Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
35707152
PubMed Central
PMC9190040
DOI
10.1021/acsmedchemlett.2c00067
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a pattern recognition receptor expressed on immune cells and involved in the recognition of carbohydrate signatures present on various pathogens, including HIV, Ebola, and SARS-CoV-2. Therefore, developing inhibitors blocking the carbohydrate-binding site of DC-SIGN could generate a valuable tool to investigate the role of this receptor in several infectious diseases. Herein, we performed a fragment-based ligand design using 4-quinolone as a scaffold. We synthesized a library of 61 compounds, performed a screening against DC-SIGN using an STD reporter assay, and validated these data using protein-based 1H-15N HSQC NMR. Based on the structure-activity relationship data, we demonstrate that ethoxycarbonyl or dimethylaminocarbonyl in position 2 or 3 is favorable for the DC-SIGN binding activity, especially in combination with fluorine, ethoxycarbonyl, or dimethylaminocarbonyl in position 7 or 8. Furthermore, we demonstrate that these quinolones can allosterically modulate the carbohydrate binding site, which offers an alternative approach toward this challenging protein target.
Department of Pharmaceutical Sciences University of Vienna Althanstraße 14 1090 Vienna Austria
Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
University of Chemistry and Technology Prague Technická 5 16628 Prague 6 Czech Republic
See more in PubMed
Figdor C. G.; van Kooyk Y.; Adema G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2002, 2 (2), 77–84. 10.1038/nri723. PubMed DOI
Ernst B.; Magnani J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discovery 2009, 8 (8), 661–677. 10.1038/nrd2852. PubMed DOI PMC
Williams S. J. Sensing Lipids with Mincle: Structure and Function. Front. Immunol. 2017, 8, 1662.10.3389/fimmu.2017.01662. PubMed DOI PMC
Aretz J.; Anumala U. R.; Fuchsberger F. F.; Molavi N.; Ziebart N.; Zhang H.; Nazare M.; Rademacher C. Allosteric Inhibition of a Mammalian Lectin. J. Am. Chem. Soc. 2018, 140 (44), 14915–14925. 10.1021/jacs.8b08644. PubMed DOI
Jahagirdar P.; Lokhande A. S.; Dandekar P.; Devarajan P. V.. Mannose Receptor and Targeting Strategies. In Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis; Devarajan P. V., Dandekar P., D’Souza A. A., Eds.; Springer International Publishing: Cham, 2019; pp 433–456.
Balzan S.; Lubrano V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci. 2018, 198, 79–86. 10.1016/j.lfs.2018.02.024. PubMed DOI
Sorensen B.; Mant T.; Akinc A.; Simon A.; Melton L.; Lynam C.; Strahs A.; Sehgal A.; Hutabarat R.; Chaturvedi P.; Barros S.; Vaishnaw A. A Subcutaneously Administered RNAi Therapeutic (ALN-AT3) Targeting Antithrombin for Treatment of Hemophilia: Interim Phase 1 Study Results in Healthy Volunteers and Patients with Hemophilia a or B. Blood 2014, 124 (21), 693.10.1182/blood.V124.21.693.693. DOI
Shrimpton R. E.; Butler M.; Morel A. S.; Eren E.; Hue S. S.; Ritter M. A. CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol. Immunol. 2009, 46 (6), 1229–1239. 10.1016/j.molimm.2008.11.016. PubMed DOI PMC
Dhodapkar M. V.; Sznol M.; Zhao B.; Wang D.; Carvajal R. D.; Keohan M. L.; Chuang E.; Sanborn R. E.; Lutzky J.; Powderly J.; Kluger H.; Tejwani S.; Green J.; Ramakrishna V.; Crocker A.; Vitale L.; Yellin M.; Davis T.; Keler T. Induction of Antigen-Specific Immunity with a Vaccine Targeting NY-ESO-1 to the Dendritic Cell Receptor DEC-205. Sci. Transl. Med. 2014, 6 (232), 232ra51.10.1126/scitranslmed.3008068. PubMed DOI PMC
Geurtsen J.; Driessen N. N.; Appelmelk B. J.. Mannose–fucose recognition by DC-SIGN. In Microbial Glycobiology; Holst O., Brennan P. J., Itzstein M. v., Moran A. P., Eds.; Academic Press: San Diego, 2010; Chap. 34, pp 673–695.
