Studies of Phytochemicals, Antioxidant, and Antibacterial Activities of Pinus gerardiana and Pinus roxburghii Seed Extracts
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35686234
PubMed Central
PMC9173889
DOI
10.1155/2022/5938610
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- antioxidancia * chemie MeSH
- borovice * MeSH
- fytonutrienty analýza farmakologie MeSH
- peroxid vodíku analýza MeSH
- rostlinné extrakty chemie MeSH
- semena rostlinná chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antioxidancia * MeSH
- fytonutrienty MeSH
- peroxid vodíku MeSH
- rostlinné extrakty MeSH
Pine seeds are considered as nonwood forest products (NWFP) with regularly increasing market's demand. They can be eaten in various ways such as roasted or raw. In addition, they are included in various traditional dishes like in cookies, sauces, candies, cakes, breads, and other bakery items and, moreover, for medicinal purposes. GC-MS study is performed to analyze the phytochemical compounds present in the seed extracts of Pinus roxburghii (Chir) and Pinus gerardiana (Chilgoza). In total, 25 compounds were identified each in Chir and Chilgoza. In Chir seeds, abundantly present compounds were 2,4-di-tert-butylphenol (16.6%), followed by ç-Terpinene (9.9%) and cyclohexanol, 4-ethenyl-4-methyl-3-(1-methylethenyl)-, (1à,3à,4á) (9.8%), whereas in Chilgoza seeds, the maximum amount of compound was 1-hexyl-1-nitrocyclohexane (17.3%), followed by phenol, 2,6-bis(1,1-dimethylethyl) (15.4%), and heptadecane, 2-methyl (8.4%). The total phenolic content of Chir seed sample was 1536 ± 4.35 (mg GAE/100 g), whereas in the Chilgoza seed extract was 642.66 ± 2.08 (mg GAE/100 g). The application of RP-HPLC-DAD system revealed that Chir and Chilgoza seeds have maximum quantity of catechin (15.77 ± 0.16 μg/mg and 17.49 ± 0.32 μg/mg, respectively). Both Chir and Chilgoza seed extracts exhibited significant antioxidant (radical scavenging) potential, through H2O2 (618.94 ± 21.45 μg/mL and 575.16 ± 19.88 μg/mL) and DPPH (552.60 ± 13.03 μg/mL and 429.15 ± 3.80 μg/mL) assays, respectively. Additionally, a well-known antibacterial potential was also found in both plants' dichloromethane extracts, with 64 to 256 μg/mL of minimum inhibitory concentrations. As a whole, result shows the importance of both plants as a naturally occurring phytochemical source with significant antibacterial and antioxidant activity.
Faculty of Chemical and Food Technology Slovak University of Technology 81237 Bratislava Slovakia
Faculty of Medicine University of Porto 4200 319 Porto Portugal
Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
Zobrazit více v PubMed
Richardson D. M., Rundel P. W., Jackson S. T., et al. Human impacts in pine forests: past, present and future. Annual Review of Ecology, Evolution, and Systematics . 2007;38(1):275–297. doi: 10.1146/annurev.ecolsys.38.091206.095650. DOI
Kanchan B., Prerna B., Simran K. Medicinal value of secondary metabolites of pines grown in Himalayan region of India. Research Journal of Biotechnology . 2020;15:131–140.
Hoon L. Y., Choo C., Watawana M. I., Jayawardena N., Waisundara V. Y. Evaluation of the total antioxidant capacity and antioxidant compounds of different solvent extracts of Chilgoza pine nuts (Pinus gerardiana) Journal of Functional Foods . 2015;18:1014–1021. doi: 10.1016/j.jff.2014.07.009. DOI
Sharma A., Sharma L., Goyal R. A review on Himalayan pine species: ethnopharmacological, phytochemical and pharmacological aspects. Pharmacognosy Journal . 2018;10(4):611–619. doi: 10.5530/pj.2018.4.100. DOI
Awan H. U. M., Pettenella D. Pine nuts: a review of recent sanitary conditions and market development. Forests . 2017;8(10):p. 367. doi: 10.3390/f8100367. DOI
Kaushik D., Aggarwal A., Kaushik P., Mehra R., Rana A. C. Pinus roxburghii- incredible gift in the lap of Himalayas. International Journal of Pharmacognosy and Phytochemical Research . 2010;2:29–35.
