Development and diseases of the coronary microvasculature and its communication with the myocardium
Language English Country United States Media print-electronic
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
PubMed
35730326
DOI
10.1002/wsbm.1560
Knihovny.cz E-resources
- Keywords
- coronary microvasculature, coronary vessels, heart development, myocardium, pulmonary atresia,
- MeSH
- COVID-19 MeSH
- Adult MeSH
- Endothelial Cells MeSH
- Myocytes, Cardiac * metabolism MeSH
- Cardiovascular Diseases * metabolism MeSH
- Humans MeSH
- Microvessels diagnostic imaging MeSH
- Myocardium * metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
We review the current understanding of formation and development of the coronary microvasculature which supplies oxygen and nutrients to the heart myocardium and removes waste. We emphasize the close relationship, mutual development, and communication between microvasculature endothelial cells and surrounding cardiomyocytes. The first part of the review is focused on formation of microvasculature during embryonic development. We summarize knowledge about establishing the heart microvasculature density based on diffusion distance. Then signaling mechanisms which are involved in forming the microvasculature are discussed. This includes details of cardiomyocyte-endothelial cell interactions involving hypoxia, VEGF, NOTCH, angiopoietin, PDGF, and other signaling factors. The microvasculature is understudied due to difficulties in its visualization. Therefore, currently available imaging methods to delineate the coronary microvasculature in development and in adults are discussed. The second part of the review is dedicated to the importance of the coronary vasculature in disease. Coronary microvasculature pathologies are present in many congenital heart diseases (CHD), especially in pulmonary atresia, and worsen outcomes. In CHDs, where the development of the myocardium is impaired, microvasculature is also affected. In adult patients coronary microvascular disease is one of the main causes of sudden cardiac death, especially in women. Coronary microvasculature pathologies affect myocardial ischemia and vice versa; myocardial pathologies such as cardiomyopathies are closely connected with coronary microvasculature dysfunction. Microvasculature inflammation also worsens the outcomes of COVID-19 disease. Our review stresses the importance of coronary microvasculature and provides an overview of its formation and signaling mechanisms and the importance of coronary vasculature pathologies in CHDs and adult diseases. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology.
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Science Prague Czech Republic
See more in PubMed
Affleck, D. G., Bull, D. A., Bailey, S. H., Albanil, A., Connors, R., Stringham, J. C., & Karwande, S. V. (2002). PDGF(BB) increases myocardial production of VEGF: Shift in VEGF mRNA splice variants after direct injection of bFGF, PDGF(BB), and PDGF(AB). The Journal of Surgical Research, 107, 203-209. https://doi.org/10.1006/jsre.2002.6510
Aharonov, A., Shakked, A., Umansky, K. B., Savidor, A., Genzelinakh, A., Kain, D., Lendengolts, D., Revach, O.-Y., Morikawa, Y., Dong, J., Levin, Y., Geiger, B., Martin, J. F., & Tzahor, E. (2020). ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nature Cell Biology, 22, 1346-1356. https://doi.org/10.1038/s41556-020-00588-4
Aitola, M. H., & Pelto-Huikko, M. T. (2003). Expression of Arnt and Arnt2 mRNA in developing murine tissues. The Journal of Histochemistry and Cytochemistry, 51, 41-54. https://doi.org/10.1177/002215540305100106
Akwii, R. G., Sajib, M. S., Zahra, F. T., & Mikelis, C. M. (2019). Role of Angiopoietin-2 in vascular physiology and pathophysiology. Cell, 8(5), 471. https://doi.org/10.3390/cells8050471
Al-Surmi, A., Wirza, R., Mahmod, R., Khalid, F., & Dimon, M. Z. (2014). A new human heart vessel identification, segmentation and 3D reconstruction mechanism. Journal of Cardiothoracic Surgery, 9, 161. https://doi.org/10.1186/s13019-014-0161-1
Anversa, P., Loud, A. V., Giacomelli, F., & Wiener, J. (1978). Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Laboratory Investigation, 38, 597-609.
Arieli, R., & Ar, A. (1981). Blood capillary density in heart and skeletal muscles of the fossorial mole rat. Physiological Zoology, 54, 22-27.
Asleh, R., Levy, A. P., Levy, N. S., Asleh, A., Goldenstein, H., Segol, I., Gulati, R., Lerman, L. O., & Lerman, A. (2019). Haptoglobin phenotype is associated with high-density lipoprotein-bound hemoglobin content and coronary endothelial dysfunction in patients with mild nonobstructive coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 774-786. https://doi.org/10.1161/ATVBAHA.118.312232
Barouch, L. A., Harrison, R. W., Skaf, M. W., Rosas, G. O., Cappola, T. P., Kobeissi, Z. A., Hobai, I. A., Lemmon, C. A., Burnett, A. L., O'Rourke, B., Rodriguez, E. R., Huang, P. L., Lima, J. A. C., Berkowitz, D. E., & Hare, J. M. (2002). Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature, 416, 337-339. https://doi.org/10.1038/416337a
Battegay, E. J., Rupp, J., Iruela-Arispe, L., Sage, E. H., & Pech, M. (1994). PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. The Journal of Cell Biology, 125, 917-928. https://doi.org/10.1083/jcb.125.4.917
Bjarnegård, M., Enge, M., Norlin, J., Gustafsdottir, S., Fredriksson, S., Abramsson, A., Takemoto, M., Gustafsson, E., Fässler, R., & Betsholtz, C. (2004). Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development, 131, 1847-1857. https://doi.org/10.1242/dev.01080
Bloor, C. M., & Leon, A. S. (1970). Interaction of age and exercise on the heart and its blood supply. Laboratory Investigation, 22, 160-165.
