Titanium dioxide nanoparticles: Recent progress in antimicrobial applications
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36205103
DOI
10.1002/wnan.1860
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2, antibacterial, bacteria, drug resistance, microorganisms, nanomaterial,
- MeSH
- antiinfekční látky * farmakologie MeSH
- kovové nanočástice * MeSH
- nanočástice * MeSH
- nanostruktury * MeSH
- titan farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky * MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Zobrazit více v PubMed
Abu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7(5), 1-13. https://doi.org/10.1016/j.jece.2019.103370
Ahmadi, R., Tanomand, A., Kazeminava, F., Kamounah, F. S., Ayaseh, A., Ganbarov, K., Yousefi, M., Katourani, A., Yousefi, B., & Kafil, H. S. (2019). Fabrication and characterization of a titanium dioxide (TiO2) nanoparticles reinforced bio-nanocomposite containing Miswak (Salvadora persica L.) extract: The antimicrobial, thermo-physical and barrier properties. International Journal of Nanomedicine, 14, 3439-3454. https://doi.org/10.2147/ijn.S201626
Ahmed, D. S., Mohammed, M. K. A., & Mohammad, M. R. (2020). Sol-gel synthesis of ag-doped titania-coated carbon nanotubes and study their biomedical applications. Chemical Papers, 74(1), 197-208. https://doi.org/10.1007/s11696-019-00869-9
Albalghiti, E., Stabryla, L. M., Gilbertson, L. M., & Zimmerman, J. B. (2021). Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: A meta-analysis of the influence of study design on mechanistic conclusions. Environmental Science: Nano, 8(1), 37-66.
Ali, M., Hussain, R., Tariq, F., Noreen, Z., Toufiq, A. M., Bokhari, H., Akhtar, N., & Rahman, S. U. (2020). Highly effective visible light-activated cobalt-doped TiO2 nanoparticles for antibacterial coatings against Campylobacter jejuni. Applied Nano, 10(3), 1005-1012. https://doi.org/10.1007/s13204-019-01193-0
Ali, S. S., Sonbol, F. I., Sun, J. Z., Hussein, M. A., Hafez, A. E. E., Abdelkarim, E. A., Kornaros, M., Ali, A., & Azab, M. (2020). Molecular characterization of virulence and drug resistance genes-producing Escherichia coli isolated from chicken meat: Metal oxide nanoparticles as novel antibacterial agents. Microbial Pathogenesis, 143, 104164. https://doi.org/10.1016/j.micpath.2020.104164
Alizadeh-Sani, M., Hamishehkar, H., Khezerlou, A., Maleki, M., Azizi-Lalabadi, M., Bagheri, V., Safaei, P., Azimi, T., Hashemi, M., & Ehsani, A. (2020). Kinetics analysis and susceptibility coefficient of the pathogenic bacteria by titanium dioxide and zinc oxide nanoparticles. Advanced Pharmaceutical Bulletin, 10(1), 56-64. https://doi.org/10.15171/apb.2020.007
Allen, N., Mahdjoub, N., Vishnyakov, V., Kelly, P., & Kriek, R. (2018). The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polymer Degradation and Stability, 150, 31-36. https://doi.org/10.1016/j.polymdegradstab
Alotaibi, A. M., Williamson, B. A. D., Sathasivam, S., Kafizas, A., Alqahtani, M., Sotelo-Vazquez, C., Buckeridge, J., Wu, J., Nair, S. P., Scanlon, D. O., & Parkin, I. P. (2020). Enhanced photocatalytic and antibacterial ability of Cu-doped Anatase TiO2 thin films: Theory and experiment. ACS Applied Materials & Interfaces, 12(13), 15348-15361. https://doi.org/10.1021/acsami.9b22056
Alrahlah, A., Fouad, H., Hashem, M., Niazy, A. A., & AlBadah, A. (2018, Jul). Titanium oxide (TiO2)/polymethylmethacrylate (PMMA) Denture Base nanocomposites: Mechanical, viscoelastic and antibacterial behavior. Materials, 11, 1096. https://doi.org/10.3390/ma11071096
Anandgaonker, P., Kulkarni, G., Gaikwad, S., & Rajbhoj, A. (2019). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry, 12(8), 1815-1822. https://doi.org/10.1016/j.arabjc.2014.12.015
Anaya-Esparza, L. M., González-Silva, N., Yahia, E. M., González-Vargas, O. A., Montalvo-González, E., & Pérez-Larios, A. (2019). Effect of TiO(2)-ZnO-MgO mixed oxide on microbial growth and toxicity against Artemia salina. Nanomaterials (Basel), 9(7), 1-17. https://doi.org/10.3390/nano9070992
