Cyanine Phototruncation Enables Spatiotemporal Cell Labeling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
Z99 CA999999
Intramural NIH HHS - United States
ZIA BC011506
Intramural NIH HHS - United States
ZIA BC011564
Intramural NIH HHS - United States
PubMed
35696546
PubMed Central
PMC10523398
DOI
10.1021/jacs.2c02962
Knihovny.cz E-zdroje
- MeSH
- barvicí látky * MeSH
- fluorescenční barviva MeSH
- karbocyaniny MeSH
- lidé MeSH
- nádory * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- barvicí látky * MeSH
- fluorescenční barviva MeSH
- karbocyaniny MeSH
Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Luster AD; Alon R; von Andrian UH, Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 2005, 6 (12), 1182–1190. PubMed
Liu J; Zhang X; Cheng Y; Cao X, Dendritic cell migration in inflammation and immunity. Cell. Mol. Immunol. 2021, 18 (11), 2461–2471. PubMed PMC
Fransen MF; van Hall T; Ossendorp F, Immune Checkpoint Therapy: Tumor Draining Lymph Nodes in the Spotlights. Int. J. Mol. Sci. 2021, 22 (17), 9401. PubMed PMC
Marzo AL; Lake RA; Lo D; Sherman L; McWilliam A; Nelson D; Robinson BW; Scott B, Tumor antigens are constitutively presented in the draining lymph nodes. J. Immunol. 1999, 162 (10), 5838–5845. PubMed
Goode EF; Roussos Torres ET; Irshad S, Lymph Node Immune Profiles as Predictive Biomarkers for Immune Checkpoint Inhibitor Response. Front. Mol. Biosci. 2021, 8, 382. PubMed PMC
Riedel A; Shorthouse D; Haas L; Hall BA; Shields J, Tumor-induced stromal reprogramming drives lymph node transformation. Nat. Immunol. 2016, 17 (9), 1118–1127. PubMed PMC
Gray EE; Cyster JG, Lymph node macrophages. J. Innate Immun. 2012, 4 (5–6), 424–436. PubMed PMC
Munn DH; Mellor AL, The tumor-draining lymph node as an immune-privileged site. Immunol. Rev. 2006, 213 (1), 146–158. PubMed
Hampton HR; Chtanova T, Lymphatic migration of immune cells. Front. immunol. 2019, 10, 1168. PubMed PMC
Hatta K; Tsujii H; Omura T, Cell tracking using a photoconvertible fluorescent protein. Nat. Protoc. 2006, 1 (2), 960–967. PubMed
Nienhaus GU; Nienhaus K; Hölzle A; Ivanchenko S; Renzi F; Oswald F; Wolff M; Schmitt F; Röcker C; Vallone B, Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem. Photobiol. 2006, 82 (2), 351–358. PubMed
Tomura M; Hata A; Matsuoka S; Shand FH; Nakanishi Y; Ikebuchi R; Ueha S; Tsutsui H; Inaba K; Matsushima K, Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep. 2014, 4 (1), 1–11. PubMed PMC
Progatzky F; Dallman MJ; Lo Celso C, From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 2013, 3 (3), 20130001. PubMed PMC
Kedrin D; Gligorijevic B; Wyckoff J; Verkhusha VV; Condeelis J; Segall JE; Van Rheenen J, Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 2008, 5 (12), 1019–1021. PubMed PMC
Mellott AJ; Shinogle HE; Moore DS; Detamore MS, Fluorescent Photo-conversion: A second chance to label unique cells. Cell. Mol. Bioeng. 2015, 8 (1), 187–196. PubMed PMC
Hampton HR; Bailey J; Tomura M; Brink R; Chtanova T, Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 2015, 6 (1), 1–11. PubMed PMC
Tomura M; Yoshida N; Tanaka J; Karasawa S; Miwa Y; Miyawaki A; Kanagawa O, Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. PNAS 2008, 105 (31), 10871–10876. PubMed PMC
Torcellan T; Hampton HR; Bailey J; Tomura M; Brink R; Chtanova T, In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. PNAS 2017, 114 (22), 5677–5682. PubMed PMC
Ando R; Hama H; Yamamoto-Hino M; Mizuno H; Miyawaki A, An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. PNAS 2002, 99 (20), 12651–12656. PubMed PMC
Zimmer M, GFP: from jellyfish to the Nobel prize and beyond. Chem. Soc. Rev. 2009, 38 (10), 2823–2832. PubMed
