A comparative study between Fusarium solani and Neocosmospora vasinfecta revealed differential profile of fructooligosaccharide production

. 2022 Dec ; 67 (6) : 873-889. [epub] 20220621

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35729302

Grantová podpora
2005/04139-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
2012/16332-0 Fundação de Amparo à Pesquisa do Estado de São Paulo

Odkazy

PubMed 35729302
DOI 10.1007/s12223-022-00983-4
PII: 10.1007/s12223-022-00983-4
Knihovny.cz E-zdroje

Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the food's nutritional and technological properties. The rhizosphere of plants that accumulate fructopolysaccharides as inulin has been revealed as a source of filamentous fungi. These fungi can produce FOS either by inulin hydrolysis or by biosynthesis from sucrose, including unusual FOS with enhanced prebiotic properties. Here, we investigated the ability of Fusarium solani and Neocosmospora vasinfecta to produce FOS from different carbon sources. Fusarium solani and N. vasinfecta grew preferentially in inulin instead of sucrose, resulting in the FOS production as the result of endo-inulinase activities. N. vasinfecta was also able to produce the FOS 1-kestose and 6-kestose from sucrose, indicating transfructosylating activity, absent in F. solani. Moreover, the results showed how these carbon sources affected fungal cell wall composition and the expression of genes encoding for β-1,3-glucan synthase and chitin synthase. Inulin and fructose promoted changes in fungal macroscopic characteristics partially explained by alterations in cell wall composition. However, these alterations were not directly correlated with the expression of genes related to cell wall synthesis. Altogether, the results pointed to the potential of both F. solani and N. vasinfecta to produce FOS at specific profiles.

Zobrazit více v PubMed

Álvaro-Benito M, Abreu M, Portillo F, Sanz-Aparicio J, Fernández-Lobato M (2010) New insights into the fructosyltransferase activity of Schwanniomyces occidentalis β-fructofuranosidase, emerging from nonconventional codon usage and directed mutation. Appl Environ Microbiol 76:7491–7499. https://doi.org/10.1128/AEM.01614-10 PubMed DOI PMC

Atef M, El-Matty DA, Habib DF, Nicola WG, Saleh S, Hanna H (2020) Ameliorative effects of inulin on non-alcoholic fatty liver disease associated with type 2 diabetes mellitus in obese women. J Innov Pharm Biol Sci 7:6–16

Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999 PubMed DOI

Castro CC, Nobre C, De Weireld G, Hantson AL (2019) Microbial co-culturing strategies for fructo-oligosaccharide production. N Biotechnol 51:1–7. https://doi.org/10.1016/j.nbt.2019.01.009 PubMed DOI

Chaudhuri A, Bharadwaj G, Maheshwari R (1999) An unusual pattern of invertase activity development in the thermophilic fungus Thermomyces lanuginosus. FEMS Microbiol Lett 177:39–45. https://doi.org/10.1111/j.1574-6968.1999.tb13711.x PubMed DOI

Chen GC, Johnson BR (1983) Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl Microbiol Biotechnol 46:13–16. https://doi.org/10.1128/aem.46.1.13-16.1983 DOI

Choukade R, Kango N (2021) Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 20:1–16. https://doi.org/10.1080/07388551.2021.1922352 DOI

Cordeiro-Neto F, Pessoni RAB, Figueiredo-Ribeiro RCL (1997) Fungos produtores de inulinases isolados da rizosfera de Asteráceas herbáceas do Cerrado (Moji-Guaçu, SP, Brasil) (in Portuguese). Rev Bras Ciênc Solo 21:149–153

de Vries J, Le Bourgot C, Calame W, Respondek F (2019) Effects of β-fructans fiber on bowel function: a systematic review and meta-analysis. Nutrients 11:91. https://doi.org/10.3390/nu11010091 DOI PMC

Dhake AB, Patil MB (2007) Effect of substrate feeding on production of fructosyltransferase by Penicillium purpurogenum. Brazil J Microbiol 38:194–199. https://doi.org/10.1590/S1517-83822007000200002 DOI

Doehlemann G, Molitor F, Hahn M (2005) Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42:601–610. https://doi.org/10.1016/j.fgb.2005.03.001 PubMed DOI

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017 DOI

Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJP (2012) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12:3164–3179. https://doi.org/10.1002/pmic.201200228 PubMed DOI PMC

Fialho MB, Simões K, Barros CA, Pessoni RAB, Braga MR, Figueiredo-Ribeiro RCL (2013) Production of 6-kestose by the filamentous fungus Gliocladium virens as affected by sucrose concentration. Mycoscience 54:198–205. https://doi.org/10.1016/j.myc.2012.09.012 DOI

Figueiredo-Ribeiro RCL, Pessoni RAB, Braga MR (2007) Inulinases produced by microbes from the Brazilian Cerrado: characterization and potential uses. In: Shiomi N, Benkeblia N, Onedera S (eds) Recent Advances in Fructooligosaccharides Research. Research Signpost Press, pp 339–356

Figueiredo-Ribeiro RCL, Simões K, Fialho MB, Pessoni RAB, Braga MR, Gaspar M (2014) Potential of the filamentous fungi from the Brazilian Cerrado as producers of soluble fibers. In: Benkeblia N (ed) Polysaccharides natural fibers in food and nutrition. CRC Press, New York, pp 131–145

Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Analyt Biochem 197:157–162. https://doi.org/10.1016/0003-2697(91)90372-z PubMed DOI

Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2016) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267. https://doi.org/10.3109/07388551.2014.953443 PubMed DOI

Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol 10:02993. https://doi.org/10.3389/fmicb.2019.02993 DOI

Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, Wang P, Mentink-Vigier F, Wang T (2018) Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun 9:2747. https://doi.org/10.1038/s41467-018-05199-0 PubMed DOI PMC

Kurakake M, Hirotsu S, Shibata M (2020) Relationship between pellet formation by Aspergillus oryzae strain KB and the production of β-fructofuranosidase with high transfructosylation activity. Fungal Biol 124:708–713. https://doi.org/10.1016/j.funbio.2020.04.002 PubMed DOI

Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E (2020) The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur J Clin Microbiol Infect Dis 39:403–413. https://doi.org/10.1007/s10096-019-03721-w PubMed DOI

Liu F, Prabhakar M, Ju J, Long H, Zhou HW (2017) Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 71:9–20. https://doi.org/10.1038/ejcn.2016.156 PubMed DOI

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 PubMed DOI

Martín-Udíroz M, Madrid MP, Roncero MIG (2004) Role of chitin synthase genes in Fusarium oxysporum. Microbiology 150:3175–3187. https://doi.org/10.1099/mic.0.27236-0 PubMed DOI

McLoughlin R, Berthon BS, Rogers GB, Baines KJ, Leong LEX, Gibson PG, Williams EJ, Wood LG (2019) Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine 46:473–485. https://doi.org/10.1016/j.ebiom.2019.07.048 PubMed DOI PMC

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030 DOI

Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WG, Driouich A, Farrant JM (2013) Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta 237:739–754. https://doi.org/10.1007/s00425-012-1785-9 PubMed DOI

Nobre C, do Nascimento AKC, Silva SP, Coelho E, Coimbra MA, Cavalcanti MTH, Teixeira JA, Porto ALF, (2019) Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol 282:464–474. https://doi.org/10.1016/j.biortech.2019.03.053 PubMed DOI

Patel PK, Free SJ (2019) The genetics and biochemistry of cell wall structure and synthesis in Neurospora crassa, a model filamentous fungus. Front Microbiol 10:02294. https://doi.org/10.3389/fmicb.2019.02294 DOI

Perlinska-Lenart U, Orlowski J, Laudy AE, Zdebska E, Palamarczyk G, Kruszewska JS (2006) Glycoprotein hypersecretion alters the cell wall in Trichoderma reesei strains expressing the Saccharomyces cerevisiae dolichylphosphate mannose synthase gene. Appl Environ Microbiol 72:7778–7784. https://doi.org/10.1128/AEM.02375-06 PubMed DOI PMC

Peshev D, Van den Ende W (2014) Fructans: prebiotics and immunomodulators. J Funct Foods 8:348–357. https://doi.org/10.1016/j.jff.2014.04.005 DOI

Pessoni RAB, Braga MR, Figueiredo-Ribeiro RCL (2007) Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia 99:493–503. https://doi.org/10.3852/mycologia.99.4.493 PubMed DOI

Pessoni RAB, Figueiredo-Ribeiro RCL, Braga MR (1999) Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). J Appl Microbiol 87:141–147. https://doi.org/10.1046/j.1365-2672.1999.00805.x PubMed DOI

Pessoni RAB, Freshour G, Figueiredo-Ribeiro RCL, Hahn MG, Braga MR (2005) Cell wall structure and composition of Penicillium janczewskii as affected by inulin. Mycologia 97:304–311. https://doi.org/10.3852/mycologia.97.2.304 PubMed DOI

Pessoni RAB, Simões K, Braga MR, Figueiredo-Ribeiro RCL (2009) Effects of substrate composition on growth and fructo-oligosaccharide production by Gliocladium virens. Dyn Biochem Process Biotech Mol Biol 3(Special Issue 1):96–101

Pessoni RAB, Tersarotto CC, Mateus CAP, Zerlin JK, Simões K, Fiqueiredo-Ribeiro RCL, Braga MR (2015) Fructose affecting morphology and inducing β-frutofuranosidases in Penicillium janczewskii. Springer plus 4:487. https://doi.org/10.1186/s40064-015-1298-7 PubMed DOI PMC

Rodrigo-Frutos D, Piedrabuena D, Sanz-Aparicio J, Fernández-Lobato M (2019) Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Appl Microbiol Biotechnol 103:279–289. https://doi.org/10.1007/s00253-018-9446-y PubMed DOI

Sánchez-Martínez MJ, Soto-Jover S, Antolinos V, Martínez-Hernández GB, López-Gómez A (2020) Manufacturing of short-chain fructooligosaccharides: from laboratory to industrial scale. Food Eng Rev 12:149–172. https://doi.org/10.1007/s12393-020-09209-0 DOI

Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJ (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27:275–282. https://doi.org/10.1006/fgbi.1999.1153 PubMed DOI

Shiomi N, Onodera S, Chatterton J, Harrison PA (1991) Separation of fructooligosaccharide isomers by anion-exchange chromatography. Agric Biol Chem 55:1427–1428. https://doi.org/10.1080/00021369.1991.10870771 DOI

Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450

Singh SP, Jadaun JS, Narnoliya LK, Pandey A (2017) Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 183:613–635. https://doi.org/10.1007/s12010-017-2605-2 PubMed DOI

Swanson KS, de Vos WM, Martens EC, Gilbert JA, Menon RS, Soto-Vaca A, Hautvast J, Meyer PD, Borewicz K, Vaughan EE, Slavin JL (2020) Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Benef Microbes 11:101–129. https://doi.org/10.3920/BM2019.0082 PubMed DOI

Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y, Hou J, Bao X (2016) N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 6:25654. https://doi.org/10.1038/srep25654 PubMed DOI PMC

Vieira CCJ, Braga MR, Figueiredo-Ribeiro RCL (1995) Fructans in callus of Gomphrena officinalis. Mart Plant Cell Tiss Org Cult 42:233–238 DOI

Yang J, Zhang KQ (2019) Chitin synthesis and degradation in fungi: biology and enzymes. Adv Exp Med Biol 1142:153–167. https://doi.org/10.1007/978-981-13-7318-3_8 PubMed DOI

Zaiss MM, Jones RM, Schett G, Pacifici R (2019) The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Investig 129:3018–3028. https://doi.org/10.1172/JCI128521 PubMed DOI PMC

Zaninette F, Rocha GALM, Pessoni RAB, Braga MR, Simões K, Figueiredo-Ribeiro RCL, Fialho MB (2019) Production of inulin- and neolevan-type fructooligosaccharides by Penicillium janczewskii Zaleski CCIBt 3352. Biotechnol Appl Biochem 66:419–425. https://doi.org/10.1002/bab.1738 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...