Anaya-Esparza, L. M., Montalvo-Gonzalez, E., Gonzalez-Silva, N., Mendez-Robles, M. D., Romero-Toledo, R., Yahia, E. M., & Perez-Larios, A. (2019). Synthesis and characterization of TiO2-ZnO-MgO mixed oxide and their antibacterial activity. Materials, 12, 698. https://doi.org/10.3390/ma12050698
Ansari, M., Sajjadi, S. A., Sahebian, S., & Heidari, E. K. (2020). Photocatalytic and antibacterial activity of silver/titanium dioxide/zinc oxide nanoparticles coated on cotton fabrics. ChemistrySelect, 5(27), 8370-8378. https://doi.org/10.1002/slct.202001655
Anvar, A., Khajavi, S. H., Ahari, H., Sharifan, A., Moghanjoghi, A. M., Kakoolaki, S., & Paidari, S. (2019). Evaluation of the antibacterial effects of Ag-TiO(2) nanoparticles and optimization of its migration to sturgeon caviar (Beluga). Iranian Journal of Fisheries Sciences, 18(4), 954-967. https://doi.org/10.22092/ijfs.2019.118074
Arezoo, E., Mohammadreza, E., Maryam, M., & Abdorreza, M. N. (2020). The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, 743-751. https://doi.org/10.1016/j.ijbiomac.2019.11.244
Azizi-Lalabadi, M., Ehsani, A., Divband, B., & Alizadeh-Sani, M. (2019). Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Scientific Reports, 9, 17439. https://doi.org/10.1038/s41598-019-54025-0
Bahmani, M., Taherikalani, M., Khaksarian, M., Rafieian-Kopaei, M., Ashrafi, B., Nazer, M., Soroush, S., Abbasi, N., Heydari, R., Zarei, L., & Alizadeh, M. (2019). Synthesis and evaluation of the antibacterial effect of titanium dioxide nanoparticles in comparison with ampicillin, colistin, and ertapenem on Staphylococcus aureus. Journal of Pharmaceutical Negative Results, 10(1), 16-20. https://doi.org/10.4103/jpnr.JPNR_21_18
Bengalli, R., Ortelli, S., Blosi, M., Costa, A., Mantecca, P., & Fiandra, L. (2019). In vitro toxicity of TiO2:SiO2 nanocomposites with different photocatalytic properties. Nanomaterials, 9(7), 1041.
Bonan, R. F., Mota, M. F., da Costa Farias, R. M., da Silva, S. D., Bonan, P. R. F., Diesel, L., Menezes, R. R., & da Cruz Perez, D. E. (2019). In vitro antimicrobial and anticancer properties of TiO2 blow-spun nanofibers containing silver nanoparticles. Materials Science and Engineering: C, 104, 109876. https://doi.org/10.1016/j.msec.2019.109876
Boostani, H., & Modirrousta, S. (2016). Review of nanocoatings for building application. Procedia Engineering, 145, 1541-1548.
Borkowski, D., Krucińska, I., & Draczyński, Z. (2020). Preparation of nanocomposite alginate fibers modified with titanium dioxide and zinc oxide. Polymers, 12(5), 1040.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1), 33-177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
Charkhian, H., Bodaqlouie, A., Soleimannezhadbari, E., Lotfollahi, L., Shaykh-Baygloo, N., Hosseinzadeh, R., Yousefi, N., & Khodayar, M. (2020). Comparing the bacteriostatic effects of different metal nanoparticles against Proteus vulgaris. Current Microbiology, 77(10), 2674-2684. https://doi.org/10.1007/s00284-020-02029-9
Chen, H., Zheng, S., Meng, L., Chen, G., Luo, X., & Huang, M. (2020). Comparison of novel functionalized nanofiber forward osmosis membranes for application in antibacterial activity and TRGs rejection. Journal of Hazardous Materials, 392, 122250.
Chen, Q., Wang, N., Zhu, M., Lu, J., Zhong, H., Xue, X., Guo, S., Li, M., Wei, X., & Tao, Y. (2018). TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biology, 15, 266-276.
Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891-2959.
Chen, Y., Yan, L., Yuan, T., Zhang, Q., & Fan, H. (2011). Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. Journal of Applied Polymer Science, 119(3), 1532-1541. https://doi.org/10.1002/app.32813
Chen, Y. F., Tang, X. N., Zhang, B., Luo, Y., & Li, Y. (2019). TiO2@SiO2 composites: Preparation and photocatalytic antimicrobial performance. Journal of Inorganic Materials, 34(12), 1325-1333. https://doi.org/10.15541/jim20190039
Choi, O., Deng, K. K., Kim, N.-J., Ross, L., Jr., Surampalli, R. Y., & Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42(12), 3066-3074.
