Thermal Truncation of Heptamethine Cyanine Dyes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38995720
PubMed Central
PMC11273355
DOI
10.1021/jacs.4c02116
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cyanine dyes are a class of organic, usually cationic molecules containing two nitrogen centers linked through conjugated polymethine chains. The synthesis and reactivity of cyanine derivatives have been extensively investigated for decades. Unlike the recently described phototruncation process, the thermal truncation (chain shortening) reaction is a phenomenon that has rarely been reported for these important fluorophores. Here, we present a systematic investigation of the truncation of heptamethine cyanines (Cy7) to pentamethine (Cy5) and trimethine (Cy3) cyanines via homogeneous, acid-base-catalyzed nucleophilic exchange reactions. We demonstrate how different substituents at the C3' and C4' positions of the chain and different heterocyclic end groups, the presence of bases, nucleophiles, and oxygen, solvent properties, and temperature affect the truncation process. The mechanism of chain shortening, studied by various analytical and spectroscopic techniques, was verified by extensive ab initio calculation, implying the necessity to model catalytic reactions by highly correlated wave function-based methods. In this study, we provide critical insight into the reactivity of cyanine polyene chains and elucidate the truncation mechanism and methods to mitigate side processes that can occur during the synthesis of cyanine derivatives. In addition, we offer alternative routes to the preparation of symmetrical and unsymmetrical meso-substituted Cy5 derivatives.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Ilina K.; Henary M. Cyanine dyes containing quinoline moieties: history, synthesis, optical properties, and applications. Chem. - Eur. J. 2021, 27, 4230–4248. 10.1002/chem.202003697. PubMed DOI PMC
Gorka A. P.; Nani R. R.; Schnermann M. J. Cyanine polyene reactivity: scope and biomedical applications. Org. Biomol. Chem. 2015, 13, 7584–7598. 10.1039/C5OB00788G. PubMed DOI PMC
Njiojob C. N.; Owens E. A.; Narayana L.; Hyun H.; Choi H. S.; Henary M. Tailored near-infrared contrast agents for image guided surgery. J. Med. Chem. 2015, 58, 2845–2854. 10.1021/acs.jmedchem.5b00253. PubMed DOI PMC
Shi C.; Wu J. B.; Pan D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biochem. Opt. 2016, 21, 05090110.1117/1.JBO.21.5.050901. PubMed DOI
Choi H. S.; Nasr K.; Alyabyev S.; Feith D.; Lee J. H.; Kim S. H.; Ashitate Y.; Hyun H.; Patonay G.; Strekowski L.; Henary M.; Frangioni J. V. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem., Int. Ed. 2011, 50, 6258–6263. 10.1002/anie.201102459. PubMed DOI PMC
Choi H. S.; Gibbs S. L.; Lee J. H.; Kim S. H.; Ashitate Y.; Liu F.; Hyun H.; Park G.; Xie Y.; Bae S.; Henary M.; Frangioni J. V. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153. 10.1038/nbt.2468. PubMed DOI PMC
Owens E. A.; Hyun H.; Tawney J. G.; Choi H. S.; Henary M. Correlating molecular character of NIR imaging agents with tissue-specific uptake. J. Med. Chem. 2015, 58, 4348–4356. 10.1021/acs.jmedchem.5b00475. PubMed DOI PMC