Bohuslavova, R., Cerychova, R., Papousek, F., Olejnickova, V., Bartos, M., Görlach, A., Kolar, F., Sedmera, D., Semenza, G. L., & Pavlinkova, G. (2019). HIF-1α is required for development of the sympathetic nervous system. Proceedings of the National Academy of Sciences of the United States of America, 116, 13414-13423. https://doi.org/10.1073/pnas.1903510116
Brady, A. J., Poole-Wilson, P. A., Harding, S. E., & Warren, J. B. (1992). Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. The American Journal of Physiology, 263, H1963-H1966. https://doi.org/10.1152/ajpheart.1992.263.6.H1963
Brady, A. J., Warren, J. B., Poole-Wilson, P. A., Williams, T. J., & Harding, S. E. (1993). Nitric oxide attenuates cardiac myocyte contraction. American Journal of Physiology-Heart and Circulatory Physiology, 265, H176-H182. https://doi.org/10.1152/ajpheart.1993.265.1.H176
Brandenburg, H., Bartelings, M. M., Wisse, L. J., Steegers, E. A. P., & Groot, A. C. G. (2006). Increased expression of vascular endothelial growth factor in cardiac structures of fetus with hydrops as compared to nonhydropic controls. Fetal Diagnosis and Therapy, 21, 84-91. https://doi.org/10.1159/000089055
Broberg, C. S., Chugh, S. S., Conklin, C., Sahn, D. J., & Jerosch-Herold, M. (2010). Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circulation. Cardiovascular Imaging, 3, 727-734. https://doi.org/10.1161/CIRCIMAGING.108.842096
Campos, F. A., Magalhães, M. L., Moreira, H. T., Pavão, R. B., Lima Filho, M. O., Lago, I. M., Badran, A. V., Chierice, J. R. A., Schmidt, A., & Marin Neto, J. A. (2020). Chagas cardiomyopathy as the etiology of suspected coronary microvascular disease. A comparison study with suspected coronary microvascular disease of other etiologies. Arquivos Brasileiros de Cardiologia, 115, 1094-1101. https://doi.org/10.36660/abc.20200381
Cano, E., Carmona, R., Ruiz-Villalba, A., Rojas, A., Chau, Y.-Y., Wagner, K. D., Wagner, N., Hastie, N. D., Muñoz-Chápuli, R., & Pérez-Pomares, J. M. (2016). Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proceedings of the National Academy of Sciences of the United States of America, 113, 656-661. https://doi.org/10.1073/pnas.1509834113
Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., & Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-439. https://doi.org/10.1038/380435a0
Carraway, K. L., Weber, J. L., Unger, M. J., Ledesma, J., Yu, N., Gassmann, M., & Lai, C. (1997). Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387, 512-516. https://doi.org/10.1038/387512a0
Cassin, S., Gilbert, R., Bunnell, C., & Johnson, E. (1971). Capillary development during exposure to chronic hypoxia. American Journal of Physiology-Legacy Content, 220, 448-451. https://doi.org/10.1152/ajplegacy.1971.220.2.448
Cavallero, S., Shen, H., Yi, C., Lien, C.-L., Kumar, S. R., & Sucov, H. M. (2015). CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Developmental Cell, 33, 469-477. https://doi.org/10.1016/j.devcel.2015.03.018
Chaturvedi, R. R., Herron, T., Simmons, R., Shore, D., Kumar, P., Sethia, B., Chua, F., Vassiliadis, E., & Kentish, J. C. (2010). Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation, 121, 979-988. https://doi.org/10.1161/CIRCULATIONAHA.109.850677
Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., & Rueckert, D. (2020). Deep learning for cardiac image segmentation: A review. Frontiers in Cardiovascular Medicine, 7, 1-33. https://doi.org/10.3389/fcvm.2020.00025
Chintalgattu, V., Nair, D. M., & Katwa, L. C. (2003). Cardiac myofibroblasts: A novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. Journal of Molecular and Cellular Cardiology, 35, 277-286. https://doi.org/10.1016/s0022-2828(03)00006-3
Crisman, R. P., Rittman, B., & Tomanek, R. J. (1985). Exercise-induced myocardial capillary growth in the spontaneously hypertensive rat. Microvascular Research, 30, 185-194. https://doi.org/10.1016/0026-2862(85)90049-4
D'Amato, G., Luxán, G., del Monte-Nieto, G., Martínez-Poveda, B., Torroja, C., Walter, W., Bochter, M. S., Benedito, R., Cole, S., Martinez, F., Hadjantonakis, A.-K., Uemura, A., Jiménez-Borreguero, L. J., & de la Pompa, J. L. (2016). Sequential notch activation regulates ventricular chamber development. Nature Cell Biology, 18, 7-20. https://doi.org/10.1038/ncb3280
de Ferranti, S. D., Gauvreau, K., Friedman, K. G., Tang, A., Baker, A. L., Fulton, D. R., Tremoulet, A. H., Burns, J. C., & Newburger, J. W. (2018). Association of initially normal coronary arteries with normal findings on follow-up echocardiography in patients with Kawasaki disease. JAMA Pediatrics, 172, e183310. https://doi.org/10.1001/jamapediatrics.2018.3310
den Akker, N. M. S. V., Winkel, L. C. J., Nisancioglu, M. H., Maas, S., Wisse, L. J., Armulik, A., Poelmann, R. E., Lie-Venema, H., Betsholtz, C., & Groot, A. C. G. (2008). PDGF-B signaling is important for murine cardiac development: Its role in developing atrioventricular valves, coronaries, and cardiac innervation. Developmental Dynamics, 237, 494-503. https://doi.org/10.1002/dvdy.21436
Diez, H., Fischer, A., Winkler, A., Hu, C.-J., Hatzopoulos, A. K., Breier, G., & Gessler, M. (2007). Hypoxia-mediated activation of Dll4-notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Experimental Cell Research, 313, 1-9. https://doi.org/10.1016/j.yexcr.2006.09.009
Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., & Breitman, M. L. (1994). Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes & Development, 8, 1897-1909. https://doi.org/10.1101/gad.8.16.1897
Dunwoodie, S. L. (2009). The role of hypoxia in development of the mammalian embryo. Developmental Cell, 17, 755-773. https://doi.org/10.1016/j.devcel.2009.11.008
Edelberg, J. M., Aird, W. C., Wu, W., Rayburn, H., Mamuya, W. S., Mercola, M., & Rosenberg, R. D. (1998). PDGF mediates cardiac microvascular communication. The Journal of Clinical Investigation, 102, 837-843.