Das, S., Yadav, A., & Debnath, N. (2019). Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. Journal of Stored Products Research, 83, 92-96. https://doi.org/10.1016/j.jspr.2019.06.003
de Dicastillo, C. L., Correa, M. G., Martínez, F. B., Streitt, C., & Galotto, M. J. (2020). Antimicrobial effect of titanium dioxide nanoparticles. In M. Mareș, S. H. E. Lim, K.-S. Lai, & R.-T. Cristina (Eds.), Antimicrobial resistance: A one health perspective. Intech Open.
Deshmukh, S. P., Mullani, S. B., Koli, V. B., Patil, S. M., Kasabe, P. J., Dandge, P. A. B., Pawar, S. A., & Delekar, S. D. (2018). Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochemistry and Photobiology, 94(6), 1249-1262.
Desiati, R. D., Taspika, M., & Sugiarti, E. (2019). Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Materials Research Express, 6, 095059. https://doi.org/10.1088/2053-1591/ab155c
Ding, X. F., Zhou, S. X., Gu, G. X., & Wu, L. M. (2011). Afacile and large-area fabrication method of superhydrophobic self-cleaningfluorinated polysiloxane/TiO2 nanocomposite coatings with long-term durability. Journal of Materials Chemistry, 21(17), 6161-6164.
Djaoued, Y., Badilescu, S., Ashrit, P. V., & Robichaud, J. (2001). Vibrational properties of the sol-gelprepared nanocrystalline TiO2 thin films. The Internet Journal of Vibrational Spectroscopy, 5(6), 1-4.
Dominguez, E. T., Nguyen, P., Hylen, A., Maschmann, M. R., Mustapha, A., & Hunt, H. K. (2020). Design and characterization of mechanically stable, nanoporous TiO2 thin film antimicrobial coatings for food contact surfaces. Materials Chemistry and Physics, 251, 13. https://doi.org/10.1016/j.matchemphys.2020.123001
Dong, P., Cheng, X., Huang, Z., Chen, Y., Zhang, Y., Nie, X., & Zhang, X. (2018). In-situ and phase controllable synthesis of nanocrystalline TiO2 on flexible cellulose fabrics via a simple hydrothermal method. Materials Research Bulletin, 97, 89-95.
Dumestre, F., Chaudret, B., Amiens, C., Renaud, P., & Fejes, P. (2004). Superlattices of iron nanocubes synthesized from Fe [N(SiMe3)2]2. Science, 303(5659), 821-823.
Enescu, D., Dehelean, A., Goncalves, C., Cerqueira, M. A., Magdas, D. A., Fucinos, P., & Pastrana, L. M. (2020). Evaluation of the specific migration according to EU standards of titanium from chitosan/metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packaging and Shelf Life, 26, 100579. https://doi.org/10.1016/j.fpsl.2020.100579
Enescu, D., Gardrat, C., Cramail, H., Le Coz, C., Sèbe, G., & Coma, V. (2019). Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: Structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose, 26(4), 2389-2401. https://doi.org/10.1007/s10570-018-2211-7
Es-Soufi, H., Bih, L., Lima, A. R. F., El Bouari, A., Manoun, B., & Hussain, S. (2021). Investigation DSC and XRD on the crystallization kinetics in the phosphate Li2O−Li2WO4−TiO2−P2O5 glassy ionic system. Journal of Materials Science-Materials in Electronics, 33, 8747-8758.
Ferreira, C. H., Nunes, S. C., Santos, V. A. Q., Pereira, E. C., & Sikora, M. D. (2020). Plasma electrolytic titanium oxide applied for pathogenic bacteria inactivation. Environmental Technology, 41(2), 141-152. https://doi.org/10.1080/09593330.2018.1491641
Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90(6), 1847-1868. https://doi.org/10.1007/s00253-011-3213-7
Gunputh, U. F., Le, H. R., Handy, R. D., & Tredwin, C. (2018). Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Materials Science & Engineering C-Materials for Biological Applications, 91, 638-644. https://doi.org/10.1016/j.msec.2018.05.074
Gunputh, U. F., Le, H. R., Lawton, K., Besinis, A., Tredwin, C., & Handy, R. D. (2020). Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology, 14(1), 97-110. https://doi.org/10.1080/17435390.2019.1665727
Hameed, R. S., Fayyad, R. J., Nuaman, R. S., Hamdan, N. T., & Maliki, S. A. J. (2019). Synthesis and characterization of a novel titanium nanoparticles using Banana Peel extract and investigate its antibacterial and insecticidal activity. Journal of Pure and Applied Microbiology, 13, 2241-2249. https://doi.org/10.22207/jpam.13.4.38
Han, C., Lalley, J., Namboodiri, D., Cromer, K., & Nadagouda, M. N. (2016). Titanium dioxide-based antibacterial surfaces for water treatment. Current Opinion in Chemical Engineering, 11, 46-51. https://doi.org/10.1016/j.coche.2015.11.007
Hanafy, M. S., Desoky, W. M., Hussein, E. M., El-Shaer, N. H., Gomaa, M., Gamal, A. A., Esawy, M. A., & Guirguis, O. W. (2020). Biological applications study of bio-nanocomposites based on chitosan/TiO(2) nanoparticles polymeric films modified by oleic acid. Journal of Biomedical Materials Research Part A, 16, 232-247. https://doi.org/10.1002/jbm.a.37019
Herault, N., Wagner, J., Abram, S. L., Widmer, J., Horvath, L., Vanhecke, D., Bourquin, C., & Fromm, K. M. (2020). Silver-containing titanium dioxide nanocapsules for combating multidrug-resistant bacteria. International Journal of Nanomedicine, 15, 1267-1281. https://doi.org/10.2147/ijn.S231949
Horvath, E., Rossi, L., Mercier, C., Lehmann, C., Sienkiewicz, A., & Forro, L. (2020). Photocatalytic nanowires-based air filter: Towards reusable protective masks. Advanced Functional Materials, 30, 2004615. https://doi.org/10.1002/adfm.202004615
Hussein, M. A., Alamry, K. A., Almehmadi, S. J., Elfaky, M. A., Dzudzevic-Cancar, H., Asiri, A. M., & Hussien, M. A. (2020). Novel biologically active polyurea derivatives and its TiO2-doped nanocomposites. Designed Monomers and Polymers, 23(1), 59-74. https://doi.org/10.1080/15685551.2020.1767490
Irshad, M. A., Nawaz, R., Rehman, M. Z. U., Adrees, M., Rizwan, M., Ali, S., Ahmad, S., & Tasleem, S. (2021). Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 212, 111978. https://doi.org/10.1016/j.ecoenv.2021.111978
Jaber, M., Mushtaq, A., Zhang, K. B., Wu, J. D., Luo, D. D., Yi, Z. H., Iqbal, M. Z., & Kong, X. D. (2020). Gram-scale synthesis of splat-shaped Ag-TiO2 nanocomposites for enhanced antimicrobial properties. Beilstein Journal of Nanotechnology, 11, 1119-1125. https://doi.org/10.3762/bjnano.11.96
Jafari, A., Hassanajili, S., Karimi, M. B., Emami, A., Ghaffari, F., & Azarpira, N. (2018). Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications. Journal of the Mechanical Behavior of Biomedical Materials, 88, 395-405.
Javali, M. A., AlQahtani, N. A., Ahmad, I., & Ahmad, I. (2019). Antimicrobial photodynamic therapy (light source; methylene blue; titanium dioxide): Bactericidal effects analysis on oral plaque bacteria: An in vitro study. Nigerian Journal of Clinical Practice, 22(12), 1654-1661. https://doi.org/10.4103/njcp.njcp_189_19
Johnson, H. A., Williamson, R. S., Marquart, M., Bumgardner, J. D., Janorkar, A. V., & Roach, M. D. (2020). Photocatalytic activity and antibacterial efficacy of UVA-treated titanium oxides. Journal of Biomaterials Applications, 35, 15. https://doi.org/10.1177/0885328220942669
Kang, X. L., Liu, S. H., Dai, Z. D., He, Y. P., Song, X. Z., & Tan, Z. Q. (2019). Titanium dioxide: From engineering to applications. Catalysts, 9(2), 32. https://doi.org/10.3390/catal9020191
Kaseem, M., Hamad, K., & Rehman, Z. U. (2019). Review of recent advances in polylactic acid/TiO2 composites. Materials, 12(22), 3659. https://doi.org/10.3390/ma12223659
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.
Kho, Y. K., Iwase, A., Teoh, W. Y., Mädler, L., Kudo, A., & Amal, R. (2010). Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. The Journal of Physical Chemistry C, 114(6), 2821-2829.
Khosroyar, S., & Arastehnodeh, A. (2018). Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide. Membrane Water Treatment, 9, 481-487. https://doi.org/10.12989/mwt.2018.9.6.481
Kourmouli, A., Valenti, M., van Rijn, E., Beaumont, H. J. E., Kalantzi, O.-I., Schmidt-Ott, A., & Biskos, G. (2018). Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? Journal of Nanoparticle Research, 20(3), 1-6.
Krishnan, B., & Mahalingam, S. (2017). Ag/TiO2/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Advanced Powder Technology, 28(9), 2265-2280. https://doi.org/10.1016/j.apt.2017.06.007
Kubacka, A., Diez, M. S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J. P., Barbas, C., Martins dos Santos, V. A. P., Fernández-García, M., & Ferrer, M. (2014). Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports, 4(1), 4134. https://doi.org/10.1038/srep04134
Lan, M., Zhao, S., Zhang, Z., Yan, L., Guo, L., Niu, G., Zhang, J., Zhao, J., Zhang, H., & Wang, P. (2017). Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Research, 10(9), 3113-3123.
Lee, G., Lee, J., & Kang, C. (2019). Strong and sustainable chemical bonding of TiO2 on nylon surface using 3-mercaptopropyltrimethoxysilane (3-MPTMS): Analysis of antimicrobial and decomposition characteristics of contaminants. Journal of Coatings Technology and Research, 16(5), 1399-1409. https://doi.org/10.1007/s11998-019-00222-5
Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Brudvig, G. W., & Batista, V. S. (2009). Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, 7(45), 10078-10085.
Li, H., Zhou, X., Huang, Y., Liao, B., Cheng, L., & Ren, B. (2021). Reactive oxygen species in pathogen clearance: The killing mechanisms, the adaption response, and the side effects. Frontiers in Microbiology, 11, 622534.
Li, J.-G., Ishigaki, T., & Sun, X. (2007). Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. The Journal of Physical Chemistry C, 111(13), 4969-4976.
Linsebigler, A. L., Lu, G., & Yates, J. T., Jr. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.
Liu, B. K., Mu, L. L., Zhang, J. T., Han, X. L., & Shi, H. Z. (2020, Feb). TiO2/Cu-2(OH)(2)CO3 nanocomposite as efficient antimicrobials for inactivation of crop pathogens in agriculture. Materials Science & Engineering C-Materials for Biological Applications, 107, 110344. https://doi.org/10.1016/j.msec.2019.110344
Liu, J. J., Lin, X. H., & Liang, H. E. (2019, Nov). Dyed fabrics modified via assembly with phytic acid/berberine for antibacterial, UV resistance, and self-cleaning applications. Journal of Engineered Fibers and Fabrics, 14, 1-10. https://doi.org/10.1177/1558925019888978
Loh, K., Gaylarde, C. C., & Shirakawa, M. A. (2018). Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Construction and Building Materials, 167, 853-859. https://doi.org/10.1016/j.conbuildmat.2018.02.103
Long, H., Yang, G., Chen, A. P., Li, Y. H., & Lu, P. X. (2008). Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films, 517(2), 745-749. https://doi.org/10.1016/j.tsf.2008.08.179
Luo, K., Park, H., Adra, H. J., Ryu, J., Lee, J.-H., Yu, J., Choi, S.-J., & Kim, Y.-R. (2020). Charge-switchable magnetic separation and characterization of food additive titanium dioxide nanoparticles from commercial food. Journal of Hazardous Materials, 393, 122483.
Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?-model studies on epitaxial TiO2 films. Scientific Reports, 4(1), 1-8.
Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., & Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical Reviews, 114(19), 9987-10043.
Macak, J. M., Hildebrand, H., Marten-Jahns, U., & Schmuki, P. (2008). Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 621(2), 254-266. https://doi.org/10.1016/j.jelechem.2008.01.005
Margarucci, L. M., Spica, V. R., Gianfranceschi, G., & Valeriani, F. (2019). Untouchability of natural spa waters: Perspectives for treatments within a personalized water safety plan. Environment International, 133, 105095. https://doi.org/10.1016/j.envint.2019.105095
Mayabadi, A. H., Waman, V. S., Kamble, M. M., Ghosh, S. S., Gabhale, B. B., Rondiya, S. R., Rokade, A. V., Khadtare, S. S., Sathe, V. G., Pathan, H. M., Gosavi, S. W., & Jadkar, S. R. (2014). Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. Journal of Physics and Chemistry of Solids, 75(2), 182-187. https://doi.org/10.1016/j.jpcs.2013.09.008
Mele, G., Del Sole, R., Vasapollo, G., Garcia-Lopez, E., Palmisano, L., & Schiavello, M. (2003). Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine. Journal of Catalysis, 217(2), 334-342. https://doi.org/10.1016/s0021-9517(03)00040-x
Menazea, A. A., & Awwad, N. S. (2020). Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. Journal of Materials Research and Technology, 9(4), 9434-9441. https://doi.org/10.1016/j.jmrt.2020.05.103
Metanawin, S., & Metanawin, T. (2022). Fabrication of hybrid polystyrene-titanium dioxide with enhanced dye degradation and antimicrobial properties: Investigation of the effect of triethylene glycol dimethacrylate on photocatalytic activity. Polymer International, 71(7), 777-789.
Mohamed, H. H., Hammami, I., Baghdadi, H. A., & Al-Jameel, S. S. (2018). Multifunctional TiO2 microspheres-rGO as highly active visible light photocatalyst and antimicrobial agent. Materials Express, 8(4), 345-352. https://doi.org/10.1166/mex.2018.1437
Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934.
Mukherjee, N., Mitra, S., Adak, S., Chakraborty, S., Sau, A., & Goswami, A. (2020). Evaluation of the growth response of spore forming lactic acid Bacillus, Bacillus coagulansin presence of oxide nanoparticles. Applied Nanoscience, 10, 4075-4086. https://doi.org/10.1007/s13204-020-01512-w
Muruganandham, M., Zhang, Y., Suri, R., Lee, G. J., Chen, P. K., Hsieh, S. H., Sillanpää, M., & Wu, J. J. (2015). Environmental applications of ZnO materials. Journal of Nanoscience and Nanotechnology, 15(9), 6900-6913. https://doi.org/10.1166/jnn.2015.10725
Mylona, Z., Panteris, E., Kevrekidis, T., & Malea, P. (2020). Physiological and structural responses of the seagrass Cymodocea nodosa to titanium dioxide nanoparticle exposure. Botanica Marina, 63(6), 493-507. https://doi.org/10.1515/bot-2020-0047
Nandimath, M., Bhajantri, R. F., Naik, J., & Hebbar, V. (2019). Impact of coumarin on optical, structural and thermal properties of TiO2@ZnO core-shell filled PMMA matrix. In AIP Conference Proceedings.
Niranjan, R., Kaushik, M., Selvi, R. T., Prakash, J., Venkataprasanna, K. S., Prema, D., Pannerselvam, B., & Venkatasubbu, G. D. (2019). PVA/SA/TiO2-CUR patch for enhanced wound healing application: In vitro and in vivo analysis. International Journal of Biological Macromolecules, 138, 704-717. https://doi.org/10.1016/j.ijbiomac.2019.07.125
Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). An emerging discipline evolving from studies of ultrafine particles supplemental web sections. Environmental Health Perspect, 113(7), 823-839.
Oh, H. J., & Kim, J. (2020). Characterization of inhalable aerosols from cosmetic powders and sustainability in cosmetic products. Sustainability, 12(19), 8187. https://doi.org/10.3390/su12198187
Ohno, T., Tokieda, K., Higashida, S., & Matsumura, M. (2003). Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 244(2), 383-391.
Pant, B., Ojha, G. P., Kuk, Y. S., Kwon, O. H., Park, Y. W., & Park, M. (2020). Synthesis and characterization of ZnO-TiO2/carbon fiber composite with enhanced photocatalytic properties. Nanomaterials, 10(10), 1960. https://doi.org/10.3390/nano10101960
Pavlova, E. L., Toshkovska, R. D., Doncheva, T. E., & Ivanova, I. A. (2020). Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Archives of Microbiology, 202(7), 1873-1880. https://doi.org/10.1007/s00203-020-01902-2
Pavlovic, V. P., Vujancevic, J. D., Maskovic, P., Cirkovic, J., Papan, J. M., Kosanovic, D., Dramicanin, M. D., Petrovic, P. B., Vlahovic, B., & Pavlovic, V. B. (2019). Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. Journal of the American Ceramic Society, 102(12), 7735-7745. https://doi.org/10.1111/jace.16668
Pei, L., Wei, T., Lin, N., & Yu, H. (2016). Synthesis of zinc oxide and titanium dioxide composite nanorods and their photocatalytic properties. Advanced Composites Letters, 25(1), 9-15.
Peiris, M. M. K., Guansekera, T., Jayaweera, P. M., & Fernando, S. S. N. (2018). TiO2 nanoparticles from Baker's yeast: A potent antimicrobial. Journal of Microbiology and Biotechnology, 28(10), 1664-1670. https://doi.org/10.4014/jmb.1807.07005
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O'Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B-Environmental, 125, 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M. L., Agostiano, A., & Comparelli, R. (2017). Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 281, 85-100. https://doi.org/10.1016/j.cattod.2016.05.048
Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2-Ag nano-composite. Journal of Polymers and the Environment, 28, 3154-3163. https://doi.org/10.1007/s10924-020-01846-0
Pozzo, M., & Alfe, D. (2009). Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. International Journal of Hydrogen Energy, 34(4), 1922-1930.
Rao, T. N., Babji, P., Ahmad, N., Khan, R. A., Hassan, I., Shahzad, S. A., & Husain, F. M. (2019). Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi Journal of Biological Sciences, 26(7), 1385-1391.
Rashid, M. M., Simončič, B., & Tomšič, B. (2021). Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 22, 100890.
Rekha, R., Divya, M., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Al-Anbr, M. N., Pavela, R., & Vaseeharan, B. (2019). Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. Journal of Photochemistry and Photobiology B-Biology, 199, 111620. https://doi.org/10.1016/j.jphotobiol.2019.111620
Riaz, S., Ashraf, M., Hussain, T., Hussain, M. T., & Younus, A. (2019). Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 581, 123799. https://doi.org/10.1016/j.colsurfa.2019.123799
Saleh, M. G. A., Badawy, A. A., & Ghanem, A. F. (2019). Using of titanate nanowires in removal of lead ions from waste water and its biological activity. Inorganic Chemistry Communications, 108, 107508. https://doi.org/10.1016/j.inoche.2019.107508
Salehi, P., Babanouri, N., Roein-Peikar, M., & Zare, F. (2018). Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans. Progress in Orthodontics, 19, 35. https://doi.org/10.1186/s40510-018-0236-y
Shah, A. A., Khan, A., Dwivedi, S., Musarrat, J., & Azam, A. (2018). Antibacterial and antibiofilm activity of barium titanate nanoparticles. Materials Letters, 229, 130-133. https://doi.org/10.1016/j.matlet.2018.06.107
Sharma, A., Karn, R. K., & Pandiyan, S. K. (2014). Synthesis of TiO2 nanoparticles by sol-gel method and their characterization. Journal of Basic and Applied Engineering Research, 1(9), 1-5.
Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 10(1), 1-33.
Shi, J., Li, J., Wang, Y., & Zhang, C. Y. (2022). TiO2-based nanosystem for cancer therapy and antimicrobial treatment: A review. Chemical Engineering Journal, 431, 133714. https://doi.org/10.1016/j.cej.2021.133714
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x
Siripatrawan, U., & Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 84, 125-134. https://doi.org/10.1016/j.foodhyd.2018.04.049
Slusarski-Santana, V., Fiorentin-Ferrari, L. D., & Fiorese, M. L. (2020). Antimicrobial activities of photocatalysts for water disinfection. In A. M. A. Inamuddin & E. Lichtfouse (Eds.), Nanophotocatalysis and environmental applications: Detoxification and disinfection (Vol. 30, pp. 217-243). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-12619-3_9
Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4, 95-112. https://doi.org/10.2147/NSA.S19419
Sodagar, A., Akhoundi, M. S. A., Bahador, A., Jalali, Y. F., Behzadi, Z., Elhaminejad, F., & Mirhashemi, A. H. (2017). Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in orthodontics. Dental Press Journal of Orthodontics, 22(5), 67-74.
Stan, M. S., Nica, I. C., Popa, M., Chifiriuc, M. C., Iordache, O., Dumitrescu, I., Diamandescu, L., & Dinischiotu, A. (2019). Reduced graphene oxide/TiO2 nanocomposites coating of cotton fabrics with antibacterial and self-cleaning properties. Journal of Industrial Textiles, 49(3), 277-293. https://doi.org/10.1177/1528083718779447
Sun, S., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287(5460), 1989-1992.