Hyun H.; Park M. H.; Owens E. A.; Wada H.; Henary M.; Handgraaf H. J.; Vahrmeijer A. L.; Frangioni J. V.; Choi H. S. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 2015, 21, 192–197. 10.1038/nm.3728. PubMed DOI PMC
Kiyose K.; Aizawa S.; Sasaki E.; Kojima H.; Hanaoka K.; Terai T.; Urano Y.; Nagano T. Molecular design strategies for near-infrared ratiometric fluorescent probes based on the unique spectral properties of aminocyanines. Chem. - Eur. J. 2009, 15, 9191–9200. 10.1002/chem.200900035. PubMed DOI
Salon J.; Ska E. W.; Raszkiewicz A.; Patonay G.; Strekowski L. Synthesis of benz[e]indolium heptamethine cyanines containing C-substituents at the central portion of the heptamethine moiety. J. Heterocycl. Chem. 2005, 42, 959–961. 10.1002/jhet.5570420532. DOI
Stackova L.; Muchova E.; Russo M.; Slavicek P.; Stacko P.; Klan P. Deciphering the structure–property relations in substituted heptamethine cyanines. J. Org. Chem. 2020, 85, 9776–9790. 10.1021/acs.joc.0c01104. PubMed DOI
Stackova L.; Stacko P.; Klan P. Approach to a substituted heptamethine cyanine chain by the ring opening of zincke salts. J. Am. Chem. Soc. 2019, 141, 7155–7162. 10.1021/jacs.9b02537. PubMed DOI
Han J.; Engler A.; Qi J.; Tung C.-H. Ultra pseudo-Stokes shift near infrared dyes based on energy transfer. Tetrahedron Lett. 2013, 54, 502–505. 10.1016/j.tetlet.2012.11.060. PubMed DOI PMC
Miao Q.; Yeo D. C.; Wiraja C.; Zhang J.; Ning X.; Xu C.; Pu K. Near-infrared fluorescent molecular probe for sensitive imaging of keloid. Angew. Chem., Int. Ed. 2018, 57, 1256–1260. 10.1002/anie.201710727. PubMed DOI
Cai S.; Liu C.; Jiao X.; He S.; Zhao L.; Zeng X. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells. Org. Biomol. Chem. 2020, 18, 1148–1154. 10.1039/C9OB02188D. PubMed DOI
Zhu D.; Li G.; Xue L.; Jiang H. Development of ratiometric near-infrared fluorescent probes using analyte-specific cleavage of carbamate. Org. Biomol. Chem. 2013, 11, 4577–4580. 10.1039/c3ob40932e. PubMed DOI
Lee H.; Mason J. C.; Achilefu S. Heptamethine cyanine dyes with a robust C–C bond at the central position of the chromophore. J. Org. Chem. 2006, 71, 7862–7865. 10.1021/jo061284u. PubMed DOI
Young D. N.; Detty M. R. Hydrolysis studies of chalcogenopyrylium trimethine dyes. 1. Product studies in alkaline solution (pH ≥ 8) under anaerobic and aerobic conditions. J. Org. Chem. 1997, 62, 4692–4700. 10.1021/jo970115u. DOI
Gosi M.; Marepu N.; Sunandamma Y. Cyanine-based fluorescent probe for cyanide ion detection. J. Fluoresc. 2021, 31, 1409–1415. 10.1007/s10895-021-02771-8. PubMed DOI
Mahapatra A. K.; Maiti K.; Maji R.; Manna S. K.; Mondal S.; Ali S. S.; Manna S. Ratiometric fluorescent and chromogenic chemodosimeter for cyanide detection in water and its application in bioimaging. RSC Adv. 2015, 5, 24274–24280. 10.1039/C4RA17199C. DOI
Niu H.-T.; Jiang X.; He J.; Cheng J.-P. Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water. Tetrahedron Lett. 2009, 50, 6668–6671. 10.1016/j.tetlet.2009.09.079. DOI
Kundu K.; Knight S. F.; Willett N.; Lee S.; Taylor W. R.; Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem., Int. Ed. 2009, 48, 299.10.1002/anie.200804851. PubMed DOI PMC
Vompe A.; Ivanova L.; Meskhi L.; Monich N.; Raikhina R. Synthesis of pseudobases of polymethine dyes and their reactions. Zh. Org. Khim. 1985, 21, 584–594.
Nikolajewski H.; Dähne S.; Hirsch B.; Jauer E. A. Aminolysis of C-C linkages. Angew. Chem., Int. Ed. 1966, 5, 1044.10.1002/anie.196610441. DOI
Alias S.; Andreu R.; Blesa M. J.; Cerdan M. A.; Franco S.; Garin J.; Lopez C.; Orduna J.; Sanz J.; Alicante R.; Villacampa B.; Allain M. Iminium salts of ω-dithiafulvenylpolyenals: an easy entry to the corresponding aldehydes and doubly proaromatic nonlinear optic-phores. J. Org. Chem. 2008, 73, 5890–5898. 10.1021/jo800801q. PubMed DOI
Alías S.; Andreu R.; Cerdán M. A.; Franco S.; Garín J.; Orduna J.; Romero P.; Villacampa B. Synthesis, characterization and optical properties of merocyanines derived from malononitrile dimer. Tetrahedron Lett. 2007, 48, 6539–6542. 10.1016/j.tetlet.2007.07.048. DOI
Niaz Khan M.; Fleury J.-P.; Baumlin P.; Hubschwerlen C. A new route to trinuclear carbocyanines. Tetrahedron 1985, 41, 5341–5345. 10.1016/S0040-4020(01)96787-0. DOI
Eiermann M.; Stowasser B.; Hafner K.; Bierwirth K.; Frank A.; Lerch A.; Reußwig J. Synthesis and properties of vinylogous 6-(cyclopentadienyl)pentafulvenes. Chem. Ber. 1990, 123, 1421–1431. 10.1002/cber.19901230636. DOI
Gorka A. P.; Nani R. R.; Schnermann M. J. Harnessing cyanine Rreactivity for optical imaging and drug delivery. Acc. Chem. Res. 2018, 51, 3226–3235. 10.1021/acs.accounts.8b00384. PubMed DOI
Jradi F. M.; Lavis L. D. Chemistry of photosensitive Ffluorophores for single-molecule localization microscopy. ACS Chem. Biol. 2019, 14, 1077–1090. 10.1021/acschembio.9b00197. PubMed DOI
Bandi V. G.; Luciano M. P.; Saccomano M.; Patel N. L.; Bischof T. S.; Lingg J. G. P.; Tsrunchev P. T.; Nix M. N.; Ruehle B.; Sanders C.; Riffle L.; Robinson C. M.; Difilippantonio S.; Kalen J. D.; Resch-Genger U.; Ivanic J.; Bruns O. T.; Schnermann M. J. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 2022, 19, 353–358. 10.1038/s41592-022-01394-6. PubMed DOI
Matikonda S. S.; Helmerich D. A.; Meub M.; Beliu G.; Kollmannsberger P.; Greer A.; Sauer M.; Schnermann M. J. Defining the basis of cyanine phototruncation enables a new approach to single-molecule localization microscopy. ACS Cent. Sci. 2021, 7, 1144–1155. 10.1021/acscentsci.1c00483. PubMed DOI PMC
Helmerich D. A.; Beliu G.; Matikonda S. S.; Schnermann M. J.; Sauer M. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat. Methods 2021, 18, 253–257. 10.1038/s41592-021-01061-2. PubMed DOI PMC
Fukushima H.; Matikonda S. S.; Usama S. M.; Furusawa A.; Kato T.; Štacková L.; Klán P.; Kobayashi H.; Schnermann M. J. Cyanine phototruncation enables spatiotemporal cell labeling. J. Am. Chem. Soc. 2022, 144, 11075–11080. 10.1021/jacs.2c02962. PubMed DOI PMC
Stone M. B.; Veatch S. L. Far-red organic fluorophores contain a fluorescent impurity. ChemPhysChem 2014, 15, 2240–2246. 10.1002/cphc.201402002. PubMed DOI PMC
Kwok S. J. J.; Choi M.; Bhayana B.; Zhang X.; Ran C.; Yun S.-H. Two-photon excited photoconversion of cyanine-based dyes. Sci. Rep. 2016, 6, 2386610.1038/srep23866. PubMed DOI PMC
Cho Y.; An H. J.; Kim T.; Lee C.; Lee N. K. Mechanism of cyanine5 to cyanine3 photoconversion and its application for high-density single-particle tracking in a living cell. J. Am. Chem. Soc. 2021, 143, 14125–14135. 10.1021/jacs.1c04178. PubMed DOI
Flanagan J. H.; Khan S. H.; Menchen S.; Soper S. A.; Hammer R. P. Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate Chem. 1997, 8, 751–756. 10.1021/bc970113g. PubMed DOI
Van Der Wal S.; Kuil J.; Valentijn A. R. P.; Van Leeuwen F. W. Synthesis and systematic evaluation of symmetric sulfonated centrally C-C bonded cyanine near-infrared dyes for protein labelling. Dyes Pigm. 2016, 132, 7–19. 10.1016/j.dyepig.2016.03.054. DOI
Mizrahi D. M.; Ziv-Polat O.; Perlstein B.; Gluz E.; Margel S. Synthesis, fluorescence and biodistribution of a bone-targeted near-infrared conjugate. Eur. J. Med. Chem. 2011, 46, 5175–5183. 10.1016/j.ejmech.2011.08.040. PubMed DOI
Plata R. E.; Singleton D. A. A case study of the mechanism of alcohol-mediated Morita Baylis–Hillman reactions. The importance of experimental observations. J. Am. Chem. Soc. 2015, 137, 3811–3826. 10.1021/ja5111392. PubMed DOI PMC
Liu Z.; Patel C.; Harvey J. N.; Sunoj R. B. Mechanism and reactivity in the Morita–Baylis–Hillman reaction: the challenge of accurate computations. Phys. Chem. Chem. Phys. 2017, 19, 30647–30657. 10.1039/C7CP06508F. PubMed DOI
Strekowski L.; Mason J. C.; Britton J. E.; Lee H.; Van Aken K.; Patonay G. The addition reaction of hydroxide or ethoxide ion with benzindolium heptamethine cyanine dyes. Dyes Pigm. 2000, 46, 163–168. 10.1016/S0143-7208(00)00046-2. DOI
Mora J. F. d. l.; Van Berkel G. J.; Enke C. G.; Cole R. B.; Martinez-Sanchez M.; Fenn J. B. Electrochemical processes in electrospray ionization mass spectrometry. J. Mass. Spectrom. 2000, 35, 939–952. 10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V. PubMed DOI
Xu X.; He G.; Xu X.; Wu Z.; Cai T. Investigation of the electrochemical oxidation of 2, 3′-bisindolylmethanes in positive-ion electrospray ionization mass spectrometry. RSC Adv. 2019, 9, 10727–10732. 10.1039/C9RA00348G. PubMed DOI PMC
Chai Y.; Sun H.; Wan J.; Pan Y.; Sun C. Hydride abstraction in positive-ion electrospray interface: oxidation of 1, 4-dihydropyridines in electrospray ionization mass spectrometry. Analyst 2011, 136, 4667–4669. 10.1039/c1an15129k. PubMed DOI
Hubschwerlen C.; Fleury J.-P. Diènamines hétérocycliques—II: Condensation de la base de fischer sur des aldéhydes aliphatiques satures. Formation d’azatriènes. Tetrahedron 1977, 33, 761–765. 10.1016/0040-4020(77)80189-0. DOI
Harvey J. N.; Himo F.; Maseras F.; Perrin L. Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal. 2019, 9, 6803–6813. 10.1021/acscatal.9b01537. DOI
Mammen M.; Shakhnovich E. I.; Deutch J. M.; Whitesides G. M. Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid melamine lattice. J. Org. Chem. 1998, 63, 3821–3830. 10.1021/jo970944f. DOI
Cooper J.; Ziegler T. A density functional study of SN2 substitution at square-planar platinum (II) complexes. Inorg. Chem. 2002, 41, 6614–6622. 10.1021/ic020294k. PubMed DOI
Liu S.-C.; Zhu X.-R.; Liu D.-Y.; Fang D.-C. DFT calculations on the solutional systems--solvation energy, dispersion energy and entropy. Phys. Chem. Chem. Phys. 2023, 25, 913–931. 10.1039/D2CP04720A. PubMed DOI
Dub P. A.; Poli R. A computational study of solution equilibria of platinum-based ethylene hydroamination catalytic species including solvation and counterion effects: Proper treatment of the free energy of solvation. J. Mol. Catal. A: Chem. 2010, 324, 89–96. 10.1016/j.molcata.2010.03.003. DOI
Tamura H.; Yamazaki H.; Sato H.; Sakaki S. Iridium-catalyzed borylation of benzene with diboron. Theoretical elucidation of catalytic cycle including unusual iridium (V) intermediate. J. Am. Chem. Soc. 2003, 125, 16114–16126. 10.1021/ja0302937. PubMed DOI
Riplinger C.; Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 03410610.1063/1.4773581. PubMed DOI
Riplinger C.; Sandhoefer B.; Hansen A.; Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 13410110.1063/1.4821834. PubMed DOI
Neese F.; Wennmohs F.; Becker U.; Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 22410810.1063/5.0004608. PubMed DOI
Caldin E. F. Tunneling in proton-transfer reactions in solution. Chem. Rev. 1969, 69, 135–156. 10.1021/cr60257a006. DOI