Functionality Analysis of Electric Actuators in Renewable Energy Systems-A Review

. 2022 Jun 03 ; 22 (11) : . [epub] 20220603

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35684894

Various mechanical, hydraulic, pneumatic, electrical, and hybrid actuators can alter motion per the requirements of particular applications. However, except for electrical ones, all actuators are restricted due to their size, complex auxiliary equipment, frequent need for maintenance, and sluggish environment in renewable applications. This brief review paper highlights some unique and significant research works on applying electrical actuators to renewable applications. Four renewable energy resources, i.e., solar, wind, bio-energy, and geothermal energy, are considered to review electric actuators applicable to renewable energy systems. This review analyses the types of actuators associated with the mentioned renewable application, their functioning, their motion type, present use, advantages, disadvantages, and operational problems. The information gathered in this paper may open up new ways of optimization opportunities and control challenges in electrical actuators, thereby making more efficient systems. Furthermore, some energy-efficient and cost-effective replacements of convectional actuators with new innovative ones are suggested. This work aims to benefit scientists and new entrants working on actuators in renewable energy systems.

Zobrazit více v PubMed

De Falcão O.A.F. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010;14:899–918. doi: 10.1016/j.rser.2009.11.003. DOI

Waters R., Stålberg M., Danielsson O., Svensson O., Gustafsson S., Strömstedt E., Eriksson M., Sundberg J., Leijon M. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007;90:034105. doi: 10.1063/1.2432168. DOI

Buch A., Klöckner S., Bernarding E., Eid T. Electrical actuators for modern internal combustion engines. MTZ Worldw. 2010;71:26–30. doi: 10.1007/BF03228048. DOI

Hisseine D. Robust tracking control for a hydraulic actuation system; Proceedings of the 2005 IEEE Conference on Control Applications, 2005, CCA 2005; Toronto, ON, Canada,. 28–31 August 2005; pp. 422–427. DOI

Prasetya S., Adhitya M., Budiono H., Sumarsono D. A investigation of braking system actuators for electric shuttle bus. E3S Web Conf. 2018;67:01023. doi: 10.1051/e3sconf/20186701023. DOI

Quan Z., Quan L., Zhang J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology. Renew. Sustain. Energy Rev. 2014;35:336–346. doi: 10.1016/j.rser.2014.04.036. DOI

Koumboulis F.N., Skarpetis M.G., Tzamtzi M.P. Robust PI Controllers for Command Following with Application to an Electropneumatic Actuator; Proceedings of the 2006 14th Mediterranean Conference on Control and Automation; Ancona, Italy. 28–30 June 2006; pp. 1–6. DOI

Behbahani A.R., Semega K.J. Control Strategy for Electro-Mechanical Actuators Versus Hydraulic Actuation Systems for Aerospace Applications; Proceedings of the Power Systems Conference, SAE Technical Paper Series; Seattle, DC, USA. 11–13 November 2010; p. 15. DOI

Osman I.S., Hariri N.G. Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator. Sustainability. 2022;14:5078. doi: 10.3390/su14095078. DOI

Tisserand O. How Does an Electric Actuator Work. [(accessed on 14 November 2021)]. Available online: https://www.indelac.com/blog/how-does-electric-actuator-work.

Norgren What Is an Electric Actuator. [(accessed on 14 November 2021)]. Available online: https://www.norgren.com/uk/en/expertise/industrial-automation/what-is-an-electric-actuator.

Dávila-Peralta C., Cabanillas-López R., García-Gutiérrez R., Rodríguez-Carvajal R. Design of a Linear Actuator Driven Solar Tracker for High Concentration Photovoltaics Technologies. J. Clean Energy Technol. 2015;4:197–201. doi: 10.7763/JOCET.2016.V4.279. DOI

Costa B.A., Lemos J.M., Rosa L.G. Temperature control of a solar furnace for material testing. Int. J. Syst. Sci. 2011;42:1253–1264. doi: 10.1080/00207721.2011.588894. DOI

Silva R.N., Lemos J.M., Rato L.M. Variable sampling adaptive control of a distributed collector solar field. IEEE Trans. Control Syst. Technol. 2003;11:765–772. doi: 10.1109/TCST.2003.816407. DOI