Egginton, S., Turek, Z., & Hoofd, L. (1987). Morphometric analysis of sparse capillary networks. Advances in Experimental Medicine and Biology, 215, 1-12. https://doi.org/10.1007/978-1-4684-7433-6_1
Epah, J., Pálfi, K., Dienst, F. L., Malacarne, P. F., Bremer, R., Salamon, M., Kumar, S., Jo, H., Schürmann, C., & Brandes, R. P. (2018). 3D imaging and quantitative analysis of vascular networks: A comparison of Ultramicroscopy and micro-computed tomography. Theranostics, 8, 2117-2133. https://doi.org/10.7150/thno.22610
Ferrara, N., & Adamis, A. P. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews. Drug Discovery, 15, 385-403. https://doi.org/10.1038/nrd.2015.17
Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., Powell-Braxton, L., Hillan, K. J., & Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380, 439-442. https://doi.org/10.1038/380439a0
Fisher, D. J., Heymann, M. A., & Rudolph, A. M. (1981). Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatric Research, 15, 843-846. https://doi.org/10.1203/00006450-198105000-00003
Fong, G.-H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376, 66-70. https://doi.org/10.1038/376066a0
Franko, A. J., & Sutherland, R. M. (1979). Oxygen diffusion distance and development of necrosis in multicell spheroids. Radiation Research, 79, 439-453.
Gallini, R., Lindblom, P., Bondjers, C., Betsholtz, C., & Andrae, J. (2016). PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Experimental Cell Research, 349, 282-290. https://doi.org/10.1016/j.yexcr.2016.10.022
Garratt, A. N. (2006). “To erb-B or not to erb-B…” Neuregulin-1/ErbB signaling in heart development and function. Journal of Molecular and Cellular Cardiology, 41, 215-218. https://doi.org/10.1016/j.yjmcc.2006.05.020
Gassmann, M., Casagranda, F., Orioli, D., Simon, H., Lai, C., Klein, R., & Lemke, G. (1995). Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature, 378, 390-394. https://doi.org/10.1038/378390a0
Geudens, I., & Gerhardt, H. (2011). Coordinating cell behaviour during blood vessel formation. Development, 138, 4569-4583. https://doi.org/10.1242/dev.062323
Ghanavati, S., Lerch, J. P., & Sled, J. G. (2014). Automatic anatomical labeling of the complete cerebral vasculature in mouse models. NeuroImage, 95, 117-128. https://doi.org/10.1016/j.neuroimage.2014.03.044
Giordano, F. J., Gerber, H. P., Williams, S. P., VanBruggen, N., Bunting, S., Ruiz-Lozano, P., Gu, Y., Nath, A. K., Huang, Y., Hickey, R., Dalton, N., Peterson, K. L., Ross, J., Chien, K. R., & Ferrara, N. (2001). A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 98, 5780-5785. https://doi.org/10.1073/pnas.091415198
Gittenberger-de Groot, A. C., Jongbloed, M. R. M., Wisse, L. J., & Poelmann, R. E. (2010). Pulmonary atresia with intact ventricular septum: Second heart field derived myocardial and epicardial developmental clues. Progress in Pediatric Cardiology, 29, 3-9. https://doi.org/10.1016/j.ppedcard.2010.02.009
Gödecke, A., Heinicke, T., Kamkin, A., Kiseleva, I., Strasser, R. H., Decking, U. K. M., Stumpe, T., Isenberg, G., & Schrader, J. (2001). Inotropic response to β-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. The Journal of Physiology, 532, 195-204. https://doi.org/10.1111/j.1469-7793.2001.0195g.x
Godo, S., Suda, A., Takahashi, J., Yasuda, S., & Shimokawa, H. (2021). Coronary microvascular dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 1625-1637. https://doi.org/10.1161/ATVBAHA.121.316025
Grinberg, O., Novozhilov, B., Grinberg, S., Friedman, B., & Swartz, H. M. (2005). Axial oxygen diffusion in the Krogh model. In P. Okunieff, J. Williams, & Y. Chen (Eds.), Oxygen transport to tissue XXVI, advances in experimental medicine and biology (pp. 127-134). Springer US. https://doi.org/10.1007/0-387-26206-7_18
Gude, N. A., Emmanuel, G., Wu, W., Cottage, C. T., Fischer, K., Quijada, P., Muraski, J. A., Alvarez, R., Rubio, M., Schaefer, E., & Sussman, M. A. (2008). Activation of notch-mediated protective signaling in the myocardium. Circulation Research, 102, 1025-1035. https://doi.org/10.1161/CIRCRESAHA.107.164749
Guruharsha, K. G., Kankel, M. W., & Artavanis-Tsakonas, S. (2012). The notch signalling system: Recent insights into the complexity of a conserved pathway. Nature Reviews. Genetics, 13, 654-666. https://doi.org/10.1038/nrg3272
Gustafsson, M. V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., Ruas, J. L., Poellinger, L., Lendahl, U., & Bondesson, M. (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell, 9, 617-628. https://doi.org/10.1016/j.devcel.2005.09.010
Harky, A., Noshirwani, A., Karadakhy, O., & Ang, J. (2019). Comprehensive literature review of anomalies of the coronary arteries. Journal of Cardiac Surgery, 34, 1328-1343. https://doi.org/10.1111/jocs.14228
Heldin, C. H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79, 1283-1316. https://doi.org/10.1152/physrev.1999.79.4.1283
Hellström, M., Kalén, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047-3055.
