Key-to-lock halogen bond-based tetragonal pyramidal association of iodonium cations with the lacune rims of beta-octamolybdate

. 2024 Aug 07 ; 15 (31) : 12459-12472. [epub] 20240624

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39118643

The structure-directing "key-to-lock" interaction of double σ-(IIII)-hole donating iodonium cations with the O-flanked pseudo-lacune rims of [β-Mo8O26]4- gives halogen-bonded iodonium-beta-octamolybate supramolecular associates. In the occurrence of their tetragonal pyramidal motifs, deep and broad σ-(IIII)-holes of a cation recognize the molybdate backbone, which provides an electronic pool localized around the two lacunae. The halogen-bonded I⋯O linkages in the structures were thoroughly studied computationally and classified as two-center, three-center bifurcated, and unconventional "orthogonal" I⋯O halogen bonds. In the latter, the O-atom approaches orthogonally the C-IIII-C plane of an iodonium cation and this geometry diverge from the IUPAC criteria for the identification of the halogen bond.

Zobrazit více v PubMed

Persch E. Dumele O. Diederich F. Angew. Chem., Int. Ed. 2015;54:3290–3327. doi: 10.1002/anie.201408487. PubMed DOI

Wu X. Gilchrist A. M. Gale P. A. Chem. 2020;6:1296–1309.

Escobar L. Ballester P. Chem. Rev. 2021;121:2445–2514. doi: 10.1021/acs.chemrev.0c00522. PubMed DOI

Pancholi J. Beer P. D. Coord. Chem. Rev. 2020;416:213281. doi: 10.1016/j.ccr.2020.213281. DOI

Biot N. Bonifazi D. Coord. Chem. Rev. 2020;413:213243. doi: 10.1016/j.ccr.2020.213243. DOI

Zhang X. An Z. An J. Tian X. Coord. Chem. Rev. 2024;502:215601. doi: 10.1016/j.ccr.2023.215601. DOI

Fan Y. He J. Guo S. Jiang H. ChemPlusChem. 2024:e202300536. doi: 10.1002/cplu.202300536. PubMed DOI

Patnaik B. B. Baliarsingh S. Sarkar A. Hameed A. S. S. Lee Y. S. Jo Y. H. Han Y. S. Mohanty J. Rev. Aquac. 2024;16:190–233. doi: 10.1111/raq.12829. DOI

Perspectives in Supramolecular Chemistry, ed. J. Behr, Wiley, 1994, vol. 1

Alkorta I. Elguero J. Frontera A. Crystals. 2020;10:180. doi: 10.3390/cryst10030180. DOI

Scheiner S. J. Chem. Phys. 2020;153:140901. doi: 10.1063/5.0026168. PubMed DOI

Molina P. Zapata F. Caballero A. Chem. Rev. 2017;117:9907–9972. doi: 10.1021/acs.chemrev.6b00814. PubMed DOI

Mahadevi A. S. Sastry G. N. Chem. Rev. 2016;116:2775–2825. doi: 10.1021/cr500344e. PubMed DOI

Brammer L. Peuronen A. Roseveare T. M. Acta Crystallogr., Sect. C: Struct. Chem. 2023;79:204–216. doi: 10.1107/S2053229623004072. PubMed DOI PMC

Cornaton Y. Djukic J.-P. Acc. Chem. Res. 2021;54:3828–3840. doi: 10.1021/acs.accounts.1c00393. PubMed DOI

Resnati G. Metrangolo P. Coord. Chem. Rev. 2020;420:213409. doi: 10.1016/j.ccr.2020.213409. DOI

Savastano M. Dalton Trans. 2024;53:1373–1392. doi: 10.1039/D3DT03686C. PubMed DOI

Schneider H. J. Phys. Org. Chem. 2022;35:e4340. doi: 10.1002/poc.4340. DOI

Nguyen N. N. Berger R. Wagner M. Thiel J. Butt H.-J. Graf R. J. Phys. Chem. C. 2021;125:15751–15757. doi: 10.1021/acs.jpcc.1c05531. DOI