Williams R.B., Tanimoto R., Simonyan A., Fuerstenau S. Vibration characterization of self-cleaning solar panels with piezoceramic actuation; Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Honolulu, HI, USA. 23–26 April 2007; p. 1746. DOI

Alagoz S., Apak Y. Removal of spoiling materials from solar panel surfaces by applying surface acoustic waves. J. Clean. Prod. 2020;253:119992. doi: 10.1016/j.jclepro.2020.119992. DOI

Ebrahimpour M., Shafaghat R., Alamian R., Shadloo M.S. Numerical Investigation of the Savonius Vertical Axis Wind Turbine and Evaluation of the Effect of the Overlap Parameter in Both Horizontal and Vertical Directions on Its Performance. Symmetry. 2019;11:821. doi: 10.3390/sym11060821. DOI

Lemonis G. Wave and Tidal Energy Conversion. In: Cleveland C.J., editor. Encyclopedia of Energy. Elsevier; New York, NY, USA: 2004. pp. 385–396. DOI

Wilson D.G., Robinett R.D., III, Bacelli G., Abdelkhalik O. Non Linear Control Design for Non Linear Wave Energy Converters. [(accessed on 11 November 2021)]; Available online: https://www.osti.gov/servlets/purl/1648654.

Huo P., Yang F., Luo H., Zhou M., Zhang Y. Distributed monitoring system for precision management of household biogas appliances. Comput. Electron. Agric. 2019;157:359–370. doi: 10.1016/j.compag.2019.01.003. DOI

Chen D.F., Chiu S.P.C., Cheng A.B., Ting J.C. Electromagnetic Actuator System Using Witty Control System. Actuators. 2021;10:65. doi: 10.3390/act10030065. DOI

Talavera J.M., Tobón L.E., Gómez J.A., Culman M.A., Aranda J.M., Parra D.T., Quiroz L.A., Hoyos A., Garreta L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017;142:283–297. doi: 10.1016/j.compag.2017.09.015. DOI

Lajara R., Alberola J., Pelegrí-Sebastiá J. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems. Sensors. 2010;11:329–340. doi: 10.3390/s110100329. PubMed DOI PMC

Deb D., Brahmbhatt N.L. Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution. Renew. Sustain. Energy Rev. 2018;82:3306–3313. doi: 10.1016/j.rser.2017.10.014. DOI

Rosa L.G. Solar Heat for Materials Processing: A Review on Recent Achievements and a Prospect on Future Trends. ChemEngineering. 2019;3:83. doi: 10.3390/chemengineering3040083. DOI

Nguyen K.D. On the adaptive control of spherical actuators. Trans. Inst. Meas. Control. 2018;41:816–827. doi: 10.1177/0142331218771144. DOI

Hafez A., Yousef A., Harag N. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018;91:754–782. doi: 10.1016/j.rser.2018.03.094. DOI

Riad A., Ben Zohra M., Alhamany A., Mansouri M. Bio-sun tracker engineering self-driven by thermo-mechanical actuator for photovoltaic solar systems. Case Stud. Therm. Eng. 2020;21:100709. doi: 10.1016/j.csite.2020.100709. DOI

Aliyu M., Hassan G., Said S.A., Siddiqui M.U., Alawami A.T., Elamin I.M. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018;87:61–76. doi: 10.1016/j.rser.2018.02.010. DOI

Almadani I.K., Osman I.S., Hariri N.G. In-Depth Assessment and Optimized Actuation Method of a Novel Solar-Driven Thermomechanical Actuator via Shape Memory Alloy. Energies. 2022;15:3807. doi: 10.3390/en15103807. DOI

Kim T., Oh S., Yee K. Improved actuator surface method for wind turbine application. Renew. Energy. 2015;76:16–26. doi: 10.1016/j.renene.2014.11.002. DOI

Mérigaud A., Ringwood J.V. Condition-based maintenance methods for marine renewable energy. Renew. Sustain. Energy Rev. 2016;66:53–78. doi: 10.1016/j.rser.2016.07.071. DOI

