Synthesis and characterization of TiO2 nanoparticles combined with geraniol and their synergistic antibacterial activity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37528354
PubMed Central
PMC10394861
DOI
10.1186/s12866-023-02955-1
PII: 10.1186/s12866-023-02955-1
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilm, Escherichia coli, Geraniol, MRSA, Methicillin-resistant Staphylococcus aureus, Minimum inhibitory concentration, Nanoparticles, SEM-EDS, Titanium dioxide,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria MeSH
- kovové nanočástice * MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- nanočástice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- geraniol MeSH Prohlížeč
- titanium dioxide MeSH Prohlížeč
BACKGROUND: The emergence of antibiotic resistance in pathogenic bacteria has become a global threat, encouraging the adoption of efficient and effective alternatives to conventional antibiotics and promoting their use as replacements. Titanium dioxide nanoparticles (TiO2 NPs) have been reported to exhibit antibacterial properties. In this study, we synthesized and characterized TiO2 NPs in anatase and rutile forms with surface modification by geraniol (GER). RESULTS: The crystallinity and morphology of modified TiO2 NPs were analyzed by UV/Vis spectrophotometry, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) with elemental mapping (EDS). The antimicrobial activity of TiO2 NPs with geraniol was assessed against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli. The minimum inhibitory concentration (MIC) values of modified NPs ranged from 0.25 to 1.0 mg/ml against all bacterial strains, and the live dead assay and fractional inhibitory concentration (FIC) supported the antibacterial properties of TiO2 NPs with GER. Moreover, TiO2 NPs with GER also showed a significant decrease in the biofilm thickness of MRSA. CONCLUSIONS: Our results suggest that TiO2 NPs with GER offer a promising alternative to antibiotics, particularly for controlling antibiotic-resistant strains. The surface modification of TiO2 NPs by geraniol resulted in enhanced antibacterial properties against multiple bacterial strains, including antibiotic-resistant MRSA. The potential applications of modified TiO2 NPs in the biomedical and environmental fields warrant further investigation.
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Department of Inorganic Chemistry Faculty of Science Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399(10325):629–55. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC
Coyle JR, Freeland M, Eckel ST, Hart AL. Trends in morbidity, mortality, and cost of hospitalizations associated with infectious disease sequelae of the opioid epidemic. J Infect Dis. 2020;222(Supplement5):451–S7. doi: 10.1093/infdis/jiaa012. PubMed DOI
Li H, He J, Liang J, Liang Y, Zheng W, Qu Q et al. Opposing implications of co-evolutionary lineages and traits of gut microbiome on human health status. bioRxiv. 2023:2023.05. 30.542569.
Ansarian Barezi A, Shakerian A, Rahimi E, Esfandiari Z. Examining the Extent of Contamination, Antibiotic Resistance, and Genetic Diversity of Clostridioides (Clostridium) difficile Strains in Meat and Feces of Some Native Birds of Iran. BioMed Research International. 2023;2023. PubMed PMC
Suprenant MP, Ching C, Sutradhar I, Gross N, Anderson JE, El Sherif N et al. Impact of Zinc Pre-exposure on de novo Antibiotic Resistance Development. bioRxiv. 2023:2023.04. 10.536219.
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016;21(5):559. doi: 10.3390/molecules21050559. PubMed DOI PMC
Basavegowda N, Baek K-H. Multimetallic nanoparticles as alternative Antimicrobial Agents: Challenges and Perspectives. Molecules. 2021;26(4):912. doi: 10.3390/molecules26040912. PubMed DOI PMC
Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther. 2018;1(3):1700033. doi: 10.1002/adtp.201700033. DOI
Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411–20. doi: 10.1039/c0nr00875c. PubMed DOI
Arreche R, Bellotti N, Blanco M, Vázquez P. Synthesis and characterization of zirconium oxides for use as antimicrobial additives in paints. Procedia Mater Sci. 2015;9:627–34. doi: 10.1016/j.mspro.2015.05.039. DOI
Nguyen N-YT, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep. 2018;8(1):16260. doi: 10.1038/s41598-018-34567-5. PubMed DOI PMC
Liu K, Cheng F, Luo Y, Liu L, Wang C, Xie K, et al. Porous single crystalline-like titanium dioxide monolith with enhanced photoelectrochemical performance. Front Mater. 2023;10:1177093. doi: 10.3389/fmats.2023.1177093. DOI
Alshibeh Alwattar N, Vacandio F, Vassalo L, Djenizian T, Coulomb B, Boudenne J-L, editors. Effects of Mode of Preparation of Titanium Dioxide Nanotube arrays on their Photocatalytic Properties: application to p-Nitroaniline degradation. Micro: MDPI; 2023.
Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. ACS Publications; 2012. PubMed
Oktar N, Yetmez F, Ficai M, Ficai D, Dumitru A, Pica F. Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles. Curr Top Med Chem. 2015;15(16):1583–8. doi: 10.2174/1568026615666150414141601. PubMed DOI
Ibáñez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other Gram (–) bacteria. J Photochem Photobiol A. 2003;157(1):81–5. doi: 10.1016/S1010-6030(03)00074-1. DOI
Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discovery Today. 2016;21(6):1009–18. doi: 10.1016/j.drudis.2016.04.009. PubMed DOI
Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(1):120. doi: 10.3390/ijms18010120. PubMed DOI PMC
Sandulescu A, Anastasescu C, Papa F, Raciulete M, Vasile A, Spataru T, et al. Advancements on Basic Working Principles of Photo-Driven oxidative degradation of Organic Substrates over Pristine and Noble Metal-Modified TiO2. Model case of Phenol Photo Oxidation. Catalysts. 2021;11(4):487. doi: 10.3390/catal11040487. DOI
Reddy PVL, Kavitha B, Reddy PAK, Kim K-H. TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ Res. 2017;154:296–303. doi: 10.1016/j.envres.2017.01.018. PubMed DOI
Anandgaonker P, Kulkarni G, Gaikwad S, Rajbhoj A. Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arab J Chem. 2019;12(8):1815–22. doi: 10.1016/j.arabjc.2014.12.015. DOI
Allen NS, Mahdjoub N, Vishnyakov V, Kelly PJ, Kriek RJ. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2) Polym Degrad Stab. 2018;150:31–6. doi: 10.1016/j.polymdegradstab.2018.02.008. DOI
Polli AD, Lange FF, Levi CG. Metastability of the fluorite, pyrochlore, and perovskite structures in the PbO—ZrO2—TiO2 system. J Am Ceram Soc. 2000;83(4):873–81. doi: 10.1111/j.1151-2916.2000.tb01288.x. DOI
Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90:1847–68. doi: 10.1007/s00253-011-3213-7. PubMed DOI PMC
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941. doi: 10.2147/IJN.S134526. PubMed DOI PMC
Scarpelli F, Mastropietro TF, Poerio T, Godbert N. Mesoporous TiO2 thin films: state of the art. Titanium Dioxide-Material for a Sustainable Environment. 2018;508(1):135–42.
Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res. 2009;11(6):1361–74. doi: 10.1007/s11051-008-9523-8. DOI
Lu Z-X, Zhou L, Zhang Z-L, Shi W-L, Xie Z-X, Xie H-Y, et al. Cell damage Induced by Photocatalysis of TiO2 Thin Films. Langmuir. 2003;19(21):8765–8. doi: 10.1021/la034807r. DOI
Li K, Qian J, Wang P, Wang C, Fan X, Lu B, et al. Toxicity of three crystalline TiO2 nanoparticles in activated sludge: bacterial cell death modes differentially weaken sludge dewaterability. Environ Sci Technol. 2019;53(8):4542–55. doi: 10.1021/acs.est.8b04991. PubMed DOI
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, et al. editors. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in cancer biology. Elsevier; 2021. PubMed
Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, et al. Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules. 2020;10(3):452. doi: 10.3390/biom10030452. PubMed DOI PMC
du Maire P, Deckert M, Johlitz M, Öchsner A. Characterisation of the mechanical properties of polyamide 12 powder when using titanium dioxide as antimicrobial additive. Materialwiss Werkstofftech. 2023;54(4):385–90. doi: 10.1002/mawe.202200329. DOI
Kassalia M-E, Chorianopoulos N, Nychas G-J, Pavlatou EA. Investigation of the Photoinduced Antimicrobial Properties of N-Doped TiO2 nanoparticles under visible-light irradiation on Salmonella Typhimurium Biofilm. Appl Sci. 2023;13(7):4498. doi: 10.3390/app13074498. DOI
Cha BJ, Saqlain S, Seo HO, Kim YD. Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Appl Surf Sci. 2019;479:31–8. doi: 10.1016/j.apsusc.2019.01.261. DOI
Bui VKH, Park D, Lee Y-C. Chitosan Combined with ZnO, TiO2 and ag nanoparticles for Antimicrobial Wound Healing applications: a Mini Review of the Research Trends. Polymers. 2017;9(1):21. doi: 10.3390/polym9010021. PubMed DOI PMC
Zhao Y, Wang Y, Xiao G, Su H. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants. Chin J Chem Eng. 2019;27(6):1416–28. doi: 10.1016/j.cjche.2019.02.003. DOI
Kusworo TD, Ariyanti N, Utomo DP. Effect of nano-TiO2 loading in polysulfone membranes on the removal of pollutant following natural-rubber wastewater treatment. J Water Process Eng. 2020;35:101190. doi: 10.1016/j.jwpe.2020.101190. DOI
Zhang J, Liu Q, He H, Shi F, Huang G, Xing B, et al. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B. Carbon. 2019;152:284–94. doi: 10.1016/j.carbon.2019.06.034. DOI
Jadhav R, Pawar P, Choudhari V, Topare N, Raut-Jadhav S, Bokil S et al. An overview of antimicrobial nanoparticles for food preservation. Materials Today: Proceedings. 2022.
Regev S, Cone WW. Analyses of pharate female twospotted spider mites for nerolidol and geraniol: evaluation for sex attraction of males. Environ Entomol. 1976;5(1):133–8. doi: 10.1093/ee/5.1.133. DOI
Chen W, Viljoen AM. Geraniol — a review of a commercially important fragrance material. South Afr J Bot. 2010;76(4):643–51. doi: 10.1016/j.sajb.2010.05.008. DOI
Mayabadi AH, Waman VS, Kamble MM, Ghosh SS, Gabhale BB, Rondiya SR, et al. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. J Phys Chem Solids. 2014;75(2):182–7. doi: 10.1016/j.jpcs.2013.09.008. DOI
Maheswari P, Ponnusamy S, Harish S, Muthamizhchelvan C, Ganesh MR, Hayakawa Y. Hydrothermal syntheses and characterization of bio-modified TiO2 nanoparticles with Aqua Rosa and protein powder for their biological applications. Appl Surf Sci. 2019;494:989–99. doi: 10.1016/j.apsusc.2019.07.123. DOI
Hameed RS, Fayyad RJ, Nuaman RS, Hamdan NT, Maliki SAJ. Synthesis and characterization of a Novel Titanium Nanoparticals using Banana Peel Extract and investigate its Antibacterial and Insecticidal Activity. J Pure Appl Microbiol. 2019;13(4):2241–9. doi: 10.22207/JPAM.13.4.38. DOI
Abu-Dalo M, Jaradat A, Albiss BA, Al-Rawashdeh NAF. Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. J Environ Chem Eng. 2019;7(5):13. doi: 10.1016/j.jece.2019.103370. DOI
Ahmadi R, Tanomand A, Kazeminava F, Kamounah FS, Ayaseh A, Ganbarov K, et al. Fabrication and characterization of a titanium dioxide (TiO2) nanoparticles reinforced bio-nanocomposite containing Miswak (Salvadora persica L.) extract - the antimicrobial, thermo-physical and barrier properties. Int J Nanomed. 2019;14:3439–54. doi: 10.2147/IJN.S201626. PubMed DOI PMC
Bahmani M, Taherikalani M, Khaksarian M, Rafieian-Kopaei M, Ashrafi B, Nazer M, et al. Synthesis and evaluation of the Antibacterial Effect of Titanium Dioxide Nanoparticles in comparison with Ampicillin, Colistin, and Ertapenem on Staphylococcus aureus. J Pharm Negat Results. 2019;10(1):16–20. doi: 10.4103/jpnr.JPNR_21_18. DOI
Lu P-J, Huang S-C, Chen Y-P, Chiueh L-C, Shih DY-C. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J food drug Anal. 2015;23(3):587–94. doi: 10.1016/j.jfda.2015.02.009. PubMed DOI PMC
Zhang Q, Fan W, Gao L. Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst. Appl Catal B. 2007;76(1–2):168–73. doi: 10.1016/j.apcatb.2007.05.024. DOI
Saiful Amran SNB, Wongso V, Abdul Halim NS, Husni MK, Sambudi NS, Wirzal MDH. Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue. J Asian Ceam Soc. 2019;7(3):321–30. doi: 10.1080/21870764.2019.1636929. DOI
Rosliza R, Izman S. SEM-EDS characterization of natural products on corrosion inhibition of Al-Mg-Si alloy. Prot Met Phys Chem Surf. 2011;47(3):395–401. doi: 10.1134/S2070205111030129. DOI
Tisserand R, Young R. 2 - Essential oil composition. In: Tisserand R, Young R, editors. Essential Oil Safety (Second Edition). St. Louis: Churchill Livingstone; 2014. p. 5–22.
Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: recent progress in antimicrobial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022:e1860. PubMed
Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol. 2020;157:743–51. doi: 10.1016/j.ijbiomac.2019.11.244. PubMed DOI
Zhang T, Li ZQ, Wang WB, Wang Y, Gao BY, Wang ZN. Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. J Colloid Interface Sci. 2019;537:1–10. doi: 10.1016/j.jcis.2018.10.092. PubMed DOI
Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M. Antimicrobial activity of Titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. 2019;9:10. doi: 10.1038/s41598-019-54025-0. PubMed DOI PMC
Deshmukh SP, Mullani SB, Koli VB, Patil SM, Kasabe PJ, Dandge PB, et al. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochem Photobiol. 2018;94(6):1249–62. doi: 10.1111/php.12983. PubMed DOI
Desai V, Kowshik M. Synthesis and characterization of fumaric acid functionalized AgCl/titania nanocomposite with enhanced antibacterial activity. J Nanosci Nanotechnol. 2013;13(4):2826–34. doi: 10.1166/jnn.2013.7370. PubMed DOI
Chegeni M, Pour SK, Dizaji BF. Synthesis and characterization of novel antibacterial Sol-gel derived TiO2/Zn2TiO4/Ag nanocomposite as an active agent in Sunscreens. Ceram Int. 2019;45(18):24413–8. doi: 10.1016/j.ceramint.2019.08.163. DOI
Ansari MA, Albetran HM, Alheshibri MH, Timoumi A, Algarou NA, Akhtar S, et al. Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria. Antibiotics. 2020;9(9):572. doi: 10.3390/antibiotics9090572. PubMed DOI PMC
Senarathna U, Fernando S, Gunasekara T, Weerasekera M, Hewageegana H, Arachchi N, et al. Enhanced antibacterial activity of TiO2 nanoparticle surface modified with Garcinia zeylanica extract. Chem Cent J. 2017;11(1):1–8. doi: 10.1186/s13065-017-0236-x. PubMed DOI PMC
Basavegowda N, Baek K-H. Combination strategies of different antimicrobials: an efficient and alternative Tool for Pathogen inactivation. Biomedicines. 2022;10(9):2219. doi: 10.3390/biomedicines10092219. PubMed DOI PMC
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and alternative medicine. 2016;2016. PubMed PMC
Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 2014;4(1):1–9. doi: 10.1038/srep04134. PubMed DOI PMC
Xiang Y, Ran Q, Wu C, Zhou L, Zhang W, Li J, et al. Single-cell transcriptomics uncovers the impacts of titanium dioxide nanoparticles on human bone marrow stromal cells. Chem Eng J. 2022;440:135814. doi: 10.1016/j.cej.2022.135814. DOI