Transcriptomic and proteomic profiling of peptidase expression in Fasciola hepatica eggs developing at host's body temperature
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35725898
PubMed Central
PMC9209485
DOI
10.1038/s41598-022-14419-z
PII: 10.1038/s41598-022-14419-z
Knihovny.cz E-zdroje
- MeSH
- Fasciola hepatica * enzymologie MeSH
- ovum * enzymologie MeSH
- proteasy * metabolismus MeSH
- proteom * MeSH
- proteomika MeSH
- savci parazitologie MeSH
- tělesná teplota MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteasy * MeSH
- proteom * MeSH
Fasciola hepatica is a global parasite of livestock which also causes a neglected zoonosis in humans. The parasite's communication with the host during its complicated lifecycle is based on an ingenious enzymatic apparatus which includes a variety of peptidases. These enzymes are implicated in parasite migration, pathogenesis of the disease, and modification of host immune response. Although the dynamics of proteolytic machinery produced by intra-mammalian F. hepatica life stages has been previously investigated in great detail, peptidases of the eggs so far received little scientific attention. In this study, we performed a comparative RNA-seq analysis aimed at identification of peptidases expressed in F. hepatica eggs, cultured at 37 °C to represent gall bladder retained eggs, for different time periods and employed mass spectrometry in order to identify and quantify peptidases translated in F. hepatica egg lysates. We demonstrated that F. hepatica eggs undergo significant molecular changes when cultured at the physiological temperature of the definitive host. Egg transcriptome is subject to numerous subtle changes while their proteome is even more variable. The peptidase profile is considerably modified on both transcriptome and proteome level. Finally, we measured and classified proteolytic activities in extracts from F. hepatica eggs using a library of fluorogenic substrates and peptidase class-selective inhibitors. Activities of threonine peptidases were detected constantly, while the cysteine peptidases prevailing in freshly laid eggs are substituted by aspartic peptidase and metallopeptidase activities in the later stages of egg development.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
Webb CM, Cabada MM. Recent developments in the epidemiology, diagnosis, and treatment of Fasciola infection. Curr. Opin. Infect. Dis. 2018;31:409–414. doi: 10.1097/QCO.0000000000000482. PubMed DOI
Nyindo M, Lukambagire AH. Fascioliasis: An ongoing zoonotic trematode infection. Biomed. Res. Int. 2015;3:1–8. doi: 10.1155/2015/786195. PubMed DOI PMC
Charlier J, Vercruysse J, Morgan E, Van Dijk J, Williams DJL. Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitology. 2014;141:326–335. doi: 10.1017/S0031182013001662. PubMed DOI
Rahko T. The pathology of natural Fasciola hepatica infection in cattle. Vet. Pathol. 1969;6:244–256. PubMed
Marcos LA, et al. Hepatic fibrosis and Fasciola hepatica infection in cattle. J. Helminthol. 2007;81:381–386. doi: 10.1017/S0022149X07850231. PubMed DOI
Hashem MAE-A, Mohamed SS. Hazard assessments of cattle fascioliasis with special reference to hemato-biochemical biomarkers. Vet. Med. Open J. 2017;2:12–18. doi: 10.17140/VMOJ-2-111. DOI
Beesley NJ, et al. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 2018;65:199–216. doi: 10.1111/tbed.12682. PubMed DOI PMC
Happich FA, Boray JC. Quantitative diagnosis of chronic fasciolosis. Aust. Vet. J. 1969;45:329–331. doi: 10.1111/j.1751-0813.1969.tb05012.x. PubMed DOI
Wilson RA. The hatching mechanism of the egg of Fasciola hepatica L. Parasitology. 1968;58:79–89. doi: 10.1017/S0031182000073443. PubMed DOI
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist. 2020;12:39–59. doi: 10.1016/j.ijpddr.2019.11.003. PubMed DOI PMC
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using ‘omics’ technologies. Int. J. Parasitol. 2018;48:321–331. doi: 10.1016/j.ijpara.2017.12.001. PubMed DOI
Cwiklinski K, et al. The Fasciola hepatica genome: Gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol. 2015;16:1–13. doi: 10.1186/s13059-015-0632-2. PubMed DOI PMC
McNulty SN, et al. Genomes of Fasciola hepatica from the Americas reveal colonization with Neorickettsia endobacteria related to the agents of Potomac horse and human Sennetsu fevers. PLoS Genet. 2017;13:e1006537. doi: 10.1371/journal.pgen.1006537. PubMed DOI PMC