Prasetyo A., Asrori , Sipahutar H., Wibowo B.S.C., Gunawan , Nuryadin D. Policy and Economy Analysis on the Application of the Smart on Grid Actuator to Public Road Lighting in Magelang City; Proceedings of the 1st Borobudur International Symposium on Humanities, Economics and Social Sciences (BIS-HESS 2019); Magelang, Indonesia. 16 October 2019; Amsterdam, The Netherlands: Atlantis Press; 2020. pp. 206–210. DOI

Popovic M.B., Lamkin-Kennard K.A., Beckerle P., Bowers M.P. 3—Actuators. In: Popovic M.B., editor. Biomechatronics. Academic Press; Cambridge, MA, USA: 2019. pp. 45–79. DOI

Nippon Pulse America I. Linear Motor Systems: Iron Core, U-Channel, and Tubular Linear Motors. 2021. [(accessed on 31 October 2021)]. Available online: https://www.nipponpulse.com/learning/white-papers/linear-motor-systems-iron-core-u-channel-and-

Wang Y., Deng X., Sun P., Qiao D. A Kind of Electric Actuator Controller Solving The Problem of Motor Concussion; Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA); Changchun, China. 5–8 August 2018; pp. 1015–1019. DOI

Laskey D.R. Ball Screw and Nut Linear Actuator Assemblies and Methods of Constructing and Operating Them. No. 6,101,889. U.S. Patent. 2000 August 15;

Han L., Yu L., Pan C., Zhao H., Jiang Y. A novel impact rotary–linear motor based on decomposed screw-type motion of piezoelectric actuator. Appl. Sci. 2018;8:2492. doi: 10.3390/app8122492. DOI

Gao B., Chen H., Liu Q., Chu H. Position Control of Electric Clutch Actuator Using a Triple-Step Nonlinear Method. Ind. Electron. IEEE Trans. 2014;61:6995–7003. doi: 10.1109/TIE.2014.2317131. DOI

Bandera P. Multi-Degree of Freedom Spherical Actuator. No. 9,893,574. U.S. Patent. 2018 February 13;

Lu X., Zhang Q., Hu J. A linear piezoelectric actuator based solar panel cleaning system. Energy. 2013;60:401–406. doi: 10.1016/j.energy.2013.07.058. DOI

Chirca M., Dranca M., Teodosescu P.D., Breban S. Limited-Angle Electromechanical Actuator for Micro Wind Turbines Overspeed Protection; Proceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE); Bucharest, Romania. 28–30 March 2019; pp. 1–6. DOI

Guillot E., Rodriguez R., Boullet N., Sans J.L. Some details about the third rejuvenation of the 1000 kWth solar furnace in Odeillo: Extreme performance heliostats. AIP Conf. Proc. 2018;2033:040016. doi: 10.1063/1.5067052. DOI

System A. Top IoT Sensors. 2019. [(accessed on 23 May 2022)]. Available online: https://www.avsystem.com/blog/iot-sensors-iot-actuators/

Wójcicki K., Biegańska M., Paliwoda B., Górna J. Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review. Energies. 2022;15:1806. doi: 10.3390/en15051806. DOI

Ponniran A., Hashim A., Ali Munir H. A design of single axis sun tracking system; Proceedings of the 2011 5th International Power Engineering and Optimization Conference; Shah Alam, Malaysia. 6–7 June 2011; pp. 107–110. DOI

Hammad B.K., Fouad R.H., Ashhab M.S., Nijmeh S.D., Mohsen M., Tamimi A. Adaptive control of solar tracking system. IET Sci. Meas. Technol. 2014;8:426–431. doi: 10.1049/iet-smt.2013.0293. DOI

Jovanovic V.M., Ayala O., Seek M., Marsillac S. Single axis solar tracker actuator location analysis; Proceedings of the SoutheastCon 2016; Norfolk, VA, USA. 30 March–3 April 2016; pp. 1–5. DOI

Arbes F., Weinrebe G., Wöhrbach M. Heliostat field cost reduction by ‘slope drive’ optimization. AIP Conf. Proc. 2016;1734:160002. doi: 10.1063/1.4949243. DOI

Ferdaus R.A., Mohammed M.A., Rahman S., Salehin S., Mannan M.A. Energy Efficient Hybrid Dual Axis Solar Tracking System. J. Renew. Energy. 2014;2014:1–12. doi: 10.1155/2014/629717. DOI

