Studies of Phytochemicals, Antioxidant, and Antibacterial Activities of Pinus gerardiana and Pinus roxburghii Seed Extracts

. 2022 ; 2022 () : 5938610. [epub] 20220531

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35686234

Pine seeds are considered as nonwood forest products (NWFP) with regularly increasing market's demand. They can be eaten in various ways such as roasted or raw. In addition, they are included in various traditional dishes like in cookies, sauces, candies, cakes, breads, and other bakery items and, moreover, for medicinal purposes. GC-MS study is performed to analyze the phytochemical compounds present in the seed extracts of Pinus roxburghii (Chir) and Pinus gerardiana (Chilgoza). In total, 25 compounds were identified each in Chir and Chilgoza. In Chir seeds, abundantly present compounds were 2,4-di-tert-butylphenol (16.6%), followed by ç-Terpinene (9.9%) and cyclohexanol, 4-ethenyl-4-methyl-3-(1-methylethenyl)-, (1à,3à,4á) (9.8%), whereas in Chilgoza seeds, the maximum amount of compound was 1-hexyl-1-nitrocyclohexane (17.3%), followed by phenol, 2,6-bis(1,1-dimethylethyl) (15.4%), and heptadecane, 2-methyl (8.4%). The total phenolic content of Chir seed sample was 1536 ± 4.35 (mg GAE/100 g), whereas in the Chilgoza seed extract was 642.66 ± 2.08 (mg GAE/100 g). The application of RP-HPLC-DAD system revealed that Chir and Chilgoza seeds have maximum quantity of catechin (15.77 ± 0.16 μg/mg and 17.49 ± 0.32 μg/mg, respectively). Both Chir and Chilgoza seed extracts exhibited significant antioxidant (radical scavenging) potential, through H2O2 (618.94 ± 21.45 μg/mL and 575.16 ± 19.88 μg/mL) and DPPH (552.60 ± 13.03 μg/mL and 429.15 ± 3.80 μg/mL) assays, respectively. Additionally, a well-known antibacterial potential was also found in both plants' dichloromethane extracts, with 64 to 256 μg/mL of minimum inhibitory concentrations. As a whole, result shows the importance of both plants as a naturally occurring phytochemical source with significant antibacterial and antioxidant activity.

Zobrazit více v PubMed

Richardson D. M., Rundel P. W., Jackson S. T., et al. Human impacts in pine forests: past, present and future. Annual Review of Ecology, Evolution, and Systematics . 2007;38(1):275–297. doi: 10.1146/annurev.ecolsys.38.091206.095650. DOI

Kanchan B., Prerna B., Simran K. Medicinal value of secondary metabolites of pines grown in Himalayan region of India. Research Journal of Biotechnology . 2020;15:131–140.

Hoon L. Y., Choo C., Watawana M. I., Jayawardena N., Waisundara V. Y. Evaluation of the total antioxidant capacity and antioxidant compounds of different solvent extracts of Chilgoza pine nuts (Pinus gerardiana) Journal of Functional Foods . 2015;18:1014–1021. doi: 10.1016/j.jff.2014.07.009. DOI

Sharma A., Sharma L., Goyal R. A review on Himalayan pine species: ethnopharmacological, phytochemical and pharmacological aspects. Pharmacognosy Journal . 2018;10(4):611–619. doi: 10.5530/pj.2018.4.100. DOI

Awan H. U. M., Pettenella D. Pine nuts: a review of recent sanitary conditions and market development. Forests . 2017;8(10):p. 367. doi: 10.3390/f8100367. DOI

Kaushik D., Aggarwal A., Kaushik P., Mehra R., Rana A. C. Pinus roxburghii- incredible gift in the lap of Himalayas. International Journal of Pharmacognosy and Phytochemical Research . 2010;2:29–35.

Kumar R., Shamet G. S., Chaturvedi O. P., Avasthe R. K., Singh C. Ecology of Chilgoza pine (Pinus gerardianaWall.) in dry temperate forests of North West Himalaya. Ecology, Environment & Conservation . 2013;19:1063–1066.

Peltier R., Dauffy V. The Chilgoza of Kinnaur. Influence of the Pinus gerardiana edible seed market chain organization on forest regeneration in the Indian Himalayas. Fruits . 2009;64(2):99–110. doi: 10.1051/fruits/2009005. DOI

Lutz M., Álvarez K., Loewe V. Chemical composition of pine nut (Pinus pinea L.) grown in three geographical macrozones in Chile. CyTA Journal of Food . 2016;15:284–290. doi: 10.1080/19476337.2016.1250109. DOI

Salim H., Rimawi W. H., Shahin S. Phytochemical analysis and antibacterial activity of extracts from Palestinian Aleppo pine seeds, bark and cones. Asian Journal of Chemistry . 2019;31(1):143–147. doi: 10.14233/ajchem.2019.21633. DOI

Miraliakbari H., Shahidi F. Oxidative stability of tree nut oils. Journal of Agricultural and Food Chemistry . 2008;56(12):4751–4759. doi: 10.1021/jf8000982. PubMed DOI

Shah D., Gandhi M., Kumar A., Cruz-Martins N., Sharma R., Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Critical Reviews in Food Science and Nutrition . 2021;26:1–37. doi: 10.1080/10408398.2021.1968786. PubMed DOI

Sharma R., Martins N., Kuca K., et al. Chyawanprash: a traditional Indian bioactive health supplement. Biomolecules . 2019;9(5):p. 161. doi: 10.3390/biom9050161. PubMed DOI PMC

Anderson K. J., Teuber S. S., Gobeille A., Cremin P., Waterhouse A. L., Steinberg F. M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition . 2001;131(11):2837–2842. doi: 10.1093/jn/131.11.2837. PubMed DOI

Sharma N., Tiwari N., Vyas M., Khurana N., Muthuraman A., Utreja P. An overview of therapeutic effects of vanillic acid. Plant Archives . 2020;20:3053–3059.

Zulfqar F., Akhtar M. F., Saleem A., Akhtar B., Sharif A., Saleem U. Chemical characterization, antioxidant evaluation, and antidiabetic potential of Pinus gerardiana (pine nuts) extracts. Journal of Food Biochemistry . 2020;44(6, article e13199) doi: 10.1111/jfbc.13199. PubMed DOI

Morini G., Maga J. A. Volatile compounds in roasted and boiled Chinese chestnuts (Castanea molissima) LWT - Food Science and Technology . 1995;28(6):638–640. doi: 10.1016/0023-6438(95)90014-4. DOI

Senguttuvan J., Paulsamy S., Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine . 2014;4:S359–S367. doi: 10.12980/APJTB.4.2014C1030. PubMed DOI PMC

Al-Owaisi M., Al-Hadiwi N., Khan S. H. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine . 2014;4(12):964–970. doi: 10.12980/APJTB.4.201414B295. DOI

Lee B. L., New A. L., Ong C. N. Simultaneous determination of tocotrienols, tocopherols, retinol and major carotenoids in human plasma. Clinical Chemistry . 2003;49:2065–2066. PubMed

Bhatti M. Z., Ali A., Ahmad D., Saeed A., Malik S. A. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Research Notes . 2015;8(1):p. 279. doi: 10.1186/s13104-015-1228-3. PubMed DOI PMC

Andrews J. M. Determination of minimum inhibitory concentrations. The Journal of Antimicrobial Chemotherapy . 2001;48(suppl_1):5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI

Mahdhi A., Ghazghazi H., El Aloui M., Ben Salem R., Rigane G. Identification and quantification of phenolic and fatty acid profiles in Pinus halepensis mill. seeds by LC-ESI-MS and GC: effect of drying methods on chemical composition. Food Science & Nutrition . 2021;9(4):1907–1916. doi: 10.1002/fsn3.2151. PubMed DOI PMC

Valero-Galván J., Reyna-González M., Chico-Romero P. A., et al. Seed characteristics and nutritional composition of pine nut from five populations of P. cembroides from the states of Hidalgo and Chihuahua, Mexico. Molecules . 2019;24(11):p. 2057. doi: 10.3390/molecules24112057. PubMed DOI PMC

Bolling B. W., Chen O. C.-Y., McKay D. L., Blumberg J. B. Tree nut phytochemicals; composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutrition Research Reviews . 2011;24(2):244–275. doi: 10.1017/S095442241100014X. PubMed DOI

Kadri N., Khettal B., Aid Y., Kherfellah S., Sobhi W., Barragan-Montero V. Some physicochemical characteristics of pinus (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds from North Algeria, their lipid profiles and volatile contents. Food Chemistry . 2015;188:184–192. doi: 10.1016/j.foodchem.2015.04.138. PubMed DOI

Su X. Y., Wang Z. Y., Liu J. R. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds. Food Chemistry . 2009;117(4):681–686. doi: 10.1016/j.foodchem.2009.04.076. DOI

Dob T., Berramdane T., Chelgoum C. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. Comptes Rendus Chimie . 2005;8(11-12):1939–1945. doi: 10.1016/j.crci.2005.05.007. DOI

Znati M., Jabrane A., Hajlaoui H., et al. Chemical composition and in vitro evaluation of antimicrobial and anti-acetylcholinesterase properties of the flower oil of Ferula lutea. Natural Product Communications . 2012;7(7):947–950. PubMed

Zhao F., Wang P., Lucardi R. D., Su Z., Li S. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins (Basel) . 2020;12(1):p. 35. doi: 10.3390/toxins12010035. PubMed DOI PMC

Selvamangai G., Bhaskar A. GC-MS analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve. Asian Pacific Journal of Tropical Biomedicine . 2012;2(3):S1329–S1332. doi: 10.1016/S2221-1691(12)60410-9. DOI

Premathilaka R., Silva M. Bioactive compounds and antioxidant activity of Bunchosia armenica. World Journal of Pharmaceutical Sciences . 2016;5:1237–1247.

Makar S., Saha T., Singh S. K. Naphthalene, a versatile platform in medicinal chemistry: sky-high perspective. European Journal of Medicinal Chemistry . 2019;161:252–276. doi: 10.1016/j.ejmech.2018.10.018. PubMed DOI

Salehi B., Upadhyay S., Orhan E. I., et al. Therapeutic potential of α-and β-pinene: a miracle gift of nature. Biomolecules . 2019;9(11):p. 738. doi: 10.3390/biom9110738. PubMed DOI PMC

Sbayou H., Ababou B., Boukachabine K., Manresa A., Zerouali K., Amghar S. Chemical composition and antibacterial activity of Artemisia herba-alba and Mentha pulegium essential oils. Journal of Life Sciences . 2014;8:35–41.

Githinji C. G., Mbugua P. M., Kanui T. I., Kariuki D. K. Analgesic and anti-inflammatory activities of 9-hexacosene and stigmasterol isolated from Mondia whytei. Phytopharm . 2012;2:212–223.

Togashi N., Shiraishi A., Nishizaka M., et al. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules . 2007;12(2):139–148. doi: 10.3390/12020139. PubMed DOI PMC

Chatterjee S., Karmakar A., Azmi S. A., Barik A. Antibacterial activity of long-chain primary alcohols from Solena amplexicaulis leaves. Proceedings of the Zoological Society (Calcutta) . 2018;71(4):313–319. doi: 10.1007/s12595-017-0208-0. DOI

Sadeghi A. M., Fallah H. H., Tejalizadekhoob Y., et al. Determination of phenolic compounds in Pinus eldarica by HPLC. Journal of Medicinal Plants . 2014;13:1–12.

Sharma A., Goyal R., Sharma L. Potential biological efficacy of Pinus plant species against oxidative, inflammatory and microbial disorders. BMC Complementary and Alternative Medicine . 2016;16:1–11. doi: 10.1186/s12906-016-1011-6. PubMed DOI PMC

Bhardwaj K., Bhardwaj P., Reddy R., Pathera A. Formulation of Chir and Chilgoza nuts cookies. Indian patent filing No-202211026889 . Intellectual Property of India;

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...