Thermal Truncation of Heptamethine Cyanine Dyes

. 2024 Jul 24 ; 146 (29) : 19768-19781. [epub] 20240712

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38995720

Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.

Zobrazit více v PubMed

Ilina K.; Henary M. Cyanine dyes containing quinoline moieties: history, synthesis, optical properties, and applications. Chem. - Eur. J. 2021, 27, 4230–4248. 10.1002/chem.202003697. PubMed DOI PMC

Gorka A. P.; Nani R. R.; Schnermann M. J. Cyanine polyene reactivity: scope and biomedical applications. Org. Biomol. Chem. 2015, 13, 7584–7598. 10.1039/C5OB00788G. PubMed DOI PMC

Njiojob C. N.; Owens E. A.; Narayana L.; Hyun H.; Choi H. S.; Henary M. Tailored near-infrared contrast agents for image guided surgery. J. Med. Chem. 2015, 58, 2845–2854. 10.1021/acs.jmedchem.5b00253. PubMed DOI PMC

Shi C.; Wu J. B.; Pan D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biochem. Opt. 2016, 21, 05090110.1117/1.JBO.21.5.050901. PubMed DOI

Choi H. S.; Nasr K.; Alyabyev S.; Feith D.; Lee J. H.; Kim S. H.; Ashitate Y.; Hyun H.; Patonay G.; Strekowski L.; Henary M.; Frangioni J. V. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem., Int. Ed. 2011, 50, 6258–6263. 10.1002/anie.201102459. PubMed DOI PMC

Choi H. S.; Gibbs S. L.; Lee J. H.; Kim S. H.; Ashitate Y.; Liu F.; Hyun H.; Park G.; Xie Y.; Bae S.; Henary M.; Frangioni J. V. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153. 10.1038/nbt.2468. PubMed DOI PMC

Owens E. A.; Hyun H.; Tawney J. G.; Choi H. S.; Henary M. Correlating molecular character of NIR imaging agents with tissue-specific uptake. J. Med. Chem. 2015, 58, 4348–4356. 10.1021/acs.jmedchem.5b00475. PubMed DOI PMC

Hyun H.; Park M. H.; Owens E. A.; Wada H.; Henary M.; Handgraaf H. J.; Vahrmeijer A. L.; Frangioni J. V.; Choi H. S. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 2015, 21, 192–197. 10.1038/nm.3728. PubMed DOI PMC

Kiyose K.; Aizawa S.; Sasaki E.; Kojima H.; Hanaoka K.; Terai T.; Urano Y.; Nagano T. Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines. Chem. - Eur. J. 2009, 15, 9191–9200. 10.1002/chem.200900035. PubMed DOI

Salon J.; Ska E. W.; Raszkiewicz A.; Patonay G.; Strekowski L. Synthesis of benz[e]indolium heptamethine cyanines containing C-substituents at the central portion of the heptamethine moiety. J. Heterocycl. Chem. 2005, 42, 959–961. 10.1002/jhet.5570420532. DOI

Stackova L.; Muchova E.; Russo M.; Slavicek P.; Stacko P.; Klan P. Deciphering the structure–property relations in substituted heptamethine cyanines. J. Org. Chem. 2020, 85, 9776–9790. 10.1021/acs.joc.0c01104. PubMed DOI

Stackova L.; Stacko P.; Klan P. Approach to a substituted heptamethine cyanine chain by the ring opening of zincke salts. J. Am. Chem. Soc. 2019, 141, 7155–7162. 10.1021/jacs.9b02537. PubMed DOI

Han J.; Engler A.; Qi J.; Tung C.-H. Ultra pseudo-Stokes shift near infrared dyes based on energy transfer. Tetrahedron Lett. 2013, 54, 502–505. 10.1016/j.tetlet.2012.11.060. PubMed DOI PMC