Batayneh W., Bataineh A., Soliman I., Hafees S.A. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Autom. Constr. 2019;98:102–109. doi: 10.1016/j.autcon.2018.11.011. DOI

Alexandru C. The design and optimization of a photovoltaic tracking mechanism; Proceedings of the 2009 International Conference on Power Engineering, Energy and Electrical Drives; Lisbon, Portugal. 18–20 March 2009; pp. 436–441. DOI

Ngo X.C., Nguyen T.H., Do N.Y., Nguyen D.M., Vo D.V.N., Lam S.S., Heo D., Shokouhimehr M., Nguyen V.H., Varma R.S., et al. Grid-Connected Photovoltaic Systems with Single-Axis Sun Tracker: Case Study for Central Vietnam. Energies. 2020;13:1457. doi: 10.3390/en13061457. DOI

Argeseanu A., Ritchie E., Leban K. New low cost structure for dual axis mount solar tracking system using adaptive solar sensor; Proceedings of the 2010 12th International Conference on Optimization of Electrical and Electronic Equipment; Brasov, Romania. 20–22 May 2010; pp. 1109–1114. DOI

Hariri N.G., AlMutawa M.A., Osman I.S., AlMadani I.K., Almahdi A.M., Ali S. Experimental Investigation of Azimuth-and Sensor-Based Control Strategies for a PV Solar Tracking Application. Appl. Sci. 2022;12:4758. doi: 10.3390/app12094758. DOI

IFC Utility-Scale Solar Photovoltaic Power Plants, a Project Developer’s Guide. [(accessed on 31 October 2021)]. Available online: https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/publications/publications_utility-scale+solar+photovoltaic+power+plants.

Ballestrín J., Rodríguez-Alonso M., Rodriguez J., Canadas I., Barbero F., Langley L., Barnes A. Calibration of high-heat-flux sensors in a solar furnace. Metrologia. 2006;43:495. doi: 10.1088/0026-1394/43/6/003. DOI

Egan D. Giant Magnifier Reaches 5000 Degrees Using Only Sunlight. [(accessed on 17 May 2022)]. Available online: https://www.discovermagazine.com/technology/giant-magnifier-reaches-5-000-degrees-using-only-sunlight.

Ballestrín J., Estrada C.A., Rodríguez-Alonso M., Pérez-Rábago C., Langley L.W., Barnes A. High-heat-flux sensor calibration using calorimetry. Metrologia. 2004;41:314–318. doi: 10.1088/0026-1394/41/4/013. DOI

Costa B.A., Lemos J.M. Singular perturbation stability conditions for adaptive control of a solar furnace with actuator dynamics; Proceedings of the 2009 European Control Conference (ECC); Budapest, Hungary. 23–26 August 2009; pp. 1626–1631. DOI

Camacho E.F., Rubio F.R., Berenguel M., Valenzuela L. A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Sol. Energy. 2007;81:1240–1251. doi: 10.1016/j.solener.2007.01.002. DOI

Schiel W., Hunt B., Keck T., Schweitzer A. Solar Thermal Power Plants For Central or Distributed Electricity Generation; Proceedings of the POWER-GEN Europe; Barcelona, Spain. 25–27 May 2004.

Cirre C.M., Berenguel M., Valenzuela L., Camacho E.F. Feedback linearization control for a distributed solar collector field. Control Eng. Pract. 2007;15:1533–1544. doi: 10.1016/j.conengprac.2007.03.002. DOI

Lemos J.M. Adaptive control of distributed collector solar fields. Int. J. Syst. Sci. 2006;37:523–533. doi: 10.1080/00207720600783686. DOI

Frank E., Mauthner F., Fischer S. Overheating prevention and stagnation handling in solar process heat applications. Technical Report A.1.2. Int. Energy-Agency-Sol. Heat. Cool. Task. 2015;49 doi: 10.13140/2.1.2166.9120. DOI

Motlagh N.H., Mohammadrezaei M., Hunt J., Zakeri B. Internet of Things (IoT) and the Energy Sector. Energies. 2020;13:494. doi: 10.3390/en13020494. DOI

Canaletti J.L., Notton G., Damian A., Colda I., Cristofari C. New concept of solar air heater integrated in the building; Proceedings of the 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, EEESD’08; Algarve, Portugal. 11–13 June 2008; pp. 52–59.