Hoofd, L., Turek, Z., Kubat, K., Ringnalda, B. E., & Kazda, S. (1985). Variability of intercapillary distance estimated on histological sections of rat heart. Advances in Experimental Medicine and Biology, 191, 239-247. https://doi.org/10.1007/978-1-4684-3291-6_24
Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., & Fishman, M. C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 377, 239-242. https://doi.org/10.1038/377239a0
Huang, Y., Hickey, R. P., Yeh, J. L., Liu, D., Dadak, A., Young, L. H., Johnson, R. S., & Giordano, F. J. (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. The FASEB Journal, 18, 1138-1140. https://doi.org/10.1096/fj.04-1510fje
Hudlicka, O., Brown, M., & Egginton, S. (1992). Angiogenesis in skeletal and cardiac muscle. Physiological Reviews, 72, 369-417. https://doi.org/10.1152/physrev.1992.72.2.369
Hudlicka, O., Egginton, S., & Brown, M. (1988). Capillary diffusion distances - their importance for cardiac and skeletal muscle performance. Physiology, 3, 134-138. https://doi.org/10.1152/physiologyonline.1988.3.4.134
Iemitsu, M., Maeda, S., Jesmin, S., Otsuki, T., & Miyauchi, T. (2006). Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1290-H1298. https://doi.org/10.1152/ajpheart.00820.2005
Jakamy, R., Séguéla, P.-E., Valdeolmillos, E., Mostefa Kara, M., Mouton, J.-B., Iriart, X., & Thambo, J.-B. (2019). Pulmonary atresia with Ventriculocoronary arterial connections and a large conoventricular septal defect. JACC: Case Reports, 1, 545-548. https://doi.org/10.1016/j.jaccas.2019.09.008
Karaman, S., Leppänen, V.-M., & Alitalo, K. (2018). Vascular endothelial growth factor signaling in development and disease. Development, 145, 1-8. https://doi.org/10.1242/dev.151019
Kasznica, J., Ursell, P. C., Blanc, W. A., & Gersony, W. M. (1987). Abnormalities of the coronary circulation in pulmonary atresia and intact ventricular septum. American Heart Journal, 114, 1415-1420. https://doi.org/10.1016/0002-8703(87)90545-X
Kattan, J., Dettman, R. W., & Bristow, J. (2004). Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Developmental Dynamics, 230, 34-43. https://doi.org/10.1002/dvdy.20022
Kayar, S. R., & Banchero, N. (1985). Myocardial capillarity in acclimation to hypoxia. Pflügers Archiv, 404, 319-325. https://doi.org/10.1007/BF00585342
Kayar, S. R., & Weiss, H. R. (1992). Diffusion distances, total capillary length and mitochondrial volume in pressure-overload myocardial hypertrophy. Journal of Molecular and Cellular Cardiology, 24, 1155-1166. https://doi.org/10.1016/0022-2828(92)93179-n
Koch, S., & Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor Perspectives in Medicine, 2, 1-22. https://doi.org/10.1101/cshperspect.a006502
Kolář, F., Papoušek, F., Pelouch, V., Ošťádal, B., & Rakusan, K. (1998). Pressure overload induced in newborn rats: Effects on left ventricular growth, morphology, and function. Pediatric Research, 43, 521-526. https://doi.org/10.1203/00006450-199804000-00014
Kolesová, H., Bartoš, M., Hsieh, W. C., Olejníčková, V., & Sedmera, D. (2018). Novel approaches to study coronary vasculature development in mice. Developmental Dynamics, 247, 1018-1027. https://doi.org/10.1002/dvdy.24637
Kolesová, H., Olejníčková, V., Kvasilová, A., Gregorovičová, M., & Sedmera, D. (2021). Tissue clearing and imaging methods for cardiovascular development. iScience, 24, 102387. https://doi.org/10.1016/j.isci.2021.102387
Kolesová, H., Roelink, H., & Grim, M. (2008). Sonic hedgehog is required for the assembly and remodeling of branchial arch blood vessels. Developmental Dynamics, 237, 1923-1934. https://doi.org/10.1002/dvdy.21608
Kramer, R., Bucay, N., Kane, D. J., Martin, L. E., Tarpley, J. E., & Theill, L. E. (1996). Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proceedings of the National Academy of Sciences of the United States of America, 93, 4833-4838.
Kratsios, P., Catarina, C., Ekaterina, S., Marion, H., Valeria, B., Nadia, R., & Foteini, M. (2010). Distinct roles for cell-autonomous notch signaling in Cardiomyocytes of the embryonic and adult heart. Circulation Research, 106, 559-572. https://doi.org/10.1161/CIRCRESAHA.109.203034
Krishnan, J., Ahuja, P., Bodenmann, S., Knapik, D., Perriard, E., Krek, W., & Perriard, J.-C. (2008). Essential role of developmentally activated hypoxia-inducible factor 1α for cardiac morphogenesis and function. Circulation Research, 103, 1139-1146.
Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. The Journal of Physiology, 52, 409-415.
Kubis, N., Richer, C., Domergue, V., Giudicelli, J.-F., & Lévy, B. I. (2002). Role of microvascular rarefaction in the increased arterial pressure in mice lacking for the endothelial nitric oxide synthase gene (eNOS3pt−/− ). Journal of Hypertension, 20, 1581-1587. https://doi.org/10.1097/00004872-200208000-00021
Kyle, N., & Aly, K. (2008). Notch signaling in cardiac development. Circulation Research, 102, 1169-1181. https://doi.org/10.1161/CIRCRESAHA.108.174318
Labarrere, C. A., & Deng, M. C. (2002). Microvascular prothrombogenicity and transplant coronary artery disease. Transplant Immunology, 9, 243-249. https://doi.org/10.1016/s0966-3274(02)00025-4
Lanza, G. A., & Crea, F. (2010). Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology, and management. Circulation, 121, 2317-2325. https://doi.org/10.1161/CIRCULATIONAHA.109.900191
Lapierre-Landry, M., Kolesová, H., Liu, Y., Watanabe, M., & Jenkins, M. W. (2020). Three-dimensional alignment of microvasculature and cardiomyocytes in the developing ventricle. Scientific Reports, 10, 14955. https://doi.org/10.1038/s41598-020-71816-y
LaRochelle, W. J., Jeffers, M., McDonald, W. F., Chillakuru, R. A., Giese, N. A., Lokker, N. A., Sullivan, C., Boldog, F. L., Yang, M., Vernet, C., Burgess, C. E., Fernandes, E., Deegler, L. L., Rittman, B., Shimkets, J., Shimkets, R. A., Rothberg, J. M., & Lichenstein, H. S. (2001). PDGF-D, a new protease-activated growth factor. Nature Cell Biology, 3, 517-521. https://doi.org/10.1038/35074593
Le, N. A., Kuo, W., Müller, B., Kurtcuoglu, V., & Spingler, B. (2020). Crosslinkable polymeric contrast agent for high-resolution X-ray imaging of the vascular system. Chemical Communications (Cambridge), 56, 5885-5888. https://doi.org/10.1039/c9cc09883f
Lee, J.-W., Bae, S.-H., Jeong, J.-W., Kim, S.-H., & Kim, K.-W. (2004). Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Experimental & Molecular Medicine, 36, 1-12. https://doi.org/10.1038/emm.2004.1
Lee, K. F., Simon, H., Chen, H., Bates, B., Hung, M. C., & Hauser, C. (1995). Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 378, 394-398. https://doi.org/10.1038/378394a0
Leslie, J. D., Ariza-McNaughton, L., Bermange, A. L., McAdow, R., Johnson, S. L., & Lewis, J. (2007). Endothelial signalling by the notch ligand Delta-like 4 restricts angiogenesis. Development, 134, 839-844. https://doi.org/10.1242/dev.003244
Levéen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., & Betsholtz, C. (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes & Development, 8, 1875-1887. https://doi.org/10.1101/gad.8.16.1875
Li, N., Zhao, P., Wu, D., & Liang, C. (2019). Coronary artery fistulas detected with coronary CT angiography: A pictorial review of 73 cases. British Journal of Radiology, 93, 20190523. https://doi.org/10.1259/bjr.20190523
Li, X., Pontén, A., Aase, K., Karlsson, L., Abramsson, A., Uutela, M., Bäckström, G., Hellström, M., Boström, H., Li, H., Soriano, P., Betsholtz, C., Heldin, C. H., Alitalo, K., Ostman, A., & Eriksson, U. (2000). PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nature Cell Biology, 2, 302-309. https://doi.org/10.1038/35010579
Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellstrom, M., Backstrom, G., Fredriksson, S., Landegren, U., Nystrom, H. C., Bergstrom, G., Dejana, E., Ostman, A., Lindahl, P., & Betsholtz, C. (2003). Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes & Development, 17, 1835-1840. https://doi.org/10.1101/gad.266803
Ljungqvist, A., & Unge, G. (1973). The proliferative activity of the myocardial tissue in various forms of experimental cardiac hypertrophy. Acta Pathologica Microbiologica Scandinavica Section A Pathology, 81(3), 233-240.
Loughna, S., & Sato, T. N. (2001). Angiopoietin and tie signaling pathways in vascular development. Matrix Biology, 20, 319-325. https://doi.org/10.1016/S0945-053X(01)00149-4
Lund, D. D., & Tomanek, R. J. (1978). Myocardial morphology in spontaneously hypertensive and aortic-constricted rats. The American Journal of Anatomy, 152, 141-151. https://doi.org/10.1002/aja.1001520202
Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., & Yancopoulos, G. D. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55-60. https://doi.org/10.1126/science.277.5322.55
Malek Mohammadi, M., Abouissa, A., Azizah, I., Xie, Y., Cordero, J., Shirvani, A., Gigina, A., Engelhardt, M., Trogisch, F. A., Geffers, R., Dobreva, G., Bauersachs, J., & Heineke, J. (2019). Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight, 4, 1-21. https://doi.org/10.1172/jci.insight.128336
Masri, S. A., Kattanek, M., Richardson, K. C., Hafez, H. M., Plendl, J., & Hünigen, H. (2017). Comparative quantitative studies on the microvasculature of the heart of a highly selected meat-type and a wild-type Turkey line. PLoS One, 12, e0170858. https://doi.org/10.1371/journal.pone.0170858
Menendez-Montes, I., Escobar, B., Palacios, B., Gómez, M. J., Izquierdo-Garcia, J. L., Flores, L., Jiménez-Borreguero, L. J., Aragones, J., Ruiz-Cabello, J., Torres, M., & Martin-Puig, S. (2016). Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Developmental Cell, 39, 724-739. https://doi.org/10.1016/j.devcel.2016.11.012
Métais, C., Li, J., Li, J., Simons, M., & Sellke, F. W. (1998). Effects of coronary artery disease on expression and microvascular response to VEGF. American Journal of Physiology-Heart and Circulatory Physiology, 275, H1411-H1418. https://doi.org/10.1152/ajpheart.1998.275.4.H1411
Metscher, B. D., & Müller, G. B. (2011). MicroCT for molecular imaging: Quantitative visualization of complete three-dimensional distributions of gene products in embryonic limbs. Developmental Dynamics, 240, 2301-2308. https://doi.org/10.1002/dvdy.22733
Meyer, K., Volkmann, A., Hufnagel, M., Schachinger, E., Klau, S., Horstmann, J., Berner, R., Fischer, M., Lehner, A., Haas, N., Ulrich, S., & Jakob, A. (2019). Breastfeeding and vitamin D supplementation reduce the risk of Kawasaki disease in a German population-based case-control study. BMC Pediatrics, 19, 66. https://doi.org/10.1186/s12887-019-1438-2
Miller, A. T., & Hale, D. M. (1970). Increased vascularity of brain, heart, and skeletal muscle of polycythemic rats. The American Journal of Physiology, 219, 702-704. https://doi.org/10.1152/ajplegacy.1970.219.3.702
Miquerol, L., Langille, B. L., & Nagy, A. (2000). Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development, 127, 3941-3946.
Miquerol, L., Meysen, S., Mangoni, M., Bois, P., van Rijen, H. V. M., Abran, P., Jongsma, H., Nargeot, J., & Gros, D. (2004). Architectural and functional asymmetry of the his-Purkinje system of the murine heart. Cardiovascular Research, 63, 77-86. https://doi.org/10.1016/j.cardiores.2004.03.007
Mittal, C. M., Mohan, B., Kumar, R., Garg, S., Grover, S., Aslam, N., & Wander, G. S. (2011). A case of tetralogy of Fallot associated with left anterior descending coronary artery to pulmonary artery fistula. Annals of Pediatric Cardiology, 4, 202-203. https://doi.org/10.4103/0974-2069.84673
Moncada, S., & Higgs, A. (2010). The L-arginine-nitric oxide pathway [WWW Document]. https://doi.org/10.1056/NEJM199312303292706.
Mueller-Klieser, W., Bourrat, B., Gabbert, H., & Sutherland, R. M. (1985). Changes in O2 consumption of multicellular spheroids during development of necrosis. Advances in Experimental Medicine and Biology, 191, 775-784. https://doi.org/10.1007/978-1-4684-3291-6_78
Naderi, S. (2018). Microvascular coronary dysfunction-An overview. Current Atherosclerosis Reports, 20, 7. https://doi.org/10.1007/s11883-018-0710-5
Nägele, M. P., Haubner, B., Tanner, F. C., Ruschitzka, F., & Flammer, A. J. (2020). Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis, 314, 58-62. https://doi.org/10.1016/j.atherosclerosis.2020.10.014
Naňka, O., Valášek, P., Dvořáková, M., & Grim, M. (2006). Experimental hypoxia and embryonic angiogenesis†. Developmental Dynamics, 235, 723-733. https://doi.org/10.1002/dvdy.20689
Neufeld, G., Tessler, S., Gitay-Goren, H., Cohen, T., & Levi, B.-Z. (1994). Vascular endothelial growth factor and its receptors. Progress in GrowthFactor Research, 5, 89-97. https://doi.org/10.1016/0955-2235(94)90019-1
Nicolas, N., & Roux, E. (2021). 3D imaging and quantitative characterization of mouse capillary coronary network architecture. Biology (Basel), 10, 306. https://doi.org/10.3390/biology10040306
Nielles-Vallespin, S., Khalique, Z., Ferreira, P. F., de Silva, R., Scott, A. D., Kilner, P., McGill, L.-A., Giannakidis, A., Gatehouse, P. D., Ennis, D., Aliotta, E., Al-Khalil, M., Kellman, P., Mazilu, D., Balaban, R. S., Firmin, D. N., Arai, A. E., & Pennell, D. J. (2017). Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. Journal of the American College of Cardiology, 69, 661-676. https://doi.org/10.1016/j.jacc.2016.11.051
Nishimiya, K., Matsumoto, Y., & Shimokawa, H. (2020). Recent advances in vascular imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, e313-e321. https://doi.org/10.1161/ATVBAHA.120.313609
O'Brien, K. M., Xue, H., & Sidell, B. D. (2000). Quantification of diffusion distance within the spongy myocardium of hearts from antarctic fishes. Respiration Physiology, 122, 71-80. https://doi.org/10.1016/s0034-5687(00)00139-0
Ogawa, H., Yasue, H., Misumi, I., Masuda, T., Okumura, K., Bannai, S., Takanashi, N., & Tsukada, Y. (1992). Plasma platelet-derived growth factor levels in coronary circulation in unstable angina pectoris. The American Journal of Cardiology, 69, 453-456. https://doi.org/10.1016/0002-9149(92)90984-7
Oghenerukevwe, O., Hill, M. F., & Sawyer, D. B. (2012). Neuregulin in cardiovascular development and disease. Circulation Research, 111, 1376-1385. https://doi.org/10.1161/CIRCRESAHA.112.267286
Olejnickova V, Hamor PU, Janacek J, Bartos M, Zabrodska E, Sankova B, Kvasilova A, Kolesova H, Sedmera D, (2021). Impaired ventricular trabeculae formation critically affects electrical conduction during early chick and mouse cardiac development 2021.
Oosthoek, P. W., Moorman, A. F., Sauer, U., & Gittenberger-de Groot, A. C. (1995). Capillary distribution in the ventricles of hearts with pulmonary atresia and intact ventricular septum. Circulation, 91, 1790-1798. https://doi.org/10.1161/01.cir.91.6.1790
Ošťádal, B., Ošťádalová, I., Kolář, F., Charvátová, Z., & Netuka, I. (2009). Ontogenetic development of cardiac tolerance to oxygen deprivation - possible mechanisms. Physiological Research, 58(Suppl 2), S1-S12. https://doi.org/10.33549/physiolres.931920
Ozyilmaz, I., Ergul, Y., Guzeltas, A., & Odemis, E. (2014). Possible link between right ventricular coronary sinusoids and noncompaction sinusoids in pulmonary atresia with intact ventricular septum patients that later develop left ventricular noncompaction. Medical Hypotheses, 83, 53-55. https://doi.org/10.1016/j.mehy.2014.04.010
Patan, S. (1998). TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvascular Research, 56, 1-21. https://doi.org/10.1006/mvre.1998.2081
Pellegrini, D., Kawakami, R., Guagliumi, G., Sakamoto, A., Kawai, K., Gianatti, A., Nasr, A., Kutys, R., Guo, L., Cornelissen, A., Faggi, L., Mori, M., Sato, Y., Pescetelli, I., Brivio, M., Romero, M., Virmani, R., & Finn, A. V. (2021). Microthrombi as a major cause of cardiac injury in COVID-19: A pathologic study. Circulation, 143, 1031-1042. https://doi.org/10.1161/CIRCULATIONAHA.120.051828
Pesonen, E., Liuba, P., & Aburawi, E. H. (2019). Review findings included diminished coronary flow reserve after surgery in children with congenital heart disease and inflammation. Acta Paediatrica, 108, 218-223. https://doi.org/10.1111/apa.14613
Pietschmann, M., Bartels, H., & Fons, R. (1982). Capillary supply of heart and skeletal muscle of small bats and non-flying mammals. Respiration Physiology, 50, 267-282. https://doi.org/10.1016/0034-5687(82)90023-8
Poole, T. J., Finkelstein, E. B., & Cox, C. M. (2001). The role of FGF and VEGF in angioblast induction and migration during vascular development. Developmental Dynamics, 220, 1-17. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1087>3.0.CO;2-2
Puri, M. C., Rossant, J., Alitalo, K., Bernstein, A., & Partanen, J. (1995). The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. The EMBO Journal, 14, 5884-5891.
Rakusan, K., 1999. Vascularization of the heart during normal and pathological growth, in: Bittar, E.E. (Ed.), Advances in organ biology, coronary angiogenesis. Elsevier, pp. 129-153. https://doi.org/10.1016/S1569-2590(08)60166-4
Rakusan, K., Flanagan, M. F., Geva, T., Southern, J., & Van Praagh, R. (1992). Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation, 86, 38-46. https://doi.org/10.1161/01.cir.86.1.38
Rakusan, K., & Poupa, O. (1963). Changes in the diffusion distance in the rat heart muscle during development. Physiologia Bohemoslovaca, 12, 220-227.