Miao Q.; Yeo D. C.; Wiraja C.; Zhang J.; Ning X.; Xu C.; Pu K. Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew. Chem., Int. Ed. 2018, 57, 1256–1260. 10.1002/anie.201710727. PubMed DOI

Cai S.; Liu C.; Jiao X.; He S.; Zhao L.; Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org. Biomol. Chem. 2020, 18, 1148–1154. 10.1039/C9OB02188D. PubMed DOI

Zhu D.; Li G.; Xue L.; Jiang H. Development of ratiometric near-infrared fluorescent probes using analyte-specific cleavage of carbamate. Org. Biomol. Chem. 2013, 11, 4577–4580. 10.1039/c3ob40932e. PubMed DOI

Lee H.; Mason J. C.; Achilefu S. Heptamethine cyanine dyes with a robust C–C bond at the central position of the chromophore. J. Org. Chem. 2006, 71, 7862–7865. 10.1021/jo061284u. PubMed DOI

Young D. N.; Detty M. R. Hydrolysis studies of chalcogenopyrylium trimethine dyes. 1. Product studies in alkaline solution (pH ≥ 8) under anaerobic and aerobic conditions. J. Org. Chem. 1997, 62, 4692–4700. 10.1021/jo970115u. DOI

Gosi M.; Marepu N.; Sunandamma Y. Cyanine-based fluorescent probe for cyanide ion detection. J. Fluoresc. 2021, 31, 1409–1415. 10.1007/s10895-021-02771-8. PubMed DOI

Mahapatra A. K.; Maiti K.; Maji R.; Manna S. K.; Mondal S.; Ali S. S.; Manna S. Ratiometric fluorescent and chromogenic chemodosimeter for cyanide detection in water and its application in bioimaging. RSC Adv. 2015, 5, 24274–24280. 10.1039/C4RA17199C. DOI

Niu H.-T.; Jiang X.; He J.; Cheng J.-P. Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water. Tetrahedron Lett. 2009, 50, 6668–6671. 10.1016/j.tetlet.2009.09.079. DOI

Kundu K.; Knight S. F.; Willett N.; Lee S.; Taylor W. R.; Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem., Int. Ed. 2009, 48, 299.10.1002/anie.200804851. PubMed DOI PMC

Vompe A.; Ivanova L.; Meskhi L.; Monich N.; Raikhina R. Synthesis of pseudobases of polymethine dyes and their reactions. Zh. Org. Khim. 1985, 21, 584–594.

Nikolajewski H.; Dähne S.; Hirsch B.; Jauer E. A. Aminolysis of C-C linkages. Angew. Chem., Int. Ed. 1966, 5, 1044.10.1002/anie.196610441. DOI

Alias S.; Andreu R.; Blesa M. J.; Cerdan M. A.; Franco S.; Garin J.; Lopez C.; Orduna J.; Sanz J.; Alicante R.; Villacampa B.; Allain M. Iminium salts of ω-dithiafulvenylpolyenals: an easy entry to the corresponding aldehydes and doubly proaromatic nonlinear optic-phores. J. Org. Chem. 2008, 73, 5890–5898. 10.1021/jo800801q. PubMed DOI

Alías S.; Andreu R.; Cerdán M. A.; Franco S.; Garín J.; Orduna J.; Romero P.; Villacampa B. Synthesis, characterization and optical properties of merocyanines derived from malononitrile dimer. Tetrahedron Lett. 2007, 48, 6539–6542. 10.1016/j.tetlet.2007.07.048. DOI

Niaz Khan M.; Fleury J.-P.; Baumlin P.; Hubschwerlen C. A new route to trinuclear carbocyanines. Tetrahedron 1985, 41, 5341–5345. 10.1016/S0040-4020(01)96787-0. DOI

Eiermann M.; Stowasser B.; Hafner K.; Bierwirth K.; Frank A.; Lerch A.; Reußwig J. Synthesis and properties of vinylogous 6-(cyclopentadienyl)pentafulvenes. Chem. Ber. 1990, 123, 1421–1431. 10.1002/cber.19901230636. DOI

Gorka A. P.; Nani R. R.; Schnermann M. J. Harnessing cyanine Rreactivity for optical imaging and drug delivery. Acc. Chem. Res. 2018, 51, 3226–3235. 10.1021/acs.accounts.8b00384. PubMed DOI

Jradi F. M.; Lavis L. D. Chemistry of photosensitive Ffluorophores for single-molecule localization microscopy. ACS Chem. Biol. 2019, 14, 1077–1090. 10.1021/acschembio.9b00197. PubMed DOI

Bandi V. G.; Luciano M. P.; Saccomano M.; Patel N. L.; Bischof T. S.; Lingg J. G. P.; Tsrunchev P. T.; Nix M. N.; Ruehle B.; Sanders C.; Riffle L.; Robinson C. M.; Difilippantonio S.; Kalen J. D.; Resch-Genger U.; Ivanic J.; Bruns O. T.; Schnermann M. J. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 2022, 19, 353–358. 10.1038/s41592-022-01394-6. PubMed DOI

Matikonda S. S.; Helmerich D. A.; Meub M.; Beliu G.; Kollmannsberger P.; Greer A.; Sauer M.; Schnermann M. J. Defining the basis of cyanine phototruncation enables a new approach to single-molecule localization microscopy. ACS Cent. Sci. 2021, 7, 1144–1155. 10.1021/acscentsci.1c00483. PubMed DOI PMC

Helmerich D. A.; Beliu G.; Matikonda S. S.; Schnermann M. J.; Sauer M. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat. Methods 2021, 18, 253–257. 10.1038/s41592-021-01061-2. PubMed DOI PMC

Fukushima H.; Matikonda S. S.; Usama S. M.; Furusawa A.; Kato T.; Štacková L.; Klán P.; Kobayashi H.; Schnermann M. J. Cyanine phototruncation enables spatiotemporal cell labeling. J. Am. Chem. Soc. 2022, 144, 11075–11080. 10.1021/jacs.2c02962. PubMed DOI PMC

Stone M. B.; Veatch S. L. Far-red organic fluorophores contain a fluorescent impurity. ChemPhysChem 2014, 15, 2240–2246. 10.1002/cphc.201402002. PubMed DOI PMC

Kwok S. J. J.; Choi M.; Bhayana B.; Zhang X.; Ran C.; Yun S.-H. Two-photon excited photoconversion of cyanine-based dyes. Sci. Rep. 2016, 6, 2386610.1038/srep23866. PubMed DOI PMC

Cho Y.; An H. J.; Kim T.; Lee C.; Lee N. K. Mechanism of cyanine5 to cyanine3 photoconversion and its application for high-density single-particle tracking in a living cell. J. Am. Chem. Soc. 2021, 143, 14125–14135. 10.1021/jacs.1c04178. PubMed DOI

Flanagan J. H.; Khan S. H.; Menchen S.; Soper S. A.; Hammer R. P. Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate Chem. 1997, 8, 751–756. 10.1021/bc970113g. PubMed DOI

Van Der Wal S.; Kuil J.; Valentijn A. R. P.; Van Leeuwen F. W. Synthesis and systematic evaluation of symmetric sulfonated centrally C-C bonded cyanine near-infrared dyes for protein labelling. Dyes Pigm. 2016, 132, 7–19. 10.1016/j.dyepig.2016.03.054. DOI

Mizrahi D. M.; Ziv-Polat O.; Perlstein B.; Gluz E.; Margel S. Synthesis, fluorescence and biodistribution of a bone-targeted near-infrared conjugate. Eur. J. Med. Chem. 2011, 46, 5175–5183. 10.1016/j.ejmech.2011.08.040. PubMed DOI

Plata R. E.; Singleton D. A. A case study of the mechanism of alcohol-mediated Morita Baylis–Hillman reactions. The importance of experimental observations. J. Am. Chem. Soc. 2015, 137, 3811–3826. 10.1021/ja5111392. PubMed DOI PMC

Liu Z.; Patel C.; Harvey J. N.; Sunoj R. B. Mechanism and reactivity in the Morita–Baylis–Hillman reaction: the challenge of accurate computations. Phys. Chem. Chem. Phys. 2017, 19, 30647–30657. 10.1039/C7CP06508F. PubMed DOI

Strekowski L.; Mason J. C.; Britton J. E.; Lee H.; Van Aken K.; Patonay G. The addition reaction of hydroxide or ethoxide ion with benzindolium heptamethine cyanine dyes. Dyes Pigm. 2000, 46, 163–168. 10.1016/S0143-7208(00)00046-2. DOI

Mora J. F. d. l.; Van Berkel G. J.; Enke C. G.; Cole R. B.; Martinez-Sanchez M.; Fenn J. B. Electrochemical processes in electrospray ionization mass spectrometry. J. Mass. Spectrom. 2000, 35, 939–952. 10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V. PubMed DOI

Xu X.; He G.; Xu X.; Wu Z.; Cai T. Investigation of the electrochemical oxidation of 2, 3′-bisindolylmethanes in positive-ion electrospray ionization mass spectrometry. RSC Adv. 2019, 9, 10727–10732. 10.1039/C9RA00348G. PubMed DOI PMC

Chai Y.; Sun H.; Wan J.; Pan Y.; Sun C. Hydride abstraction in positive-ion electrospray interface: oxidation of 1, 4-dihydropyridines in electrospray ionization mass spectrometry. Analyst 2011, 136, 4667–4669. 10.1039/c1an15129k. PubMed DOI

Hubschwerlen C.; Fleury J.-P. Diènamines hétérocycliques—II: Condensation de la base de fischer sur des aldéhydes aliphatiques satures. Formation d’azatriènes. Tetrahedron 1977, 33, 761–765. 10.1016/0040-4020(77)80189-0. DOI

Harvey J. N.; Himo F.; Maseras F.; Perrin L. Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal. 2019, 9, 6803–6813. 10.1021/acscatal.9b01537. DOI

Mammen M.; Shakhnovich E. I.; Deutch J. M.; Whitesides G. M. Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid melamine lattice. J. Org. Chem. 1998, 63, 3821–3830. 10.1021/jo970944f. DOI

Cooper J.; Ziegler T. A density functional study of SN2 substitution at square-planar platinum (II) complexes. Inorg. Chem. 2002, 41, 6614–6622. 10.1021/ic020294k. PubMed DOI

Liu S.-C.; Zhu X.-R.; Liu D.-Y.; Fang D.-C. DFT calculations on the solutional systems--solvation energy, dispersion energy and entropy. Phys. Chem. Chem. Phys. 2023, 25, 913–931. 10.1039/D2CP04720A. PubMed DOI

Dub P. A.; Poli R. A computational study of solution equilibria of platinum-based ethylene hydroamination catalytic species including solvation and counterion effects: Proper treatment of the free energy of solvation. J. Mol. Catal. A: Chem. 2010, 324, 89–96. 10.1016/j.molcata.2010.03.003. DOI

Tamura H.; Yamazaki H.; Sato H.; Sakaki S. Iridium-catalyzed borylation of benzene with diboron. Theoretical elucidation of catalytic cycle including unusual iridium (V) intermediate. J. Am. Chem. Soc. 2003, 125, 16114–16126. 10.1021/ja0302937. PubMed DOI

Riplinger C.; Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 03410610.1063/1.4773581. PubMed DOI

Riplinger C.; Sandhoefer B.; Hansen A.; Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 13410110.1063/1.4821834. PubMed DOI

Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 22410810.1063/5.0004608. PubMed DOI

Caldin E. F. Tunneling in proton-transfer reactions in solution. Chem. Rev. 1969, 69, 135–156. 10.1021/cr60257a006. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...