Panat S., Varanasi K.K. Electrostatic dust removal using adsorbed moisture–assisted charge induction for sustainable operation of solar panels. Sci. Adv. 2022;8:eabm0078. doi: 10.1126/sciadv.abm0078. PubMed DOI PMC

Dawson S., Nick M.B.S., Steve W. Solar Array Panels with Dust-Removal Capability. [(accessed on 12 November 2021)]. Available online: https://www.techbriefs.com/component/content/article/tb/pub/briefs/mechanics-and-machinery/1553.

Al-Badra M., Abd-Elhady M., Kandil H. A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Rep. 2020;6:1633–1637. doi: 10.1016/j.egyr.2020.06.020. DOI

Syafiq A., Pandey A., Adzman N., Abd Rahim N. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol. Energy. 2018;162:597–619. doi: 10.1016/j.solener.2017.12.023. DOI

Altıntaş M., Arslan S. Reduction of Dust on Solar Panels through Unipolar Electrostatic Traveling Wave. Appl. Sci. 2021;11:9121. doi: 10.3390/app11199121. DOI

King M., Li D., Dooner M., Ghosh S., Roy J.N., Chakraborty C., Wang J. Mathematical Modelling of a System for Solar PV Efficiency Improvement Using Compressed Air for Panel Cleaning and Cooling. Energies. 2021;14:4072. doi: 10.3390/en14144072. DOI

Deb D., Burkholder J., Tao G. Adaptive Compensation of Nonlinear Actuators for Flight Control Applications. Springer; Berlin/Heidelberg, Germany: 2021.

Deb D., Burkholder J., Tao G. Adaptive Compensation of Nonlinear Actuators for Flight Control Applications. Springer; Berlin/Heidelberg, Germany: 2022. Synthetic Jet Actuators and Arrays: Modeling and Control; pp. 11–41.

Hamlehdar M., Kasaeian A., Safaei M.R. Energy harvesting from fluid flow using piezoelectrics: A critical review. Renew. Energy. 2019;143:1826–1838. doi: 10.1016/j.renene.2019.05.078. DOI

Han H., Ko J. Power-Generation Optimization Based on Piezoelectric Ceramic Deformation for Energy Harvesting Application with Renewable Energy. Energies. 2021;14:2171. doi: 10.3390/en14082171. DOI

Nechibvute A., Chawanda A., Luhanga P. Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors. Smart Mater. Res. 2012;2012:1–13. doi: 10.1155/2012/853481. DOI

Ontiveros J.J., Ávalos C.D., Loza F., Galán N.D., Rubio G.J. Evaluation and design of power controller of two-axis solar tracking by PID and FL for a photovoltaic module. Int. J. Photoenergy. 2020;2020:8813732. doi: 10.1155/2020/8813732. DOI

Maindad N., Gadhave A., Satpute S., Nanda B. Automatic Solar Panel Cleaning System; Proceedings of the 2nd International Conference on Communication & Information Processing (ICCIP); Singapore. 26–29 November 2016.

Al Qdah K.S., Abdulqadir S.A., Al Harbi N.Y., Soqyyah A.Z., Isa K.J., Alharbi M.Y., Binsaad N.M. Design and performance of PV dust cleaning system in medina region. J. Power Energy Eng. 2019;7:1–14. doi: 10.4236/jpee.2019.711001. DOI

Chirca M., Dranca M., Oprea C.A., Teodosescu P.D., Pacuraru A.M., Neamtu C., Breban S. Electronically Controlled Actuators for a Micro Wind Turbine Furling Mechanism. Energies. 2020;13:4207. doi: 10.3390/en13164207. DOI

Cuches J.P., Frazier R.H. Angular Displacement Solenoid. US3221191. US Patent. 1965 November 30;

Drew B., Plummer A.R., Sahinkaya M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy. 2009;223:887–902. doi: 10.1243/09576509JPE782. DOI

Aderinto T., Li H. Review on power performance and efficiency of wave energy converters. Energies. 2019;12:4329. doi: 10.3390/en12224329. DOI

Rahman A., Farrok O., Islam M.R., Xu W. Recent progress in electrical generators for oceanic wave energy conversion. IEEE Access. 2020;8:138595–138615. doi: 10.1109/ACCESS.2020.3012662. DOI

Sugita M.R.P., Wijaya F.D., Sarjiya Design and analysis of tri core permanent magnet linear generator for wave energy conversion in south coast of Java Island. In Proceedings of the 2016 6th International Annual Engineering Seminar (InAES); Yogyakarta, Indonesia. 1–3 August 2016; pp. 256–261.