Geijtenbeek T. B.; Kwon D. S.; Torensma R.; van Vliet S. J.; van Duijnhoven G. C.; Middel J.; Cornelissen I. L.; Nottet H. S.; KewalRamani V. N.; Littman D. R.; Figdor C. G.; van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100 (5), 587–597. 10.1016/S0092-8674(00)80694-7. PubMed DOI
Simmons G.; Reeves J. D.; Grogan C. C.; Vandenberghe L. H.; Baribaud F.; Whitbeck J. C.; Burke E.; Buchmeier M. J.; Soilleux E. J.; Riley J. L.; Doms R. W.; Bates P.; Pöhlmann S. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 2003, 305 (1), 115–123. 10.1006/viro.2002.1730. PubMed DOI
Liu P.; Ridilla M.; Patel P.; Betts L.; Gallichotte E.; Shahidi L.; Thompson N. L.; Jacobson K. Beyond attachment: Roles of DC-SIGN in dengue virus infection. Traffic 2017, 18 (4), 218–231. 10.1111/tra.12469. PubMed DOI PMC
Amraei R.; Yin W.; Napoleon M. A.; Suder E. L.; Berrigan J.; Zhao Q.; Olejnik J.; Chandler K. B.; Xia C.; Feldman J.; Hauser B. M.; Caradonna T. M.; Schmidt A. G.; Gummuluru S.; Muhlberger E.; Chitalia V.; Costello C. E.; Rahimi N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. ACS Cent. Sci. 2021, 7 (7), 1156–1165. 10.1021/acscentsci.0c01537. PubMed DOI PMC
Marzi A.; Gramberg T.; Simmons G.; Möller P.; Rennekamp A. J.; Krumbiegel M.; Geier M.; Eisemann J.; Turza N.; Saunier B.; Steinkasserer A.; Becker S.; Bates P.; Hofmann H.; Pohlmann S. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 2004, 78 (21), 12090–12095. 10.1128/JVI.78.21.12090-12095.2004. PubMed DOI PMC
Han D. P.; Lohani M.; Cho M. W. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J. Virol. 2007, 81 (21), 12029–12039. 10.1128/JVI.00315-07. PubMed DOI PMC
Cramer J. Medicinal chemistry of the myeloid C-type lectin receptors Mincle, Langerin, and DC-SIGN. RSC Med. Chem. 2021, 12 (12), 1985–2000. 10.1039/D1MD00238D. PubMed DOI PMC
Wen H.-C.; Lin C.-H.; Huang J.-S.; Tsai C.-L.; Chen T.-F.; Wang S.-K. Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem. Commun. 2019, 55 (62), 9124–9127. 10.1039/C9CC03124C. PubMed DOI
Obermajer N.; Sattin S.; Colombo C.; Bruno M.; Svajger U.; Anderluh M.; Bernardi A. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol. Divers. 2011, 15 (2), 347–360. 10.1007/s11030-010-9285-y. PubMed DOI PMC
Anderluh M.; Jug G.; Svajger U.; Obermajer N. DC-SIGN antagonists, a potential new class of anti-infectives. Curr. Med. Chem. 2012, 19 (7), 992–1007. 10.2174/092986712799320664. PubMed DOI
Varga N.; Sutkeviciute I.; Ribeiro-Viana R.; Berzi A.; Ramdasi R.; Daghetti A.; Vettoretti G.; Amara A.; Clerici M.; Rojo J.; Fieschi F.; Bernardi A. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials 2014, 35 (13), 4175–84. 10.1016/j.biomaterials.2014.01.014. PubMed DOI
Tomašić T.; Hajšek D.; Švajger U.; Luzar J.; Obermajer N.; Petit-Haertlein I.; Fieschi F.; Anderluh M. Monovalent mannose-based DC-SIGN antagonists: targeting the hydrophobic groove of the receptor. Eur. J. Med. Chem. 2014, 75, 308–326. 10.1016/j.ejmech.2014.01.047. PubMed DOI
Kotar A.; Tomašič T.; Lenarčič Živković M.; Jug G.; Plavec J.; Anderluh M. STD NMR and molecular modelling insights into interaction of novel mannose-based ligands with DC-SIGN. Org. Biomol. Chem. 2016, 14 (3), 862–875. 10.1039/C5OB01916H. PubMed DOI
Valverde P.; Martínez J. D.; Cañada F. J.; Ardá A.; Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. ChemBioChem. 2020, 21 (21), 2999–3025. 10.1002/cbic.202000238. PubMed DOI PMC
Porkolab V.; Chabrol E.; Varga N.; Ordanini S.; Sutkevičiu̅tė I.; Thépaut M.; García-Jiménez M. J.; Girard E.; Nieto P. M.; Bernardi A.; Fieschi F. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem. Biol. 2018, 13 (3), 600–608. 10.1021/acschembio.7b00958. PubMed DOI
Medve L.; Achilli S.; Guzman-Caldentey J.; Thépaut M.; Senaldi L.; Le Roy A.; Sattin S.; Ebel C.; Vivès C.; Martin-Santamaria S.; Bernardi A.; Fieschi F. Enhancing Potency and Selectivity of a DC-SIGN Glycomimetic Ligand by Fragment-Based Design: Structural Basis. Chemistry 2019, 25 (64), 14659–14668. 10.1002/chem.201903391. PubMed DOI PMC
Cramer J.; Lakkaichi A.; Aliu B.; Jakob R. P.; Klein S.; Cattaneo I.; Jiang X.; Rabbani S.; Schwardt O.; Zimmer G.; Ciancaglini M.; Abreu Mota T.; Maier T.; Ernst B. Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2. J. Am. Chem. Soc. 2021, 143 (42), 17465–17478. 10.1021/jacs.1c06778. PubMed DOI
Mangold S. L.; Prost L. R.; Kiessling L. L. Quinoxalinone Inhibitors of the Lectin DC-SIGN. Chem. Sci. 2012, 3 (3), 772–777. 10.1039/C2SC00767C. PubMed DOI PMC
Schulze J.; Baukmann H.; Wawrzinek R.; Fuchsberger F.; Specker E.; Aretz J.; Nazare M.; Rademacher C. CellFy-A Cell-Based Fragment Screen against C-Type Lectins. ACS Chem. Biol. 2018, 13 (12), 3229–3235. 10.1021/acschembio.8b00875. PubMed DOI
Aretz J.; Baukmann H.; Shanina E.; Hanske J.; Wawrzinek R.; Zapol’skii V. A.; Seeberger P. H.; Kaufmann D. E.; Rademacher C. Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN. Angew. Chem., Int. Ed. Engl. 2017, 56 (25), 7292–7296. 10.1002/anie.201701943. PubMed DOI
Borrok M. J.; Kiessling L. L. Non-carbohydrate Inhibitors of the Lectin DC-SIGN. J. Am. Chem. Soc. 2007, 129 (42), 12780–12785. 10.1021/ja072944v. PubMed DOI PMC
Mangold S. L.; Prost L. R.; Kiessling L. L. Quinoxalinone inhibitors of the lectin DC-SIGN. Chem. Sci. 2012, 3 (3), 772–777. 10.1039/C2SC00767C. PubMed DOI PMC
Keller B. G.; Rademacher C. Allostery in C-type lectins. Curr. Opin. Struct. Biol. 2020, 62, 31–38. 10.1016/j.sbi.2019.11.003. PubMed DOI
Wenthur C. J.; Gentry P. R.; Mathews T. P.; Lindsley C. W. Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 165–184. 10.1146/annurev-pharmtox-010611-134525. PubMed DOI PMC
Pham T. D. M.; Ziora Z. M.; Blaskovich M. A. T. Quinolone antibiotics. MedChemComm 2019, 10 (10), 1719–1739. 10.1039/C9MD00120D. PubMed DOI PMC
Kathrotiya H. G.; Patel M. P. Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents. Eur. J. Med. Chem. 2013, 63, 675–684. 10.1016/j.ejmech.2013.03.017. PubMed DOI
Biagini G. A.; Fisher N.; Shone A. E.; Mubaraki M. A.; Srivastava A.; Hill A.; Antoine T.; Warman A. J.; Davies J.; Pidathala C.; Amewu R. K.; Leung S. C.; Sharma R.; Gibbons P.; Hong D. W.; Pacorel B.; Lawrenson A. S.; Charoensutthivarakul S.; Taylor L.; Berger O.; Mbekeani A.; Stocks P. A.; Nixon G. L.; Chadwick J.; Hemingway J.; Delves M. J.; Sinden R. E.; Zeeman A.-M.; Kocken C. H. M.; Berry N. G.; O’Neill P. M.; Ward S. A. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (21), 8298–8303. 10.1073/pnas.1205651109. PubMed DOI PMC
Kumar D. V.; Rai R.; Brameld K. A.; Somoza J. R.; Rajagopalan R.; Janc J. W.; Xia Y. M.; Ton T. L.; Shaghafi M. B.; Hu H.; Lehoux I.; To N.; Young W. B.; Green M. J. Quinolones as HCV NS5B polymerase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21 (1), 82–87. 10.1016/j.bmcl.2010.11.068. PubMed DOI
Wang R.; Xu K.; Shi W. Quinolone derivatives: Potential anti-HIV agent-development and application. Arch. Pharm. Chem. Life Sci. 2019, 352 (9), e1900045.10.1002/ardp.201900045. PubMed DOI
Yadav V.; Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother. 2019, 111, 934–946. 10.1016/j.biopha.2018.12.119. PubMed DOI
Edmont D.; Rocher R.; Plisson C.; Chenault J. Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Med. Chem. Lett. 2000, 10 (16), 1831–1834. 10.1016/S0960-894X(00)00354-1. PubMed DOI
Cala O.; Krimm I. Ligand-Orientation Based Fragment Selection in STD NMR Screening. Eur. J. Med. Chem. 2015, 58 (21), 8739–8742. 10.1021/acs.jmedchem.5b01114. PubMed DOI
Wang Y. S.; Liu D.; Wyss D. F. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn. Reson. Chem. 2004, 42 (6), 485–489. 10.1002/mrc.1381. PubMed DOI
Wamhoff E.-C.; Hanske J.; Schnirch L.; Aretz J.; Grube M.; Varón Silva D.; Rademacher C. 19F NMR-Guided Design of Glycomimetic Langerin Ligands. ACS Chem. Biol. 2016, 11 (9), 2407–2413. 10.1021/acschembio.6b00561. PubMed DOI
Wawrzinek R.; Wamhoff E. C.; Lefebre J.; Rentzsch M.; Bachem G.; Domeniconi G.; Schulze J.; Fuchsberger F. F.; Zhang H.; Modenutti C.; Schnirch L.; Marti M. A.; Schwardt O.; Bräutigam M.; Guberman M.; Hauck D.; Seeberger P. H.; Seitz O.; Titz A.; Ernst B.; Rademacher C. A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN. J. Am. Chem. Soc. 2021, 143 (45), 18977–18988. 10.1021/jacs.1c07235. PubMed DOI PMC
Hanske J.; Aleksić S.; Ballaschk M.; Jurk M.; Shanina E.; Beerbaum M.; Schmieder P.; Keller B. G.; Rademacher C. Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin. J. Am. Chem. Soc. 2016, 138 (37), 12176–12186. 10.1021/jacs.6b05458. PubMed DOI
Hopkins A. L.; Groom C. R.; Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 2004, 9 (10), 430–431. 10.1016/S1359-6446(04)03069-7. PubMed DOI
Glycomimetics for the inhibition and modulation of lectins