Kumar R., Shamet G. S., Chaturvedi O. P., Avasthe R. K., Singh C. Ecology of Chilgoza pine (Pinus gerardianaWall.) in dry temperate forests of North West Himalaya. Ecology, Environment & Conservation . 2013;19:1063–1066.
Peltier R., Dauffy V. The Chilgoza of Kinnaur. Influence of the Pinus gerardiana edible seed market chain organization on forest regeneration in the Indian Himalayas. Fruits . 2009;64(2):99–110. doi: 10.1051/fruits/2009005. DOI
Lutz M., Álvarez K., Loewe V. Chemical composition of pine nut (Pinus pinea L.) grown in three geographical macrozones in Chile. CyTA Journal of Food . 2016;15:284–290. doi: 10.1080/19476337.2016.1250109. DOI
Salim H., Rimawi W. H., Shahin S. Phytochemical analysis and antibacterial activity of extracts from Palestinian Aleppo pine seeds, bark and cones. Asian Journal of Chemistry . 2019;31(1):143–147. doi: 10.14233/ajchem.2019.21633. DOI
Miraliakbari H., Shahidi F. Oxidative stability of tree nut oils. Journal of Agricultural and Food Chemistry . 2008;56(12):4751–4759. doi: 10.1021/jf8000982. PubMed DOI
Shah D., Gandhi M., Kumar A., Cruz-Martins N., Sharma R., Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Critical Reviews in Food Science and Nutrition . 2021;26:1–37. doi: 10.1080/10408398.2021.1968786. PubMed DOI
Sharma R., Martins N., Kuca K., et al. Chyawanprash: a traditional Indian bioactive health supplement. Biomolecules . 2019;9(5):p. 161. doi: 10.3390/biom9050161. PubMed DOI PMC
Anderson K. J., Teuber S. S., Gobeille A., Cremin P., Waterhouse A. L., Steinberg F. M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition . 2001;131(11):2837–2842. doi: 10.1093/jn/131.11.2837. PubMed DOI
Sharma N., Tiwari N., Vyas M., Khurana N., Muthuraman A., Utreja P. An overview of therapeutic effects of vanillic acid. Plant Archives . 2020;20:3053–3059.
Zulfqar F., Akhtar M. F., Saleem A., Akhtar B., Sharif A., Saleem U. Chemical characterization, antioxidant evaluation, and antidiabetic potential of Pinus gerardiana (pine nuts) extracts. Journal of Food Biochemistry . 2020;44(6, article e13199) doi: 10.1111/jfbc.13199. PubMed DOI
Morini G., Maga J. A. Volatile compounds in roasted and boiled Chinese chestnuts (Castanea molissima) LWT - Food Science and Technology . 1995;28(6):638–640. doi: 10.1016/0023-6438(95)90014-4. DOI
Senguttuvan J., Paulsamy S., Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine . 2014;4:S359–S367. doi: 10.12980/APJTB.4.2014C1030. PubMed DOI PMC
Al-Owaisi M., Al-Hadiwi N., Khan S. H. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine . 2014;4(12):964–970. doi: 10.12980/APJTB.4.201414B295. DOI
Lee B. L., New A. L., Ong C. N. Simultaneous determination of tocotrienols, tocopherols, retinol and major carotenoids in human plasma. Clinical Chemistry . 2003;49:2065–2066. PubMed
Bhatti M. Z., Ali A., Ahmad D., Saeed A., Malik S. A. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Research Notes . 2015;8(1):p. 279. doi: 10.1186/s13104-015-1228-3. PubMed DOI PMC
Andrews J. M. Determination of minimum inhibitory concentrations. The Journal of Antimicrobial Chemotherapy . 2001;48(suppl_1):5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI
Mahdhi A., Ghazghazi H., El Aloui M., Ben Salem R., Rigane G. Identification and quantification of phenolic and fatty acid profiles in Pinus halepensis mill. seeds by LC-ESI-MS and GC: effect of drying methods on chemical composition. Food Science & Nutrition . 2021;9(4):1907–1916. doi: 10.1002/fsn3.2151. PubMed DOI PMC
Valero-Galván J., Reyna-González M., Chico-Romero P. A., et al. Seed characteristics and nutritional composition of pine nut from five populations of P. cembroides from the states of Hidalgo and Chihuahua, Mexico. Molecules . 2019;24(11):p. 2057. doi: 10.3390/molecules24112057. PubMed DOI PMC
Bolling B. W., Chen O. C.-Y., McKay D. L., Blumberg J. B. Tree nut phytochemicals; composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutrition Research Reviews . 2011;24(2):244–275. doi: 10.1017/S095442241100014X. PubMed DOI
Kadri N., Khettal B., Aid Y., Kherfellah S., Sobhi W., Barragan-Montero V. Some physicochemical characteristics of pinus (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds from North Algeria, their lipid profiles and volatile contents. Food Chemistry . 2015;188:184–192. doi: 10.1016/j.foodchem.2015.04.138. PubMed DOI
Su X. Y., Wang Z. Y., Liu J. R. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds. Food Chemistry . 2009;117(4):681–686. doi: 10.1016/j.foodchem.2009.04.076. DOI
Dob T., Berramdane T., Chelgoum C. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. Comptes Rendus Chimie . 2005;8(11-12):1939–1945. doi: 10.1016/j.crci.2005.05.007. DOI
Znati M., Jabrane A., Hajlaoui H., et al. Chemical composition and in vitro evaluation of antimicrobial and anti-acetylcholinesterase properties of the flower oil of Ferula lutea. Natural Product Communications . 2012;7(7):947–950. PubMed
Zhao F., Wang P., Lucardi R. D., Su Z., Li S. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins (Basel) . 2020;12(1):p. 35. doi: 10.3390/toxins12010035. PubMed DOI PMC
Selvamangai G., Bhaskar A. GC-MS analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve. Asian Pacific Journal of Tropical Biomedicine . 2012;2(3):S1329–S1332. doi: 10.1016/S2221-1691(12)60410-9. DOI
Premathilaka R., Silva M. Bioactive compounds and antioxidant activity of Bunchosia armenica. World Journal of Pharmaceutical Sciences . 2016;5:1237–1247.
Makar S., Saha T., Singh S. K. Naphthalene, a versatile platform in medicinal chemistry: sky-high perspective. European Journal of Medicinal Chemistry . 2019;161:252–276. doi: 10.1016/j.ejmech.2018.10.018. PubMed DOI
Salehi B., Upadhyay S., Orhan E. I., et al. Therapeutic potential of α-and β-pinene: a miracle gift of nature. Biomolecules . 2019;9(11):p. 738. doi: 10.3390/biom9110738. PubMed DOI PMC
Sbayou H., Ababou B., Boukachabine K., Manresa A., Zerouali K., Amghar S. Chemical composition and antibacterial activity of Artemisia herba-alba and Mentha pulegium essential oils. Journal of Life Sciences . 2014;8:35–41.
Githinji C. G., Mbugua P. M., Kanui T. I., Kariuki D. K. Analgesic and anti-inflammatory activities of 9-hexacosene and stigmasterol isolated from Mondia whytei. Phytopharm . 2012;2:212–223.
Togashi N., Shiraishi A., Nishizaka M., et al. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules . 2007;12(2):139–148. doi: 10.3390/12020139. PubMed DOI PMC
Chatterjee S., Karmakar A., Azmi S. A., Barik A. Antibacterial activity of long-chain primary alcohols from Solena amplexicaulis leaves. Proceedings of the Zoological Society (Calcutta) . 2018;71(4):313–319. doi: 10.1007/s12595-017-0208-0. DOI
Sadeghi A. M., Fallah H. H., Tejalizadekhoob Y., et al. Determination of phenolic compounds in Pinus eldarica by HPLC. Journal of Medicinal Plants . 2014;13:1–12.
Sharma A., Goyal R., Sharma L. Potential biological efficacy of Pinus plant species against oxidative, inflammatory and microbial disorders. BMC Complementary and Alternative Medicine . 2016;16:1–11. doi: 10.1186/s12906-016-1011-6. PubMed DOI PMC
Bhardwaj K., Bhardwaj P., Reddy R., Pathera A. Formulation of Chir and Chilgoza nuts cookies. Indian patent filing No-202211026889 . Intellectual Property of India;