Red-Horse, K., & Siekmann, A. F. (2019). Veins and arteries build hierarchical branching patterns differently: Bottom-up versus top-down. BioEssays, 41, e1800198. https://doi.org/10.1002/bies.201800198
Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549-553. https://doi.org/10.1038/nature08873
Rentschler, S., Zander, J., Meyers, K., France, D., Levine, R., Porter, G., Rivkees, S. A., Morley, G. E., & Fishman, G. I. (2002). Neuregulin-1 promotes formation of the murine cardiac conduction system. Proceedings of the National Academy of Sciences of the United States of America, 99, 10464-10469. https://doi.org/10.1073/pnas.162301699
Ríos-Navarro, C., Hueso, L., Miñana, G., Núñez, J., Ruiz-Saurí, A., Sanz, M. J., Cànoves, J., Chorro, F. J., Piqueras, L., & Bodí, V. (2018). Coronary serum obtained after myocardial infarction induces angiogenesis and microvascular obstruction repair. Role of hypoxia-inducible factor-1A. Revista Española de Cardiología, 71, 440-449. https://doi.org/10.1016/j.rec.2017.06.019
Roberts, J. T., & Wearn, J. T. (1941). Quantitative changes in the capillary-muscle relationship in human hearts during normal growth and hypertrophy. American Heart Journal, 21, 617-633. https://doi.org/10.1016/S0002-8703(41)90726-3
Robertson, R. T., Levine, S. T., Haynes, S. M., Gutierrez, P., Baratta, J. L., Tan, Z., & Longmuir, K. J. (2015). Use of labeled tomato lectin for imaging vasculature structures. Histochemistry and Cell Biology, 143, 225-234. https://doi.org/10.1007/s00418-014-1301-3
Saharinen, P., Eklund, L., & Alitalo, K. (2017). Therapeutic targeting of the angiopoietin-TIE pathway. Nature Reviews Drug Discovery, 16, 635-661. https://doi.org/10.1038/nrd.2016.278
Sato, T. N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W., & Qin, Y. (1995). Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood vessel formation. Nature, 376, 70-74. https://doi.org/10.1038/376070a0
Schaad, L., Hlushchuk, R., Barré, S., Gianni-Barrera, R., Haberthür, D., Banfi, A., & Djonov, V. (2017). Correlative imaging of the murine hind limb vasculature and muscle tissue by MicroCT and light microscopy. Scientific Reports, 7, 41842. https://doi.org/10.1038/srep41842
Schatteman, G. C., Loushin, C., Li, T., & Hart, C. E. (1996). PDGF-A is required for Normal murine cardiovascular development. Developmental Biology, 176, 133-142. https://doi.org/10.1006/dbio.1996.9988
Sellke, F. W., Myers, P. R., Bates, J. N., & Harrison, D. G. (1990). Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin. American Journal of Physiology-Heart and Circulatory Physiology, 258, H515-H520. https://doi.org/10.1152/ajpheart.1990.258.2.H515
Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X.-F., Breitman, M. L., & Schuh, A. C. (1995). Failure of blood-Island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376, 62-66. https://doi.org/10.1038/376062a0
Sharma, B., Chang, A., & Red-Horse, K. (2017). Coronary artery development: Progenitor cells and differentiation pathways. Annual Review of Physiology, 79, 1-19. https://doi.org/10.1146/annurev-physiol-022516-033953
Shesely, E. G., Maeda, N., Kim, H. S., Desai, K. M., Krege, J. H., Laubach, V. E., Sherman, P. A., Sessa, W. C., & Smithies, O. (1996). Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 93, 13176-13181. https://doi.org/10.1073/pnas.93.23.13176
Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews. Molecular Cell Biology, 17, 611-625. https://doi.org/10.1038/nrm.2016.87
Smith, L. R., Salifu, M. O., & McFarlane, I. M. (2020). Non-obstructive coronary artery disease in women: Current evidence and future directions. International Journal of Clinical Research & Trials, 5, 1-6. https://doi.org/10.15344/2456-8007/2020/152
Stephenson, D. A., Mercola, M., Anderson, E., Wang, C. Y., Stiles, C. D., Bowen-Pope, D. F., & Chapman, V. M. (1991). Platelet-derived growth factor receptor alpha-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation. Proceedings of the National Academy of Sciences of the United States of America, 88, 6-10. https://doi.org/10.1073/pnas.88.1.6
Suchting, S., Freitas, C., le Noble, F., Benedito, R., Bréant, C., Duarte, A., & Eichmann, A. (2007). The notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. PNAS, 104, 3225-3230. https://doi.org/10.1073/pnas.0611177104
Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., & Yancopoulos, G. D. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 87, 1171-1180. https://doi.org/10.1016/s0092-8674(00)81813-9
Telli, M. L., Hunt, S. A., Carlson, R. W., & Guardino, A. E. (2007). Trastuzumab-related cardiotoxicity: Calling into question the concept of reversibility. Journal of Clinical Oncology, 25, 3525-3533. https://doi.org/10.1200/JCO.2007.11.0106
Thurston, G., & Kitajewski, J. (2008). VEGF and Delta-notch: Interacting signalling pathways in tumour angiogenesis. British Journal of Cancer, 99, 1204-1209. https://doi.org/10.1038/sj.bjc.6604484
Tian, X., Hu, T., Zhang, H., He, L., Huang, X., Liu, Q., Yu, W., He, L., Yang, Z., Yan, Y., Yang, X., Zhong, T. P., Pu, W. T., & Zhou, B. (2014). Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science, 345, 90-94. https://doi.org/10.1126/science.1251487
Tomanek, R. J. (1970). Effects of age and exercise on the extent of the myocardial capillary bed. The Anatomical Record, 167, 55-62. https://doi.org/10.1002/ar.1091670106
Tomanek, R. J. (2005). Formation of the coronary vasculature during development. Angiogenesis, 8, 273-284. https://doi.org/10.1007/s10456-005-9014-9
Tomanek, R. J., Hansen, H. K., & Christensen, L. P. (2008). Temporally expressed pdgf and fgf-2 regulate embryonic coronary artery formation and growth. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1237-1243. https://doi.org/10.1161/ATVBAHA.108.166454
Tomanek, R. J., Schalk, K. A., Marcus, M. L., & Harrison, D. G. (1989). Coronary angiogenesis during long-term hypertension and left ventricular hypertrophy in dogs. Circulation Research, 65, 352-359. https://doi.org/10.1161/01.res.65.2.352
Turek, Z., Grandtner, M., & Kreuzer, F. (1972). Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3500 m. Pflügers Archiv, 335, 19-28. https://doi.org/10.1007/BF00586932
Turek, Z., Hoofd, L., & Rakusan, K. (1986). Myocardial capillaries and tissue oxygenation. The Canadian Journal of Cardiology, 2, 98-103.