Schörghuber C., Gölles M., Reichhartinger M., Horn M. Control of biomass grate boilers using internal model control. Control Eng. Pract. 2020;96:104274. doi: 10.1016/j.conengprac.2019.104274. DOI

Yin C., Rosendahl L.A., Kær S.K. Grate-firing of biomass for heat and power production. Prog. Energy Combust. Sci. 2008;34:725–754. doi: 10.1016/j.pecs.2008.05.002. DOI

Sontake V.C., Kalamkar V.R. Solar photovoltaic water pumping system - A comprehensive review. Renew. Sustain. Energy Rev. 2016;59:1038–1067. doi: 10.1016/j.rser.2016.01.021. DOI

Yoo S.E., Kim J.E., Kim T., Ahn S., Sung J., Kim D. A2S: Automated Agriculture System based on WSN; Proceedings of the 2007 IEEE International Symposium on Consumer Electronics; Irving, TX, USA. 20–23 June 2007; pp. 1–5. DOI

Roy S.K., Roy A., Misra S., Raghuwanshi N.S., Obaidat M.S. AID: A prototype for Agricultural Intrusion Detection using Wireless Sensor Network; Proceedings of the 2015 IEEE International Conference on Communications (ICC); London, UK. 8–12 June 2015; pp. 7059–7064. DOI

Garcia-Caparros P., Contreras J., Baeza R., Segura M., Lao M. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability. 2017;9:2271. doi: 10.3390/su9122271. DOI

Rahman M.F., Cheung N.C., Lim K.W. Position estimation in solenoid actuators. IEEE Trans. Ind. Appl. 1996;32:552–559. doi: 10.1109/28.502166. DOI

Çetin G., Özkaraca O., Keçebaş A. Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant. Renew. Sustain. Energy Rev. 2021;137:110623. doi: 10.1016/j.rser.2020.110623. DOI

Sarbu I., Sebarchievici C. Chapter 7—Experimental Ground-Coupled Heat Pump Systems. In: Sarbu I., Sebarchievici C., editors. Ground-Source Heat Pumps. Academic Press; Cambridge, MA, USA: 2016. pp. 167–196. DOI

Zhang P., editor. Advanced Industrial Control Technology. William Andrew Publishing; Oxford, UK: 2010. Chapter 3—Sensors and actuators; pp. 73–116. DOI

Tisserand O. The Evolution of Actuator Design. [(accessed on 26 March 2022)]. Available online: https://www.indelac.com/blog/evolution-actuator-design.

Tisserand O. Wireless Actuator. [(accessed on 26 March 2022)]. Available online: https://www.indelac.com/blog/bid/320870/Wireless-Actuator.

Improve Energy Efficiency with Actuator Solutions. [(accessed on 24 March 2022)]. Available online: https://www.linak.com/business-areas/energy/

Blanco J., García A., Morenas J.D.l. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage. Sensors. 2018;18:1892. doi: 10.3390/s18061892. PubMed DOI PMC

Bellini P., Nesi P., Pantaleo G. IoT-enabled smart cities: A review of concepts, frameworks and key technologies. Appl. Sci. 2022;12:1607. doi: 10.3390/app12031607. DOI

Llaria A., Terrasson G., Curea O., Jiménez J. Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment. Appl. Sci. 2016;6:61. doi: 10.3390/app6030061. DOI

Park B., Nah J., Choi J.Y., Yoon I.J., Park P. Robust wireless sensor and actuator networks for networked control systems. Sensors. 2019;19:1535. doi: 10.3390/s19071535. PubMed DOI PMC

Junior J., Lima M., Balico L., Pazzi R., Oliveira H. Routing with Renewable Energy Management in Wireless Sensor Networks. Sensors. 2021;21:4376. doi: 10.3390/s21134376. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...