Zwitterionic iodonium species afford halogen bond-based porous organic frameworks

. 2022 May 18 ; 13 (19) : 5650-5658. [epub] 20220412

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35694330

Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.

Zobrazit více v PubMed

Li H. Li L. Lin R.-B. Zhou W. Zhang Z. Xiang S. Chen B. EnergyChem. 2019;1:100006. doi: 10.1016/j.enchem.2019.100006. PubMed DOI PMC

Berenguer-Murcia Á. Marco-Lozar J. P. Cazorla-Amorós D. Chem. Rec. 2018;18:900–912. doi: 10.1002/tcr.201700067. PubMed DOI

Banerjee D. Simon C. M. Elsaidi S. K. Haranczyk M. Thallapally P. K. Chem. 2018;4:466–494.

Zou X. Zhu G. Adv. Mater. 2018;30:1700750. doi: 10.1002/adma.201700750. PubMed DOI

Guselnikova O. Kalachyova Y. Elashnikov R. Cieslar M. Kolska Z. Sajdl P. Postnikov P. Svorcik V. Lyutakov O. Microporous Mesoporous Mater. 2020;309:110577. doi: 10.1016/j.micromeso.2020.110577. DOI

Wang Y. Jin H. Ma Q. Mo K. Mao H. Feldhoff A. Cao X. Li Y. Pan F. Jiang Z. Angew. Chem., Int. Ed. 2020;59:4365–4369. doi: 10.1002/anie.201915807. PubMed DOI

Feng S. Shang Y. Wang Z. Kang Z. Wang R. Jiang J. Fan L. Fan W. Liu Z. Kong G. Feng Y. Hu S. Guo H. Sun D. Angew. Chem., Int. Ed. 2020;59:3840–3845. doi: 10.1002/anie.201914548. PubMed DOI

Zhu L. Shen D. Luo K. H. J. Hazard. Mater. 2020;389:122102. doi: 10.1016/j.jhazmat.2020.122102. PubMed DOI

Islamoglu T. Chen Z. Wasson M. C. Buru C. T. Kirlikovali K. O. Afrin U. Mian M. R. Farha O. K. Chem. Rev. 2020;120:8130–8160. doi: 10.1021/acs.chemrev.9b00828. PubMed DOI

Zhang N. Ishag A. Li Y. Wang H. Guo H. Mei P. Meng Q. Sun Y. J. Cleaner Prod. 2020;277:123360. doi: 10.1016/j.jclepro.2020.123360. DOI

Sudan S. Gładysiak A. Valizadeh B. Lee J.-H. Stylianou K. C. Inorg. Chem. 2020;59:9029–9036. doi: 10.1021/acs.inorgchem.0c00883. PubMed DOI

Anito D. A. Wang T.-X. Liu Z.-W. Ding X. Han B.-H. J. Hazard. Mater. 2020;400:123188. doi: 10.1016/j.jhazmat.2020.123188. PubMed DOI

Fan X. and Jiao Y., in Sustainable Nanoscale Engineering, Elsevier, 2020, pp. 115–137

Goetjen T. A. Liu J. Wu Y. Sui J. Zhang X. Hupp J. T. Farha O. K. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI

Jin F. Liu J. Chen Y. Zhang Z. Angew. Chem., Int. Ed. 2021;60:14222–14235. doi: 10.1002/anie.202011213. PubMed DOI

Al-Rowaili F. N. Jamal A. Ba Shammakh M. S. Rana A. ACS Sustainable Chem. Eng. 2018;6:15895–15914. doi: 10.1021/acssuschemeng.8b03843. DOI

Guselnikova O. Trelin A. Miliutina E. Elashnikov R. Sajdl P. Postnikov P. Kolska Z. Svorcik V. Lyutakov O. ACS Appl. Mater. Interfaces. 2020;12:28110–28119. doi: 10.1021/acsami.0c04029. PubMed DOI

Yang W. Greenaway A. Lin X. Matsuda R. Blake A. J. Wilson C. Lewis W. Hubberstey P. Kitagawa S. Champness N. R. Schröder M. J. Am. Chem. Soc. 2010;132:14457–14469. doi: 10.1021/ja1042935. PubMed DOI

Lü J. Perez-Krap C. Suyetin M. Alsmail N. H. Yan Y. Yang S. Lewis W. Bichoutskaia E. Tang C. C. Blake A. J. Cao R. Schröder M. J. Am. Chem. Soc. 2014;136:12828–12831. doi: 10.1021/ja506577g. PubMed DOI PMC

Zhang K.-D. Tian J. Hanifi D. Zhang Y. Sue A. C.-H. Zhou T.-Y. Zhang L. Zhao X. Liu Y. Li Z.-T. J. Am. Chem. Soc. 2013;135:17913–17918. doi: 10.1021/ja4086935. PubMed DOI

Luo J. Wang J.-W. Zhang J.-H. Lai S. Zhong D.-C. CrystEngComm. 2018;20:5884–5898. doi: 10.1039/C8CE00655E. DOI

Wang B. Lin R.-B. Zhang Z. Xiang S. Chen B. J. Am. Chem. Soc. 2020;142:14399–14416. doi: 10.1021/jacs.0c06473. PubMed DOI

Li P. Ryder M. R. Stoddart J. F. Acc. Mater. Res. 2020;1:77–87. doi: 10.1021/accountsmr.0c00019. DOI

Adachi T. Ward M. D. Acc. Chem. Res. 2016;49:2669–2679. doi: 10.1021/acs.accounts.6b00360. PubMed DOI

Pulido A. Chen L. Kaczorowski T. Holden D. Little M. A. Chong S. Y. Slater B. J. McMahon D. P. Bonillo B. Stackhouse C. J. Stephenson A. Kane C. M. Clowes R. Hasell T. Cooper A. I. Day G. M. Nature. 2017;543:657–664. doi: 10.1038/nature21419. PubMed DOI PMC

Hisaki I. Xin C. Takahashi K. Nakamura T. Angew. Chem., Int. Ed. 2019;58:11160–11170. doi: 10.1002/anie.201902147. PubMed DOI

Lü J. Cao R. Angew. Chem., Int. Ed. 2016;55:9474–9480. doi: 10.1002/anie.201602116. PubMed DOI

Little M. A. Cooper A. I. Adv. Funct. Mater. 2020;30:1909842. doi: 10.1002/adfm.201909842. DOI

Shankar S. Chovnik O. Shimon L. J. W. Lahav M. van der Boom M. E. Cryst. Growth Des. 2018;18:1967–1977. doi: 10.1021/acs.cgd.7b01163. DOI

Chongboriboon N. Samakun K. Inprasit T. Kielar F. Dungkaew W. Wong L. W.-Y. Sung H. H.-Y. Ninković D. B. Zarić S. D. Chainok K. CrystEngComm. 2020;22:24–34. doi: 10.1039/C9CE01140D. DOI

González L. Graus S. Tejedor R. M. López P. Elguero J. Serrano J. L. Uriel S. CrystEngComm. 2018;20:3167–3170. doi: 10.1039/C8CE00557E. DOI

Metrangolo P. Meyer F. Pilati T. Resnati G. Terraneo G. Angew. Chem., Int. Ed. 2008;47:6114–6127. doi: 10.1002/anie.200800128. PubMed DOI

Aakeröy C. B. and Spartz C. L., in Halogen Bonding I, Springer, 2014, pp. 155–182 PubMed

Lindeman S. v. Hecht J. Kochi J. K. J. Am. Chem. Soc. 2003;125:11597–11606. doi: 10.1021/ja030299w. PubMed DOI

Metrangolo P. Meyer F. Pilati T. Proserpio D. M. Resnati G. Chem.–Eur. J. 2007;13:5765–5772. doi: 10.1002/chem.200601653. PubMed DOI

Thaimattam R. Sharma C. V. K. Clearfield A. Desiraju G. R. Cryst. Growth Des. 2001;1:103–106. doi: 10.1021/cg010286z. DOI

Gunawardana C. A. Đaković M. Aakeröy C. B. Chem. Commun. 2018;54:607–610. doi: 10.1039/C7CC08839F. PubMed DOI

Oburn S. M. Santana C. L. Elacqua E. Groeneman R. H. CrystEngComm. 2020;22:4349–4352. doi: 10.1039/D0CE00627K. DOI

Gong G. Lv S. Han J. Xie F. Li Q. Xia N. Zeng W. Chen Y. Wang L. Wang J. Chen S. Angew. Chem. 2021;133:14957–14961. doi: 10.1002/ange.202102448. PubMed DOI

Walsh R. B. Padgett C. W. Metrangolo P. Resnati G. Hanks T. W. Pennington W. T. Cryst. Growth Des. 2001;1:165–175. doi: 10.1021/cg005540m. DOI

Marras G. Metrangolo P. Meyer F. Pilati T. Resnati G. Vij A. New J. Chem. 2006;30:1397. doi: 10.1039/B605958A. DOI

Martí-Rujas J. Colombo L. Lü J. Dey A. Terraneo G. Metrangolo P. Pilati T. Resnati G. Chem. Commun. 2012;48:8207. doi: 10.1039/C2CC33682K. PubMed DOI

Raatikainen K. Rissanen K. Chem. Sci. 2012;3:1235. doi: 10.1039/C2SC00997H. DOI

Yusubov M. S. Maskaev A. V. Zhdankin V. V. Arkivoc. 2011;2011:370–409.

Merritt E. Olofsson B. Angew. Chem., Int. Ed. 2009;48:9052–9070. doi: 10.1002/anie.200904689. PubMed DOI

Catalano L., Cavallo G., Metrangolo P., Resnati G. and Terraneo G., in Topics in Current Chemistry, Springer Verlag, 2016, vol. 373, pp. 289–309 PubMed

Bailly F. Barthen P. Frohn H. J. Köckerling M. Z. Anorg. Allg. Chem. 2000;626:2419–2427. doi: 10.1002/1521-3749(200011)626:11<2419::AID-ZAAC2419>3.0.CO;2-K. DOI

Zhukhlistova N. E. Tishchenko G. N. Tolstaya T. P. Asulyan L. D. Crystallogr. Rep. 2001;46:631–635. doi: 10.1134/1.1387129. DOI

Postnikov P. S. Guselnikova O. A. Yusubov M. S. Yoshimura A. Nemykin V. N. Zhdankin V. V. J. Org. Chem. 2015;80:5783–5788. doi: 10.1021/acs.joc.5b00741. PubMed DOI

Yusubov M. S. Svitich D. Yu. Yoshimura A. Kastern B. J. Nemykin V. N. Zhdankin V. V. Eur. J. Org. Chem. 2015;2015:4831–4834. doi: 10.1002/ejoc.201500535. DOI

Cavallo G. Murray J. S. Politzer P. Pilati T. Ursini M. Resnati G. IUCrJ. 2017;4:411–419. doi: 10.1107/S2052252517004262. PubMed DOI PMC

Soldatova N. S. Suslonov V. V. Kissler T. Yu. Ivanov D. M. Novikov A. S. Yusubov M. S. Postnikov P. S. Kukushkin V. Yu. Crystals. 2020;10:230. doi: 10.3390/cryst10030230. DOI

Soldatova N. S. Postnikov P. S. Suslonov V. V. Kissler T. Yu. Ivanov D. M. Yusubov M. S. Galmés B. Frontera A. Kukushkin V. Yu. Org. Chem. Front. 2020;7:2230–2242. doi: 10.1039/D0QO00678E. DOI

Heinen F. Engelage E. Dreger A. Weiss R. Huber S. M. Angew. Chem., Int. Ed. 2018;57:3830–3833. doi: 10.1002/anie.201713012. PubMed DOI

Heinen F. Engelage E. Cramer C. J. Huber S. M. J. Am. Chem. Soc. 2020;142:8633–8640. doi: 10.1021/jacs.9b13309. PubMed DOI PMC

Heinen F. Reinhard D. L. Engelage E. Huber S. M. Angew. Chem., Int. Ed. 2021;60(10):5069–5073. doi: 10.1002/anie.202013172. PubMed DOI PMC

Sutar R. L. Huber S. M. ACS Catal. 2019;9:9622–9639. doi: 10.1021/acscatal.9b02894. DOI

Hubbard C. R. Himes V. L. Mighell A. D. Page S. W. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980;36:2819–2821. doi: 10.1107/S0567740880010163. DOI

DesMarteau D. D. Pennington W. T. Montanari V. Thomas B. H. J. Fluorine Chem. 2003;122:57–61. doi: 10.1016/S0022-1139(03)00080-0. DOI

Justik M. W. Protasiewicz J. D. Updegraff J. B. Tetrahedron Lett. 2009;50:6072–6075. doi: 10.1016/j.tetlet.2009.08.067. DOI

Robidas R. Guérin V. Provençal L. Echeverria M. Legault C. Y. Org. Lett. 2017;19:6420–6423. doi: 10.1021/acs.orglett.7b03307. PubMed DOI

Caramenti P. Nicolai S. Waser J. Chem.–Eur. J. 2017;23:14702–14706. doi: 10.1002/chem.201703723. PubMed DOI

Yoshimura A. Shea M. T. Guselnikova O. Postnikov P. S. Rohde G. T. Saito A. Yusubov M. S. Nemykin V. N. Zhdankin V. V. Chem. Commun. 2018;54:10363–10366. doi: 10.1039/C8CC06211K. PubMed DOI

Yusubov M. S. Yusubova R. Y. Nemykin V. N. Zhdankin V. V. J. Org. Chem. 2013;78:3767–3773. doi: 10.1021/jo400212u. PubMed DOI

Yusubov M. S. Soldatova N. S. Postnikov P. S. Valiev R. R. Svitich D. Y. Yusubova R. Y. Yoshimura A. Wirth T. Zhdankin V. V. Eur. J. Org. Chem. 2018;2018:640–647. doi: 10.1002/ejoc.201701595. DOI

Soldatova N. Postnikov P. Kukurina O. V Zhdankin V. Yoshimura A. Wirth T. Yusubov M. S. Beilstein J. Org. Chem. 2018;14:849–855. doi: 10.3762/bjoc.14.70. PubMed DOI PMC

Antonkin N. S. Vlasenko Y. A. Yoshimura A. Smirnov V. I. Borodina T. N. Zhdankin V. V. Yusubov M. S. Shafir A. Postnikov P. S. J. Org. Chem. 2021;86:7163–7178. doi: 10.1021/acs.joc.1c00483. PubMed DOI

Caspers L. D. Spils J. Damrath M. Lork E. Nachtsheim B. J. J. Org. Chem. 2020;85:9161–9178. doi: 10.1021/acs.joc.0c01125. PubMed DOI

Bondi A. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI

Spek A. L., PLATON, A Multipurpose Crystallographic Tool, 2005, Utrecht University, Utrecht, The Netherlands

Jagiello J. Kenvin J. Celzard A. Fierro V. Carbon. 2019;144:206–215. doi: 10.1016/j.carbon.2018.12.028. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...