Tang, Y. N., Sun, H., Shang, Y. X., Zeng, S., Qin, Z., Yin, S. Y., Li, J. Y., Liang, S., Lu, G. L., & Liu, Z. N. (2019). Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property. Journal of Colloid and Interface Science, 535, 516-523. https://doi.org/10.1016/j.jcis.2018.10.020
Vargas, M. A., & Rodriguez-Paez, J. E. (2019). Facile synthesis of TiO2 nanoparticles of different crystalline phases and evaluation of their antibacterial effect under dark conditions against E. coli. Journal of Cluster Science, 30(2), 379-391. https://doi.org/10.1007/s10876-019-01500-3
Vassallo, J., Besinis, A., Boden, R., & Handy, R. D. (2018). The minimum inhibitory concentration (MIC) assay with Escherichia coil: An early tier in the environmental hazard assessment of nanomaterials? Ecotoxicology and Environmental Safety, 162, 633-646. https://doi.org/10.1016/j.ecoenv.2018.06.085
Venancio, W. A. L., Rodrigues-Silva, C., Maniero, M. G., & Guimaraes, J. R. (2018). Photocatalytic removal of fluoroquinolones and their antimicrobial activity from water matrices at trace levels: A comparison of commercial TiO2 catalysts. Water Science and Technology, 78(8), 1668-1678. https://doi.org/10.2166/wst.2018.443
Wang, D. B., Zhao, L. X., Guo, L. H., & Zhang, H. (2014). Online detection of reactive oxygen species in ultraviolet (UV)-irradiated Nano-TiO2 suspensions by continuous flow chemiluminescence. Analytical Chemistry, 86(21), 10535-10539. https://doi.org/10.1021/ac503213m
Wang, P., Dong, Y., Li, B., Li, Z., & Bian, L. (2018). A sustainable and cost effective surface functionalization of cotton fabric using TiO2 hydrosol produced in a pilot scale: Condition optimization, sunlight-driven photocatalytic activity and practical applications. Industrial Crops and Products, 123, 197-207.
Wang, R., Shi, M. S., Xu, F. Y., Qiu, Y., Zhang, P., Shen, K. L., Zhao, Q., Yu, J. G., & Zhang, Y. F. (2020). Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nature Communications, 11, 4465. https://doi.org/10.1038/s41467-020-18267-1
Wei, Z., Endo-Kimura, M., Colbeau-Justin, C., Ohtani, B., & Kowalska, E. (2020). Octahedral anatase titania as efficient photocatalyst: Influence of preparation conditions. Journal of Nanoscience and Nanotechnology, 20(2), 1278-1287.
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. https://doi.org/10.1021/es204168d
Werapun, U., & Pechwang, J. (2019). Synthesis and antimicrobial activity of Fe:TiO2 particles. Journal of Nano Research, 56, 28-38. https://doi.org/10.4028/www.scientific.net/JNanoR.56.28
Winkler, H. C., Notter, T., Meyer, U., & Naegeli, H. (2018). Critical review of the safety assessment of titanium dioxide additives in food. Journal of Nanobiotechnology, 16(1), 51. https://doi.org/10.1186/s12951-018-0376-8
Xiang, Y., Ran, Q., Wu, C., Zhou, L., Zhang, W., Li, J., Xiang, L., Xiao, Y., Chen, L., Chen, Y., Chen, X., Stucky, A., Calvin Li, S., Zhong, J. F., Li, Z., & Cai, K. (2022). Single-cell transcriptomics uncovers the impacts of titanium dioxide nanoparticles on human bone marrow stromal cells. Chemical Engineering Journal, 440, 135814. https://doi.org/10.1016/j.cej.2022.135814
Xie, J., & Hung, Y. O. (2019). Methodology to evaluate the antimicrobial effectiveness of UV-activated TiO2 nanoparticle-embedded cellulose acetate film. Food Control, 106(7), 106690. https://doi.org/10.1016/j.foodcont.2019.06.016
Xu, M., Gao, Y., Moreno, E. M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., & Wöll, C. (2011). Photocatalytic activity of bulk TiO 2 anatase and rutile single crystals using infrared absorption spectroscopy. Physical Review Letters, 106(13), 138302.
Yan, Y. G., Soraru, C., Keller, V., Keller, N., & Ploux, L. (2020). Antibacterial and biofilm-preventive photocatalytic activity and mechanisms on P/F-modified TiO2 coatings. ACS Applied Bio Materials, 3(9), 5687-5698. https://doi.org/10.1021/acsabm.0c00467
Yang, C., Zhu, B., Wang, J., & Qin, Y. (2019). Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. International Journal of Biological Macromolecules, 139, 85-93.
Yin, X., & Huang, Z. (2020). Effects of polylactic acid antimicrobial films on preservation of Chinese rape. Packaging Technology and Science, 8, 461-468. https://doi.org/10.1002/pts.2529
Zhang, T., Li, Z. Q., Wang, W. B., Wang, Y., Gao, B. Y., & Wang, Z. N. (2019, Mar). Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. Journal of Colloid and Interface Science, 537, 1-10. https://doi.org/10.1016/j.jcis.2018.10.092
Zhang, Y. M., Wang, F. M., Huang, Q. L., Patil, A. B., Hu, J. J., Fan, L. L., Yang, Y., Duan, H. P., Dong, X., & Lin, C. J. (2020). Layer-by-layer immobilizing of polydopamine-assisted epsilon-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. Materials Science & Engineering C-Materials for Biological Applications, 110, 110690. https://doi.org/10.1016/j.msec.2020.110690