
Külz J., Althoff M. Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm Approach; Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA); Yokohama, Japan. 13 May 2024; pp. 16752–16758.
[(accessed on 1 June 2023)]. Available online: https://www.themanufacturer.com/articles/modular-factory-software-robots-improve-automotive-productivity/
Pigozzi F., Tang Y., Medvet E., Ha D. Evolving Modular Soft Robots without Explicit Inter-Module Communication Using Local Self-Attention; Proceedings of the Genetic and Evolutionary Computation Conference; New York, NY, USA. 8 July 2022; pp. 148–157.
[(accessed on 1 June 2023)]. Available online: https://spectrum.ieee.org/modular-robots.
Althoff M., Giusti A., Liu S.B., Pereira A. Effortless Creation of Safe Robots from Modules through Self-Programming and Self-Verification. Sci. Robot. 2019;4:eaaw1924. doi: 10.1126/scirobotics.aaw1924. PubMed DOI
[(accessed on 1 June 2023)]. Available online: https://www.kuka.com/en-us/products/robotics-systems/good-to-know-industrial-robots.
[(accessed on 1 June 2023)]. Available online: https://azure.microsoft.com/pl-pl/resources/cloud-computing-dictionary/what-is-middleware.
[(accessed on 1 June 2023)]. Available online: https://electricalworkbook.com/degree-of-freedom-of-robot.
Płaczek M., Piszczek Ł. Testing of an Industrial Robot’s Accuracy and Repeatability in off and Online Environment. Eksploat. Niezawodn. 2018;20:455–464. doi: 10.17531/ein.2018.3.15. DOI
Żurek J., Wiśniewski M. Metodyka i warunki badań dokładności i powtarzalności pozycjonowania robota przemysłowego FANUC M-16iB. Technol. Autom. Montażu. 2013;1:31–34.
[(accessed on 1 June 2023)]. Available online: https://www.flipsnack.com/czasopismahoreca/nowoczesny_przemys-_-1-_1_2022.html.
[(accessed on 1 June 2023)]. Available online: https://eng.libretexts.org/bookshelves/mechanical_engineering/introduction_to_autonomous_robots_%28correll%29/02%3a_locomotion_and_manipulation/2.03%3a_degrees-of-freedom.