Turek, Z., & Rakuŝan, K. (1981). Lognormal distribution of intercapillary distance in normal and hypertrophic rat heart as estimated by the method of concentric circles: Its effect on tissue oxygenation. Pflügers Archiv, 391, 17-21.
Vancheri, F., Longo, G., Vancheri, S., & Henein, M. (2020). Coronary microvascular dysfunction. Journal of Clinical Medicine, 9, 2-36. https://doi.org/10.3390/jcm9092880
Vanhoutte, P. M., Shimokawa, H., Feletou, M., & Tang, E. H. C. (2017). Endothelial dysfunction and vascular disease - A 30th anniversary update. Acta Physiologica (Oxford, England), 219, 22-96. https://doi.org/10.1111/apha.12646
Wahlander, H., Haraldsson, B., & Friberg, P. (1993). Myocardial capillary diffusion capacity in rat hearts with cardiac hypertrophy due to pressure and volume overload. American Journal of Physiology-Heart and Circulatory Physiology, 265, H61-H68. https://doi.org/10.1152/ajpheart.1993.265.1.H61
Wang, S., Huang, W., Castillo, H. A., Kane, M. A., Xavier-Neto, J., Trainor, P. A., & Moise, A. R. (2018). Alterations in retinoic acid signaling affect the development of the mouse coronary vasculature. Developmental Dynamics, 247, 976-991. https://doi.org/10.1002/dvdy.24639
Wang, T., Chen, L., Yang, T., Huang, P., Wang, L., Zhao, L., Zhang, S., Ye, Z., Chen, L., Zheng, Z., & Qin, J. (2019). Congenital heart disease and risk of cardiovascular disease: A meta-analysis of cohort studies. Journal of the American Heart Association, 8, e012030. https://doi.org/10.1161/JAHA.119.012030
Ward, N. L., & Dumont, D. J. (2002). The angiopoietins and Tie2/Tek: Adding to the complexity of cardiovascular development. Seminars in Cell & Developmental Biology, 13, 19-27. https://doi.org/10.1006/scdb.2001.0288
Ward, N. L., Van Slyke, P., Sturk, C., Cruz, M., & Dumont, D. J. (2004). Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Developmental Dynamics, 229, 500-509. https://doi.org/10.1002/dvdy.10479
Wearn, J. T. (1928). The extent of the capillary bed of the heart. The Journal of Experimental Medicine, 47, 273-290.
Wei, C., Jiang, S., Lust, J. A., Daly, R. C., & McGregor, C. G. (1996). Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clinic Proceedings, 71, 346-350. https://doi.org/10.4065/71.4.346
Wiener, J., Giacomelli, F., Loud, A. V., & Anversa, P. (1979). Morphometry of cardiac hypertrophy induced by experimental renal hypertension. The American Journal of Cardiology, 44, 919-929. https://doi.org/10.1016/0002-9149(79)90223-6
Wiese, C., Heisig, J., & Gessler, M. (2010). Hey bHLH factors in cardiovascular development. Pediatric Cardiology, 31, 363-370. https://doi.org/10.1007/s00246-009-9609-9
Wikenheiser, J., Doughman, Y.-Q., Fisher, S. A., & Watanabe, M. (2006). Differential levels of tissue hypoxia in the developing chicken heart. Developmental Dynamics, 235, 115-123. https://doi.org/10.1002/dvdy.20499
Wikenheiser, J., Wolfram, J. A., Gargesha, M., Yang, K., Karunamuni, G., Wilson, D. L., Semenza, G. L., Agani, F., Fisher, S. A., Ward, N., & Watanabe, M. (2009). Altered hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies. Developmental Dynamics, 238, 2688-2700. https://doi.org/10.1002/dvdy.22089
Wu, B., Zhang, Z., Lui, W., Chen, X., Wang, Y., Chamberlain, A., Moreno-Rodriquez, R. A., Markwald, R. R., O'Rourke, B. P., Sharp, D. J., Zheng, D., Lenz, J., Baldwin, H. S., Chang, C.-P., & Zhou, B. (2012). Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell, 151, 1083-1096. https://doi.org/10.1016/j.cell.2012.10.023
Xian, Z., Wang, X., Yan, S., Yang, D., Chen, J., & Peng, C. (2020). Main coronary vessel segmentation using deep learning in smart medical [WWW document]. Mathematical Problems in Engineering, 2020, 1-9. https://doi.org/10.1155/2020/8858344
Xie, H., Hong, N., Zhang, E., Li, F., Sun, K., & Yu, Y. (2019). Identification of rare copy number variants associated with pulmonary atresia with ventricular septal defect. Frontiers in Genetics, 10, 1-11. https://doi.org/10.3389/fgene.2019.00015
Yang, S., Kweon, J., Roh, J.-H., Lee, J.-H., Kang, H., Park, L.-J., Kim, D. J., Yang, H., Hur, J., Kang, D.-Y., Lee, P. H., Ahn, J.-M., Kang, S.-J., Park, D.-W., Lee, S.-W., Kim, Y.-H., Lee, C. W., Park, S.-W., & Park, S.-J. (2019). Deep learning segmentation of major vessels in X-ray coronary angiography. Scientific Reports, 9, 16897. https://doi.org/10.1038/s41598-019-53254-7
Zhang, H., Pu, W., Li, G., Huang, X., He, L., Tian, X., Liu, Q., Zhang, L., Wu, S. M., Sucov, H. M., & Zhou, B. (2016). Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circulation Research, 118, 1880-1893. https://doi.org/10.1161/CIRCRESAHA.116.308749
Ziegler, T., Horstkotte, J., Schwab, C., Pfetsch, V., Weinmann, K., Dietzel, S., Rohwedder, I., Hinkel, R., Gross, L., Lee, S., Hu, J., Soehnlein, O., Franz, W. M., Sperandio, M., Pohl, U., Thomas, M., Weber, C., Augustin, H. G., Fässler, R., … Kupatt, C. (2013). Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. The Journal of Clinical Investigation, 123, 3436-3445. https://doi.org/10.1172/JCI66549
Ziello, J. E., Jovin, I. S., & Huang, Y. (2007). Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. The Yale Journal of Biology and Medicine, 80, 51-60.
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences