Zwitterionic iodonium species afford halogen bond-based porous organic frameworks
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35694330
PubMed Central
PMC9116302
DOI
10.1039/d2sc00892k
PII: d2sc00892k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.
Department of Chemistry and Biochemistry University of Minnesota Duluth MN 55812 USA
Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
School of Chemistry Cardiff University Park Place Cardiff UK
Zobrazit více v PubMed
Li H. Li L. Lin R.-B. Zhou W. Zhang Z. Xiang S. Chen B. EnergyChem. 2019;1:100006. doi: 10.1016/j.enchem.2019.100006. PubMed DOI PMC
Berenguer-Murcia Á. Marco-Lozar J. P. Cazorla-Amorós D. Chem. Rec. 2018;18:900–912. doi: 10.1002/tcr.201700067. PubMed DOI
Banerjee D. Simon C. M. Elsaidi S. K. Haranczyk M. Thallapally P. K. Chem. 2018;4:466–494.
Zou X. Zhu G. Adv. Mater. 2018;30:1700750. doi: 10.1002/adma.201700750. PubMed DOI
Guselnikova O. Kalachyova Y. Elashnikov R. Cieslar M. Kolska Z. Sajdl P. Postnikov P. Svorcik V. Lyutakov O. Microporous Mesoporous Mater. 2020;309:110577. doi: 10.1016/j.micromeso.2020.110577. DOI
Wang Y. Jin H. Ma Q. Mo K. Mao H. Feldhoff A. Cao X. Li Y. Pan F. Jiang Z. Angew. Chem., Int. Ed. 2020;59:4365–4369. doi: 10.1002/anie.201915807. PubMed DOI
Feng S. Shang Y. Wang Z. Kang Z. Wang R. Jiang J. Fan L. Fan W. Liu Z. Kong G. Feng Y. Hu S. Guo H. Sun D. Angew. Chem., Int. Ed. 2020;59:3840–3845. doi: 10.1002/anie.201914548. PubMed DOI
Zhu L. Shen D. Luo K. H. J. Hazard. Mater. 2020;389:122102. doi: 10.1016/j.jhazmat.2020.122102. PubMed DOI
Islamoglu T. Chen Z. Wasson M. C. Buru C. T. Kirlikovali K. O. Afrin U. Mian M. R. Farha O. K. Chem. Rev. 2020;120:8130–8160. doi: 10.1021/acs.chemrev.9b00828. PubMed DOI
Zhang N. Ishag A. Li Y. Wang H. Guo H. Mei P. Meng Q. Sun Y. J. Cleaner Prod. 2020;277:123360. doi: 10.1016/j.jclepro.2020.123360. DOI
Sudan S. Gładysiak A. Valizadeh B. Lee J.-H. Stylianou K. C. Inorg. Chem. 2020;59:9029–9036. doi: 10.1021/acs.inorgchem.0c00883. PubMed DOI
Anito D. A. Wang T.-X. Liu Z.-W. Ding X. Han B.-H. J. Hazard. Mater. 2020;400:123188. doi: 10.1016/j.jhazmat.2020.123188. PubMed DOI
Fan X. and Jiao Y., in Sustainable Nanoscale Engineering, Elsevier, 2020, pp. 115–137
Goetjen T. A. Liu J. Wu Y. Sui J. Zhang X. Hupp J. T. Farha O. K. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI
Jin F. Liu J. Chen Y. Zhang Z. Angew. Chem., Int. Ed. 2021;60:14222–14235. doi: 10.1002/anie.202011213. PubMed DOI
Al-Rowaili F. N. Jamal A. Ba Shammakh M. S. Rana A. ACS Sustainable Chem. Eng. 2018;6:15895–15914. doi: 10.1021/acssuschemeng.8b03843. DOI
Guselnikova O. Trelin A. Miliutina E. Elashnikov R. Sajdl P. Postnikov P. Kolska Z. Svorcik V. Lyutakov O. ACS Appl. Mater. Interfaces. 2020;12:28110–28119. doi: 10.1021/acsami.0c04029. PubMed DOI
Yang W. Greenaway A. Lin X. Matsuda R. Blake A. J. Wilson C. Lewis W. Hubberstey P. Kitagawa S. Champness N. R. Schröder M. J. Am. Chem. Soc. 2010;132:14457–14469. doi: 10.1021/ja1042935. PubMed DOI
Lü J. Perez-Krap C. Suyetin M. Alsmail N. H. Yan Y. Yang S. Lewis W. Bichoutskaia E. Tang C. C. Blake A. J. Cao R. Schröder M. J. Am. Chem. Soc. 2014;136:12828–12831. doi: 10.1021/ja506577g. PubMed DOI PMC
Zhang K.-D. Tian J. Hanifi D. Zhang Y. Sue A. C.-H. Zhou T.-Y. Zhang L. Zhao X. Liu Y. Li Z.-T. J. Am. Chem. Soc. 2013;135:17913–17918. doi: 10.1021/ja4086935. PubMed DOI
Luo J. Wang J.-W. Zhang J.-H. Lai S. Zhong D.-C. CrystEngComm. 2018;20:5884–5898. doi: 10.1039/C8CE00655E. DOI
Wang B. Lin R.-B. Zhang Z. Xiang S. Chen B. J. Am. Chem. Soc. 2020;142:14399–14416. doi: 10.1021/jacs.0c06473. PubMed DOI
Li P. Ryder M. R. Stoddart J. F. Acc. Mater. Res. 2020;1:77–87. doi: 10.1021/accountsmr.0c00019. DOI
Adachi T. Ward M. D. Acc. Chem. Res. 2016;49:2669–2679. doi: 10.1021/acs.accounts.6b00360. PubMed DOI
Pulido A. Chen L. Kaczorowski T. Holden D. Little M. A. Chong S. Y. Slater B. J. McMahon D. P. Bonillo B. Stackhouse C. J. Stephenson A. Kane C. M. Clowes R. Hasell T. Cooper A. I. Day G. M. Nature. 2017;543:657–664. doi: 10.1038/nature21419. PubMed DOI PMC
Hisaki I. Xin C. Takahashi K. Nakamura T. Angew. Chem., Int. Ed. 2019;58:11160–11170. doi: 10.1002/anie.201902147. PubMed DOI
Lü J. Cao R. Angew. Chem., Int. Ed. 2016;55:9474–9480. doi: 10.1002/anie.201602116. PubMed DOI
Little M. A. Cooper A. I. Adv. Funct. Mater. 2020;30:1909842. doi: 10.1002/adfm.201909842. DOI
Shankar S. Chovnik O. Shimon L. J. W. Lahav M. van der Boom M. E. Cryst. Growth Des. 2018;18:1967–1977. doi: 10.1021/acs.cgd.7b01163. DOI
Chongboriboon N. Samakun K. Inprasit T. Kielar F. Dungkaew W. Wong L. W.-Y. Sung H. H.-Y. Ninković D. B. Zarić S. D. Chainok K. CrystEngComm. 2020;22:24–34. doi: 10.1039/C9CE01140D. DOI
González L. Graus S. Tejedor R. M. López P. Elguero J. Serrano J. L. Uriel S. CrystEngComm. 2018;20:3167–3170. doi: 10.1039/C8CE00557E. DOI
Metrangolo P. Meyer F. Pilati T. Resnati G. Terraneo G. Angew. Chem., Int. Ed. 2008;47:6114–6127. doi: 10.1002/anie.200800128. PubMed DOI
Aakeröy C. B. and Spartz C. L., in Halogen Bonding I, Springer, 2014, pp. 155–182 PubMed
Lindeman S. v. Hecht J. Kochi J. K. J. Am. Chem. Soc. 2003;125:11597–11606. doi: 10.1021/ja030299w. PubMed DOI
Metrangolo P. Meyer F. Pilati T. Proserpio D. M. Resnati G. Chem.–Eur. J. 2007;13:5765–5772. doi: 10.1002/chem.200601653. PubMed DOI
Thaimattam R. Sharma C. V. K. Clearfield A. Desiraju G. R. Cryst. Growth Des. 2001;1:103–106. doi: 10.1021/cg010286z. DOI
Gunawardana C. A. Đaković M. Aakeröy C. B. Chem. Commun. 2018;54:607–610. doi: 10.1039/C7CC08839F. PubMed DOI
Oburn S. M. Santana C. L. Elacqua E. Groeneman R. H. CrystEngComm. 2020;22:4349–4352. doi: 10.1039/D0CE00627K. DOI
Gong G. Lv S. Han J. Xie F. Li Q. Xia N. Zeng W. Chen Y. Wang L. Wang J. Chen S. Angew. Chem. 2021;133:14957–14961. doi: 10.1002/ange.202102448. PubMed DOI
Walsh R. B. Padgett C. W. Metrangolo P. Resnati G. Hanks T. W. Pennington W. T. Cryst. Growth Des. 2001;1:165–175. doi: 10.1021/cg005540m. DOI
Marras G. Metrangolo P. Meyer F. Pilati T. Resnati G. Vij A. New J. Chem. 2006;30:1397. doi: 10.1039/B605958A. DOI
Martí-Rujas J. Colombo L. Lü J. Dey A. Terraneo G. Metrangolo P. Pilati T. Resnati G. Chem. Commun. 2012;48:8207. doi: 10.1039/C2CC33682K. PubMed DOI
Raatikainen K. Rissanen K. Chem. Sci. 2012;3:1235. doi: 10.1039/C2SC00997H. DOI
Yusubov M. S. Maskaev A. V. Zhdankin V. V. Arkivoc. 2011;2011:370–409.
Merritt E. Olofsson B. Angew. Chem., Int. Ed. 2009;48:9052–9070. doi: 10.1002/anie.200904689. PubMed DOI
Catalano L., Cavallo G., Metrangolo P., Resnati G. and Terraneo G., in Topics in Current Chemistry, Springer Verlag, 2016, vol. 373, pp. 289–309 PubMed
Bailly F. Barthen P. Frohn H. J. Köckerling M. Z. Anorg. Allg. Chem. 2000;626:2419–2427. doi: 10.1002/1521-3749(200011)626:11<2419::AID-ZAAC2419>3.0.CO;2-K. DOI
Zhukhlistova N. E. Tishchenko G. N. Tolstaya T. P. Asulyan L. D. Crystallogr. Rep. 2001;46:631–635. doi: 10.1134/1.1387129. DOI
Postnikov P. S. Guselnikova O. A. Yusubov M. S. Yoshimura A. Nemykin V. N. Zhdankin V. V. J. Org. Chem. 2015;80:5783–5788. doi: 10.1021/acs.joc.5b00741. PubMed DOI
Yusubov M. S. Svitich D. Yu. Yoshimura A. Kastern B. J. Nemykin V. N. Zhdankin V. V. Eur. J. Org. Chem. 2015;2015:4831–4834. doi: 10.1002/ejoc.201500535. DOI
Cavallo G. Murray J. S. Politzer P. Pilati T. Ursini M. Resnati G. IUCrJ. 2017;4:411–419. doi: 10.1107/S2052252517004262. PubMed DOI PMC
Soldatova N. S. Suslonov V. V. Kissler T. Yu. Ivanov D. M. Novikov A. S. Yusubov M. S. Postnikov P. S. Kukushkin V. Yu. Crystals. 2020;10:230. doi: 10.3390/cryst10030230. DOI
Soldatova N. S. Postnikov P. S. Suslonov V. V. Kissler T. Yu. Ivanov D. M. Yusubov M. S. Galmés B. Frontera A. Kukushkin V. Yu. Org. Chem. Front. 2020;7:2230–2242. doi: 10.1039/D0QO00678E. DOI
Heinen F. Engelage E. Dreger A. Weiss R. Huber S. M. Angew. Chem., Int. Ed. 2018;57:3830–3833. doi: 10.1002/anie.201713012. PubMed DOI
Heinen F. Engelage E. Cramer C. J. Huber S. M. J. Am. Chem. Soc. 2020;142:8633–8640. doi: 10.1021/jacs.9b13309. PubMed DOI PMC
Heinen F. Reinhard D. L. Engelage E. Huber S. M. Angew. Chem., Int. Ed. 2021;60(10):5069–5073. doi: 10.1002/anie.202013172. PubMed DOI PMC
Sutar R. L. Huber S. M. ACS Catal. 2019;9:9622–9639. doi: 10.1021/acscatal.9b02894. DOI
Hubbard C. R. Himes V. L. Mighell A. D. Page S. W. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980;36:2819–2821. doi: 10.1107/S0567740880010163. DOI
DesMarteau D. D. Pennington W. T. Montanari V. Thomas B. H. J. Fluorine Chem. 2003;122:57–61. doi: 10.1016/S0022-1139(03)00080-0. DOI
Justik M. W. Protasiewicz J. D. Updegraff J. B. Tetrahedron Lett. 2009;50:6072–6075. doi: 10.1016/j.tetlet.2009.08.067. DOI
Robidas R. Guérin V. Provençal L. Echeverria M. Legault C. Y. Org. Lett. 2017;19:6420–6423. doi: 10.1021/acs.orglett.7b03307. PubMed DOI
Caramenti P. Nicolai S. Waser J. Chem.–Eur. J. 2017;23:14702–14706. doi: 10.1002/chem.201703723. PubMed DOI
Yoshimura A. Shea M. T. Guselnikova O. Postnikov P. S. Rohde G. T. Saito A. Yusubov M. S. Nemykin V. N. Zhdankin V. V. Chem. Commun. 2018;54:10363–10366. doi: 10.1039/C8CC06211K. PubMed DOI
Yusubov M. S. Yusubova R. Y. Nemykin V. N. Zhdankin V. V. J. Org. Chem. 2013;78:3767–3773. doi: 10.1021/jo400212u. PubMed DOI
Yusubov M. S. Soldatova N. S. Postnikov P. S. Valiev R. R. Svitich D. Y. Yusubova R. Y. Yoshimura A. Wirth T. Zhdankin V. V. Eur. J. Org. Chem. 2018;2018:640–647. doi: 10.1002/ejoc.201701595. DOI
Soldatova N. Postnikov P. Kukurina O. V Zhdankin V. Yoshimura A. Wirth T. Yusubov M. S. Beilstein J. Org. Chem. 2018;14:849–855. doi: 10.3762/bjoc.14.70. PubMed DOI PMC
Antonkin N. S. Vlasenko Y. A. Yoshimura A. Smirnov V. I. Borodina T. N. Zhdankin V. V. Yusubov M. S. Shafir A. Postnikov P. S. J. Org. Chem. 2021;86:7163–7178. doi: 10.1021/acs.joc.1c00483. PubMed DOI
Caspers L. D. Spils J. Damrath M. Lork E. Nachtsheim B. J. J. Org. Chem. 2020;85:9161–9178. doi: 10.1021/acs.joc.0c01125. PubMed DOI
Bondi A. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI
Spek A. L., PLATON, A Multipurpose Crystallographic Tool, 2005, Utrecht University, Utrecht, The Netherlands
Jagiello J. Kenvin J. Celzard A. Fierro V. Carbon. 2019;144:206–215. doi: 10.1016/j.carbon.2018.12.028. DOI