Robinson M, Menon R, Donnelly S, Dalton J, Ranganathan S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: Proteins associated with invasion and infection of the mammalian host. Mol. Cell Proteomics. 2009;8:1891–1907. doi: 10.1074/mcp.M900045-MCP200. PubMed DOI PMC
Haçariz O, Akgün M, Kavak P, Yüksel B, Sağiroğlu MŞ. Comparative transcriptome profiling approach to glean virulence and immunomodulation-related genes of Fasciola hepatica. BMC Genomics. 2015;16:1–22. doi: 10.1186/s12864-015-1539-8. PubMed DOI PMC
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics. 2021;22:1–16. doi: 10.1186/s12864-020-07326-y. PubMed DOI PMC
Cancela M, et al. Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica. BMC Genomics. 2010;11:1–14. doi: 10.1186/1471-2164-11-227. PubMed DOI PMC
Young ND, Hall RS, Jex AR, Cantacessi C, Gasser RB. Elucidating the transcriptome of Fasciola hepatica—A key to fundamental and biotechnological discoveries for a neglected parasite. Biotechnol. Adv. 2010;28:222–231. doi: 10.1016/j.biotechadv.2009.12.003. PubMed DOI
Cwiklinski K, et al. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to adjust toits mammalian host. Mol. Cell. Proteomics. 2018;17:792. doi: 10.1074/mcp.RA117.000445. PubMed DOI PMC
Wilson RA, et al. Exploring the Fasciola hepatica tegument proteome. Int. J. Parasitol. 2011;41:1347–1359. doi: 10.1016/j.ijpara.2011.08.003. PubMed DOI
Moxon JV, et al. Proteomic analysis of embryonic Fasciola hepatica: Characterization and antigenic potential of a developmentally regulated heat shock protein. Vet. Parasitol. 2010;169:62–75. doi: 10.1016/j.vetpar.2009.12.031. PubMed DOI
Morphew RM, Wright HA, LaCourse EJ, Woods DJ, Brophy PM. Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host. Mol. Cell Proteomics. 2007;6:963–972. doi: 10.1074/mcp.M600375-MCP200. PubMed DOI
Jefferies JR, Campbell AM, van Rossum AJ, Barrett J, Brophy PM. Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics. 2001;1:1128–1132. doi: 10.1002/1615-9861(200109)1:9<1128::AID-PROT1128>3.0.CO;2-0. PubMed DOI
Di Maggio LS, et al. Across intra-mammalian stages of the liver fluke Fasciola hepatica: A proteomic study. Sci. Rep. 2016;6:1–14. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC
Chemale G, et al. Comparative proteomic analysis of triclabendazole response in the liver fluke Fasciola hepatica. J. Proteome Res. 2010;9:4940–4951. doi: 10.1021/pr1000785. PubMed DOI
Ravida A, et al. Fasciola hepatica surface tegument: Glycoproteins at the interface of parasite and host. Mol. Cell. Proteomics. 2016;15:3139. doi: 10.1074/mcp.M116.059774. PubMed DOI PMC
McVeigh P, et al. In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-29673-3. PubMed DOI PMC
Friedl FE. The common liver fluke. Science. 1966;1979(151):1376–1377. doi: 10.1126/science.151.3716.1376.b. DOI
Andrews SJ. The life cycle of Fasciola hepatica. In: Dalton JP, editor. Fasciolosis. CABI Publishing; 1999. pp. 1–29.
Atkinson HJ, Babbitt PC, Sajid M. The global cysteine peptidase landscape in parasites. Trends Parasitol. 2009;25:573–581. doi: 10.1016/j.pt.2009.09.006. PubMed DOI PMC
Kašný M, et al. Peptidases of trematodes. Adv. Parasitol. 2009;69:205–297. doi: 10.1016/S0065-308X(09)69004-7. PubMed DOI
Yang Y, et al. Serine proteases of parasitic helminths. Korean J. Parasitol. 2015;53:1–11. doi: 10.3347/kjp.2015.53.1.1. PubMed DOI PMC
Carson JP, et al. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol. Biochem. Parasitol. 2020;240:111322. doi: 10.1016/j.molbiopara.2020.111322. PubMed DOI PMC
Fairweather I, et al. Development of an egg hatch assay for the diagnosis of triclabendazole resistance in Fasciola hepatica: Proof of concept. Vet. Parasitol. 2012;183:249–259. doi: 10.1016/j.vetpar.2011.07.023. PubMed DOI
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—A comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2017;215:2–10. doi: 10.1016/j.molbiopara.2016.11.005. PubMed DOI PMC
Bateman A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Rawlings ND, et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2014 doi: 10.1038/nmeth.3176. PubMed DOI
Jones P, et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Andrews, S., Krueger, F., Seconds-Pichon, A., Biggins, F. & Wingett, S. FastQC. A quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Institutehttps://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2015).