Day RN; Davidson MW, The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 2009, 38 (10), 2887–2921. PubMed PMC
Bresser K; Dijkgraaf FE; Pritchard CE; Huijbers IJ; Song J-Y; Rohr JC; Scheeren FA; Schumacher TN, A mouse model that is immunologically tolerant to reporter and modifier proteins. Commun. Biol. 2020, 3 (1), 1–6. PubMed PMC
Gambotto A; Dworacki G; Cicinnati V; Kenniston T; Steitz J; Tüting T; Robbins P; DeLeo A, Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-K d-restricted CTL epitope. Gene Ther. 2000, 7 (23), 2036–2040. PubMed
Han W; Unger W; Wauben M, Identification of the immunodominant CTL epitope of EGFP in C57BL/6 mice. Gene Ther. 2008, 15 (9), 700–701. PubMed
Limberis M; Bell C; Wilson J, Identification of the murine firefly luciferase-specific CD8 T-cell epitopes. Gene Ther. 2009, 16 (3), 441–447. PubMed PMC
Lippincott-Schwartz J; Patterson GH, Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 2009, 19 (11), 555–565. PubMed PMC
Shcherbakova DM; Subach OM; Verkhusha VV, Red fluorescent proteins: advanced imaging applications and future design. Angew. Chem. Int. Ed. 2012, 51 (43), 10724–10738. PubMed PMC
Gorka AP; Nani RR; Schnermann MJ, Cyanine polyene reactivity: scope and biomedical applications. Org. Biomol. Chem. 2015, 13 (28), 7584–98. PubMed PMC
Gorka AP; Nani RR; Schnermann MJ, Harnessing cyanine reactivity for optical imaging and drug delivery. Acc. Chem. Res. 2018, 51 (12), 3226–3235. PubMed
Jradi FM; Lavis LD, Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chem. Biol. 2019, 14 (6), 1077–1090. PubMed
Eiring P; McLaughlin R; Matikonda SS; Han Z; Grabenhorst L; Helmerich DA; Meub M; Beliu G; Luciano M; Bandi V; Zijlstra N; Shi Z-D; Tarasov SG; Swenson R; Tinnefeld P; Glembockyte V; Cordes T; Sauer M; Schnermann MJ, Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications. Angew. Chem. Int. Ed. 2021, 60 (51), 26685–26693. PubMed PMC
Helmerich DA; Beliu G; Matikonda SS; Schnermann MJ; Sauer M, Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat. Methods 2021, 1–5. PubMed PMC
Matikonda SS; Helmerich DA; Meub M; Beliu G; Kollmannsberger P; Greer A; Sauer M; Schnermann MJ, Defining the Basis of Cyanine Phototruncation Enables a New Approach to Single-Molecule Localization Microscopy. ACS Cent. Sci. 2021. PubMed PMC
Štacková L; Muchová E; Russo M; Slavíček P; Štacko P; Klán P, Deciphering the structure–property relations in substituted heptamethine cyanines. J. Org. Chem. 2020, 85 (15), 9776–9790. PubMed
Štacková L; Štacko P; Klán P, Approach to a substituted heptamethine cyanine chain by the ring opening of zincke salts. J. Am. Chem. Soc. 2019, 141 (17), 7155–7162. PubMed
Nani RR; Gorka AP; Nagaya T; Yamamoto T; Ivanic J; Kobayashi H; Schnermann MJ, In Vivo Activation of Duocarmycin-Antibody Conjugates by Near-Infrared Light. Acs Central Sci 2017, 3 (4), 329–337. PubMed PMC
Celso CL; Fleming HE; Wu JW; Zhao CX; Miake-Lye S; Fujisaki J; Côté D; Rowe DW; Lin CP; Scadden DT, Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009, 457 (7225), 92–96. PubMed PMC
Kalchenko V; Shivtiel S; Malina V; Lapid K; Haramati S; Lapidot T; Brill AG; Harmelin A, Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J. Biomed. Opt. 2006, 11 (5), 050507. PubMed
Carlson AL; Fujisaki J; Wu J; Runnels JM; Turcotte R; Celso CL; Scadden DT; Strom TB; Lin CP, Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 2013, 8 (8), e69257. PubMed PMC
Osseiran S; Austin LA; Cannon TM; Yan C; Langenau DM; Evans CL, Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Sci. Rep. 2019, 9 (1), 1–10. PubMed PMC
Thermal Truncation of Heptamethine Cyanine Dyes