Veríssimo M. I. S. Evtuguin D. V. Gomes M. T. S. R. Front. Chem. 2022;10:840657. doi: 10.3389/fchem.2022.840657. PubMed DOI PMC

Gumerova N. I. Rompel A. Nat. Rev. Chem. 2018;2:0112. doi: 10.1038/s41570-018-0112. DOI

D'Cruz B. Amin M. O. Al-Hetlani E. Ind. Eng. Chem. Res. 2021;60:10960–10977. doi: 10.1021/acs.iecr.1c02007. DOI

Gumerova N. I. Rompel A. Chem. Soc. Rev. 2020;49:7568–7601. doi: 10.1039/D0CS00392A. PubMed DOI

Gao Y. Choudhari M. Such G. K. Ritchie C. Chem. Sci. 2022;13:2510–2527. doi: 10.1039/D1SC05879G. PubMed DOI PMC

Yu B. Zhao X. Ni J. Yang F. ChemPhysMater. 2023;2:20–29. doi: 10.1016/j.chphma.2022.03.006. DOI

Zhang Y. Liu J. Li S.-L. Su Z.-M. Lan Y.-Q. EnergyChem. 2019;1:100021. doi: 10.1016/j.enchem.2019.100021. DOI

Horn M. R. Singh A. Alomari S. Goberna-Ferrón S. Benages-Vilau R. Chodankar N. Motta N. (Ken) Ostrikov K. MacLeod J. Sonar P. Gomez-Romero P. Dubal D. Energy Environ. Sci. 2021;14:1652–1700. doi: 10.1039/D0EE03407J. DOI

Gusmão F. M. B. Mladenović D. Radinović K. Santos D. M. F. Šljukić B. Energies. 2022;15:9021. doi: 10.3390/en15239021. DOI

Hu H. Lian L. Ji X. Zhao W.-L. Li H. Chen W. Miras H. N. Song Y.-F. Coord. Chem. Rev. 2024;503:215640. doi: 10.1016/j.ccr.2023.215640. DOI

Ma T. Yan R. Wu X. Wang M. Yin B. Li S. Cheng C. Thomas A. Adv. Mater. 2024;36:2310283. doi: 10.1002/adma.202310283. PubMed DOI

Li L. Yu Y.-T. Zhang N.-N. Li S.-H. Zeng J.-G. Hua Y. Zhang H. Coord. Chem. Rev. 2024;500:215526. doi: 10.1016/j.ccr.2023.215526. DOI

Wang C. Wang B. Yang H. Wan Y. Fang H. Bao W. Wang W. Wang N. Lu Y. Chem. Eng. J. 2024;483:149143. doi: 10.1016/j.cej.2024.149143. DOI

Li S. Zhou Y. Ma N. Zhang J. Zheng Z. Streb C. Chen X. Angew. Chem., Int. Ed. 2020;59:8537–8540. doi: 10.1002/anie.202003550. PubMed DOI PMC

Zhu M. Han S. Liu J. Tan M. Wang W. Suzuki K. Yin P. Xia D. Fang X. Angew. Chem., Int. Ed. 2022;61:e202213910. doi: 10.1002/anie.202213910. PubMed DOI

Ribó E. G. Bell N. L. Long D. Cronin L. Angew. Chem., Int. Ed. 2022;61:e202201672. doi: 10.1002/anie.202201672. PubMed DOI PMC

Ng M. T.-K. Bell N. L. Long D.-L. Cronin L. J. Am. Chem. Soc. 2021;143:20059–20063. doi: 10.1021/jacs.1c10198. PubMed DOI

She S. Xuan W. Bell N. L. Pow R. Ribo E. G. Sinclair Z. Long D.-L. Cronin L. Chem. Sci. 2021;12:2427–2432. doi: 10.1039/D0SC06098D. PubMed DOI PMC

Li D. Zhang X. Lv J. Cai P. Sun Y. Sun C. Zheng S. Angew. Chem., Int. Ed. 2023;62:e202312706. doi: 10.1002/anie.202312706. PubMed DOI

Jimbo A. Li C. Yonesato K. Ushiyama T. Yamaguchi K. Suzuki K. Chem. Sci. 2023;14:10280–10284. doi: 10.1039/D3SC03713D. PubMed DOI PMC

Komlyagina V. I. Romashev N. F. Kokovkin V. V. Gushchin A. L. Benassi E. Sokolov M. N. Abramov P. A. Molecules. 2022;27:6961. doi: 10.3390/molecules27206961. PubMed DOI PMC

Abramov P. A. Komarov V. Y. Pischur D. A. Sulyaeva V. S. Benassi E. Sokolov M. N. CrystEngComm. 2021;23:8527–8537. doi: 10.1039/D1CE01152A. DOI

Abramov P. A. J. Struct. Chem. 2022;63:2068–2082. doi: 10.1134/S0022476622120186. DOI

Volchek V. V. Kompankov N. B. Sokolov M. N. Abramov P. A. Molecules. 2022;27:8368. doi: 10.3390/molecules27238368. PubMed DOI PMC

Chupina A. V. Shayapov V. Novikov A. S. Volchek V. V. Benassi E. Abramov P. A. Sokolov M. N. Dalton Trans. 2020;49:1522–1530. doi: 10.1039/C9DT04043A. PubMed DOI

Wu Q. Wang J. Zhang L. Hong A. Ren J. Angew. Chem. 2005;117:4116–4120. doi: 10.1002/ange.200500108. DOI

Tian A. Ning Y. Yang Y. Hou X. Ying J. Liu G. Zhang J. Wang X. Dalton Trans. 2015;44:16486–16493. doi: 10.1039/C5DT02420J. PubMed DOI

Wang X.-Y. Chen W.-C. Shao K.-Z. Wang X.-L. Zhao L. Su Z.-M. Chem. Commun. 2021;57:1042–1045. doi: 10.1039/D0CC07120J. PubMed DOI

Harmalkar N. N. Srinivasan B. R. Dhuri S. N. Z. Naturforsch., B: J. Chem. Sci. 2022;77:245–252. doi: 10.1515/znb-2022-0005. DOI

Lan Y.-Q. Ma J.-F. Yang J. Wang X.-H. Su Z.-M. Inorg. Chem. 2007;46:8283–8290. doi: 10.1021/ic700913m. PubMed DOI

Bolle P. Serier-Brault H. Boulmier A. Puget M. Menet C. Oms O. Marrot J. Mialane P. Dolbecq A. Dessapt R. Cryst. Growth Des. 2018;18:7426–7434. doi: 10.1021/acs.cgd.8b01114. DOI

Ying J. Sun C. Jin L. Tian A. Wang X. CrystEngComm. 2021;23:5385–5396. doi: 10.1039/D1CE00775K. DOI

Yue S. Song W. Pan S. Liu D. Li C. Zang J. Nan J. Gui J. Energy Fuels. 2023;37:8988–8998. doi: 10.1021/acs.energyfuels.3c01144. DOI

Lu Q. Ying J. Tian A. Wang X. Inorg. Chem. 2023;62:16617–16626. doi: 10.1021/acs.inorgchem.3c02743. PubMed DOI

Benz S. Poblador-Bahamonde A. I. Low-Ders N. Matile S. Angew. Chem. 2018;130:5506–5510. doi: 10.1002/ange.201801452. PubMed DOI PMC

Zhao Y. Cotelle Y. Sakai N. Matile S. J. Am. Chem. Soc. 2016;138:4270–4277. doi: 10.1021/jacs.5b13006. PubMed DOI

Docker A. Martínez Martínez A. J. Kuhn H. Beer P. D. Chem. Commun. 2022;58:3318–3321. doi: 10.1039/D2CC00320A. PubMed DOI

Desiraju G. R. Ho P. S. Kloo L. Legon A. C. Marquardt R. Metrangolo P. Politzer P. Resnati G. Rissanen K. Pure Appl. Chem. 2013;85:1711–1713. doi: 10.1351/PAC-REC-12-05-10. DOI

Saha B. K. Veluthaparambath R. V. P. Krishna V. G. Chem.–Asian J. 2023;18:e202300067. doi: 10.1002/asia.202300067. PubMed DOI

Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. Chem. Rev. 2016;116:2478–2601. doi: 10.1021/acs.chemrev.5b00484. PubMed DOI PMC

Tepper R. Schubert U. S. Angew. Chem., Int. Ed. 2018;57:6004–6016. doi: 10.1002/anie.201707986. PubMed DOI

Gilday L. C. Robinson S. W. Barendt T. A. Langton M. J. Mullaney B. R. Beer P. D. Chem. Rev. 2015;115:7118–7195. doi: 10.1021/cr500674c. PubMed DOI

Catalano L., Cavallo G., Metrangolo P., Resnati G. and Terraneo G., in Topics in Current Chemistry, Springer Verlag, 2016, vol. 373, pp. 289–309 PubMed

Peloquin A. J. Hill S. C. Arman H. D. McMillen C. D. Rabinovich D. Pennington W. T. J. Chem. Crystallogr. 2021;52:62–72. doi: 10.1007/s10870-021-00885-2. DOI

Mukherjee A. Tothadi S. Desiraju G. R. Acc. Chem. Res. 2014;47:2514–2524. doi: 10.1021/ar5001555. PubMed DOI

Ivanov D. M. Novikov A. S. Starova G. L. Haukka M. Kukushkin V. Y. CrystEngComm. 2016;18:5278–5286. doi: 10.1039/C6CE01179A. DOI

Aakeröy C. B. Baldrighi M. Desper J. Metrangolo P. Resnati G. Chem.–Eur. J. 2013;19:16240–16247. doi: 10.1002/chem.201302162. PubMed DOI

Cavallo G. Murray J. S. Politzer P. Pilati T. Ursini M. Resnati G. IUCrJ. 2017;4:411–419. doi: 10.1107/S2052252517004262. PubMed DOI PMC

Heinen F. Engelage E. Cramer C. J. Huber S. M. J. Am. Chem. Soc. 2020;142:8633–8640. doi: 10.1021/jacs.9b13309. PubMed DOI PMC

Sutar R. L. Huber S. M. ACS Catal. 2019;9:9622–9639. doi: 10.1021/acscatal.9b02894. DOI

Reinhard D. L. Kutzinski D. Hatta M. Engelage E. Huber S. M. Synlett. 2024;35:209–214. doi: 10.1055/a-2198-3914. DOI

Robidas R. Reinhard D. L. Legault C. Y. Huber S. M. Chem. Rec. 2021;21:1912–1927. doi: 10.1002/tcr.202100119. PubMed DOI

Soldatova N. S. Postnikov P. S. Ivanov D. M. Semyonov O. V. Kukurina O. S. Guselnikova O. Yamauchi Y. Wirth T. Zhdankin V. V. Yusubov M. S. Gomila R. M. Frontera A. Resnati G. Kukushkin V. Y. Chem. Sci. 2022;13:5650–5658. doi: 10.1039/D2SC00892K. PubMed DOI PMC

Radzhabov A. D. Ledneva A. I. Soldatova N. S. Fedorova I. I. Ivanov D. M. Ivanov A. A. Yusubov M. S. Kukushkin V. Y. Postnikov P. S. Int. J. Mol. Sci. 2023;24:14642. doi: 10.3390/ijms241914642. PubMed DOI PMC

Soldatova N. S. Suslonov V. V. Ivanov D. M. Yusubov M. S. Resnati G. Postnikov P. S. Kukushkin V. Y. Cryst. Growth Des. 2023;23:413–423. doi: 10.1021/acs.cgd.2c01090. DOI

Merritt E. Olofsson B. Angew. Chem., Int. Ed. 2009;48:9052–9070. doi: 10.1002/anie.200904689. PubMed DOI

Soldatova N. S. Postnikov P. S. Suslonov V. V. Kissler T. Y. Ivanov D. M. Yusubov M. S. Galmés B. Frontera A. Kukushkin V. Y. Org. Chem. Front. 2020;7:2230–2242. doi: 10.1039/D0QO00678E. DOI

Li J. Zhao Y. Huang B. Wang Y. Xiong Z. Xiao B. Zhao Y. Xiao Z. Wu P. J. Cluster Sci. 2022;33:2375–2381. doi: 10.1007/s10876-021-02155-9. DOI

Politzer P. Murray J. S. Clark T. Phys. Chem. Chem. Phys. 2013;15:11178. doi: 10.1039/C3CP00054K. PubMed DOI

Murray J. S. Lane P. Politzer P. J. Mol. Model. 2009;15:723–729. doi: 10.1007/s00894-008-0386-9. PubMed DOI

Wang H. Wang W. Jin W. J. Chem. Rev. 2016;116:5072–5104. doi: 10.1021/acs.chemrev.5b00527. PubMed DOI

Clark T. Hennemann M. Murray J. S. Politzer P. J. Mol. Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2. PubMed DOI

Fotović L. Bedeković N. Stilinović V. Cryst. Growth Des. 2023;23:3384–3392. doi: 10.1021/acs.cgd.2c01509. PubMed DOI PMC

Wang L.-S. Lu Y. Máille G. M. Ó. Anthony S. P. Nolan D. Draper S. M. Inorg. Chem. 2016;55:9497–9500. doi: 10.1021/acs.inorgchem.6b01395. PubMed DOI

Kuriakose D. Prathapachandra Kurup M. R. Inorg. Chim. Acta. 2020;505:119472. doi: 10.1016/j.ica.2020.119472. DOI

Kuriakose D. Kurup M. R. P. Polyhedron. 2019;170:749–761. doi: 10.1016/j.poly.2019.06.041. DOI

Oszajca M. Smrčok Ľ. Łasocha W. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2013;69:1367–1372. doi: 10.1107/S010827011302845X. PubMed DOI

Xiao P. Dumur F. Tehfe M.-A. Graff B. Fouassier J. P. Gigmes D. Lalevée J. Macromol. Chem. Phys. 2013;214:1749–1755. doi: 10.1002/macp.201300282. DOI

Xiao P. Simonnet-Jégat C. Dumur F. Schrodj G. Tehfe M.-A. Fouassier J. P. Gigmes D. Lalevée J. Polym. Chem. 2013;4:4526. doi: 10.1039/C3PY00632H. DOI

Mokbel H. Xiao P. Simonnet-Jégat C. Dumur F. Gigmes D. Toufaily J. Hamieh T. Fouassier J. P. Lalevée J. J. Polym. Sci., Part A: Polym. Chem. 2015;53:981–989. doi: 10.1002/pola.27526. DOI

Dumur F. Eur. Polym. J. 2023;195:112193. doi: 10.1016/j.eurpolymj.2023.112193. DOI

Soldatova N. Postnikov P. Kukurina O. Zhdankin V. V. V. Yoshimura A. Wirth T. Yusubov M. S. Beilstein J. Org. Chem. 2018;14:849–855. doi: 10.3762/bjoc.14.70. PubMed DOI PMC

Aliyarova I. S. Ivanov D. M. Soldatova N. S. Novikov A. S. Postnikov P. S. Yusubov M. S. Kukushkin V. Y. Cryst. Growth Des. 2021;21:1136–1147. doi: 10.1021/acs.cgd.0c01463. DOI

Fedorova I. I. Soldatova N. S. Ivanov D. M. Nikiforova K. Aliyarova I. S. Yusubov M. S. Tolstoy P. M. Gomila R. M. Frontera A. Kukushkin V. Y. Postnikov P. S. Resnati G. Cryst. Growth Des. 2023;23:2661–2674. doi: 10.1021/acs.cgd.2c01485. DOI

Arunan E. Desiraju G. R. Klein R. A. Sadlej J. Scheiner S. Alkorta I. Clary D. C. Crabtree R. H. Dannenberg J. J. Hobza P. Kjaergaard H. G. Legon A. C. Mennucci B. Nesbitt D. J. Pure Appl. Chem. 2011;83:1637–1641. doi: 10.1351/PAC-REC-10-01-02. DOI

DesMarteau D. D. Pennington W. T. Montanari V. Thomas B. H. Fluor J. Chem. 2003;122:57–61.

Wu G. Zheng P. J. Zhu S. Z. Chen Q. Y. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991;47:1227–1230. doi: 10.1107/S0108270190010496. DOI

Radkov E. Beer R. H. Polyhedron. 1995;14:2139–2143. doi: 10.1016/0277-5387(95)00026-O. DOI

Kamata K. Kotani M. Yamaguchi K. Hikichi S. Mizuno N. Chem.–Eur. J. 2007;13:639–648. doi: 10.1002/chem.200600384. PubMed DOI

Kamata K. Nakagawa Y. Yamaguchi K. Mizuno N. J. Catal. 2004;224:224–228. doi: 10.1016/j.jcat.2004.02.027. DOI

Hirano T. Uehara K. Kamata K. Mizuno N. J. Am. Chem. Soc. 2012;134:6425–6433. doi: 10.1021/ja3006012. PubMed DOI

Evtushok V. Y. Lopatkin V. A. Podyacheva O. Y. Kholdeeva O. A. Catalysts. 2022;12:472. doi: 10.3390/catal12050472. DOI

Rozhkov A. V. Katlenok E. A. Zhmykhova M. V. Ivanov A. Y. Kuznetsov M. L. Bokach N. A. Kukushkin V. Y. J. Am. Chem. Soc. 2021;143:15701–15710. doi: 10.1021/jacs.1c06498. PubMed DOI

Ghali M. Brahmi C. Benltifa M. Vaulot C. Airoudj A. Fioux P. Dumur F. Simonnet-Jégat C. Morlet-Savary F. Jellali S. Bousselmi L. Lalevée J. J. Polym. Sci. 2021;59:153–169. doi: 10.1002/pol.20200568. DOI

Klemperer W. G., Inorganic syntheses, 1990, pp. 74–85

Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:3–8. PubMed PMC

Hübschle C. B. Sheldrick G. M. Dittrich B. J. Appl. Crystallogr. 2011;44:1281–1284. doi: 10.1107/S0021889811043202. PubMed DOI PMC

Spek A. L. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:9–18. doi: 10.1107/S2053229614024929. PubMed DOI

Spek A. L. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Ahlrichs R. Bär M. Häser M. Horn H. Kölmel C. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI

Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/B508541A. PubMed DOI

Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057. doi: 10.1039/B515623H. PubMed DOI

Bader R. F. W. Chem. Rev. 1991;91:893–928. doi: 10.1021/cr00005a013. DOI

Contreras-García J. Johnson E. R. Keinan S. Chaudret R. Piquemal J.-P. Beratan D. N. Yang W. J. Chem. Theory Comput. 2011;7:625–632. doi: 10.1021/ct100641a. PubMed DOI PMC

Humphrey W. Dalke A. Schulten K. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

V Bartashevich E. Tsirelson V. G. Russ. Chem. Rev. 2014;83:1181–1203. doi: 10.1070/RCR4440. DOI

Espinosa E. Molins E. Lecomte C. Chem. Phys. Lett. 1998;285:170–173. doi: 10.1016/S0009-2614(98)00036-0. DOI

Glendening E. D. Landis C. R. Weinhold F. J. Comput. Chem. 2019;40:2234–2241. doi: 10.1002/jcc.25873. PubMed DOI

Glendening E. D., Badenhoop J. K., Reed A. E., Carpenter J. E., Bohmann J. A., Morales C. M., Karafiloglou P., Landis C. R. and Weinhold F., Theor. Chem. Institute, Univ. Wisconsin, Madison, WI, 2018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...