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:1–16. doi: 10.1186/1471-2105-12-1. PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
The Global Proteome Machine. http://www.thegpm.org/crap (2011).
Gömöryová, K. & Potěšil, D. KNIME docker vnc. https://github.com/OmicsWorkflows/KNIME_docker_vnc (2020).
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computinghttps://www.r-project.org/ (2017).
Ritchie ME, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Cwiklinski K, et al. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Adv. Parasitol. 2019;104:113–164. doi: 10.1016/bs.apar.2019.01.001. PubMed DOI
Jílková A, et al. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem. 2011;286:35770–35781. doi: 10.1074/jbc.M111.271304. PubMed DOI PMC
Dvořák J, et al. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles. Biochimie. 2016;122:99–109. doi: 10.1016/j.biochi.2015.09.025. PubMed DOI PMC
Goupil LS, et al. Cysteine and aspartyl proteases contribute to protein digestion in the gut of freshwater planaria. PLoS Negl. Trop. Dis. 2016;10:e0004893. doi: 10.1371/journal.pntd.0004893. PubMed DOI PMC
Auld D. Use of chelating agents to inhibit enzymes. Methods Enzymol. 1988;158:110–114. doi: 10.1016/0076-6879(88)58051-5. PubMed DOI
Barrett AJ, et al. l-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982;201:198. doi: 10.1042/bj2010189. PubMed DOI PMC
Lively M, Powers J. Specificity and reactivity of human granulocyte elastase and cathepsin G, porcine pancreatic elastase, bovine chymotrypsin and trypsin toward inhibition with sulfonyl fluorides. Biochim. Biophys. Acta. 1978;525:171–179. doi: 10.1016/0005-2744(78)90211-5. PubMed DOI
Knight C, Barrett A. Interaction of human cathepsin D with the inhibitor pepstatin. Biochem. J. 1976;155:117–125. doi: 10.1042/bj1550117. PubMed DOI PMC
Morais ER, et al. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni. PLoS ONE. 2017;12:e018419. PubMed PMC
Larki S, Hossein M, Jalali R, Goudarzi S, Zamani M. Effect of host species on hatchability of Fasciola hepatica and Fasciola gigantica eggs from sheep and cattle. J. Med. Microbiol. Infect. Dis. 2020;8:166–171.
Chryssafidis AL, Fu Y, de Waal T, Mulcahy G. Standardisation of egg-viability assays for Fasciola hepatica and Calicophoron daubneyi: A tool for evaluating new technologies of parasite control. Vet. Parasitol. 2015;210:25–31. doi: 10.1016/j.vetpar.2015.03.005. PubMed DOI
De Marco Verissimo C, et al. Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasites Vectors. 2019;12:1–16. doi: 10.1186/s13071-019-3403-1. PubMed DOI PMC
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics. 2019;20:1–13. doi: 10.1186/s12864-019-5749-3. PubMed DOI PMC
Rawlings N, Barrett A, Bateman A. Asparagine peptide lyases: A seventh catalytic type of proteolytic enzymes. J. Biol. Chem. 2011;286:38321–38328. doi: 10.1074/jbc.M111.260026. PubMed DOI PMC
Robinson MW, et al. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: Expansion of a repertoire of virulence-associated factors. Mol. Cell. Proteomics. 2008;7:1111–1123. doi: 10.1074/mcp.M700560-MCP200. PubMed DOI
Caffrey CR, McKerrow JH, Salter JP, Sajid M. Blood ‘n’ guts: An update on schistosome digestive peptidases. Trends Parasitol. 2004;20:241–248. doi: 10.1016/j.pt.2004.03.004. PubMed DOI
Athauda S, Takahashi K. Cleavage specificities of aspartic proteinases toward oxidized insulin B chain at different pH values. Protein Pept. Lett. 2005;9:289–294. doi: 10.2174/0929866023408698. PubMed DOI
Marcilla A, et al. Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clin. Vaccine Immunol. 2008;15:95. doi: 10.1128/CVI.00338-07. PubMed DOI PMC
Rinaldi G, et al. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Mol. Biochem. Parasitol. 2009;167:118–126. doi: 10.1016/j.molbiopara.2009.05.002. PubMed DOI PMC
Polgár L. The prolyl oligopeptidase family. Cell. Mol. Life Sci. 2002;59:349–362. doi: 10.1007/s00018-002-8427-5. PubMed DOI PMC
Barrett T, et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013;41:D991–D995. doi: 10.1093/nar/gks1193. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC