An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
35737066
PubMed Central
PMC9229327
DOI
10.3390/toxins14060405
PII: toxins14060405
Knihovny.cz E-zdroje
- Klíčová slova
- certified reference material, complex feed, internal standard, method harmonization, z-score,
- MeSH
- chromatografie kapalinová metody MeSH
- gluteny MeSH
- kukuřice setá chemie MeSH
- lidé MeSH
- mykotoxiny * analýza MeSH
- prasata MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- gluteny MeSH
- mykotoxiny * MeSH
The present interlaboratory comparison study involved nine laboratories located throughout the world that tested for 24 regulated and non-regulated mycotoxins by applying their in-house LC-MS/MS multi-toxin method to 10 individual lots of 4 matrix commodities, including complex chicken and swine feed, soy and corn gluten. In total, more than 6000 data points were collected and analyzed statistically by calculating a consensus value in combination with a target standard deviation following a modified Horwitz equation. The performance of each participant was evaluated by a z-score assessment with a satisfying range of ±2, leading to an overall success rate of 70% for all tested compounds. Equal performance for both regulated and emerging mycotoxins indicates that participating routine laboratories have successfully expanded their analytical portfolio in view of potentially new regulations. In addition, the study design proved to be fit for the purpose of providing future certified reference materials, which surpass current analyte matrix combinations and exceed the typical scope of the regulatory framework.
Institute for Global Food Security Queens University Belfast Belfast BT7 1NN UK
LVA GmbH Department for Residue Analysis Magdeburggasse 10 3400 Klosterneuburg Austria
Romer Labs Analytical Service Ltd No 6 1 Chunyu Road Wuxi 214000 China
Romer Labs Diagnostic GmbH Analytical Service Department Technopark 5 3430 Tulln Austria
Romer Labs Division Holding GmbH Marketing Department Erber Campus 1 3131 Getzersdorf Austria
Romer Labs Division Holding GmbH Technical Support Department Technopark 5 3430 Tulln Austria
Romer Labs US Inc Analytical Service Department 1301 Stylemaster Drive Union MO 63084 USA
Zobrazit více v PubMed
Eskola M., Elliott C.T., Hajšlová J., Steiner D., Krska R. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr. 2020;60:1890–1911. doi: 10.1080/10408398.2019.1612320. PubMed DOI
Eskola M., Kos G., Elliott C.T., Hajšlová J., Mayar S., Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25% Crit. Rev. Food Sci. Nutr. 2020;60:2773–2789. doi: 10.1080/10408398.2019.1658570. PubMed DOI
De Girolamo A., Ciasca B., Stroka J., Bratinova S., Pascale M., Visconti A., Lattanzio V.M.T. Performance evaluation of LC–MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international Proficiency Testing. TrAC Trends Anal. Chem. 2017;86:222–234. doi: 10.1016/j.trac.2016.11.005. DOI
Malachová A., Sulyok M., Beltrán E., Berthiller F., Krska R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A. 2014;1362:145–156. doi: 10.1016/j.chroma.2014.08.037. PubMed DOI
Krska R., Schubert-Ullrich P., Molinelli A., Sulyok M., Macdonald S., Crews C. Mycotoxin analysis: An update. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008;25:152–163. doi: 10.1080/02652030701765723. PubMed DOI
FAO . Climate Change: Unpacking the Burden on Food Safety. FAO; Rome, Italy: 2020.
Steiner D., Malachová A., Sulyok M., Krska R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021;413:25–34. doi: 10.1007/s00216-020-03015-7. PubMed DOI PMC
Steiner D., Sulyok M., Malachová A., Mueller A., Krska R. Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A. 2020;1629:461502. doi: 10.1016/j.chroma.2020.461502. PubMed DOI
Tittlemier S.A., Cramer B., Dall’Asta C., DeRosa M.C., Lattanzio V.M.T., Malone R., Maragos C., Stranska M., Sumarah M. Developments in mycotoxin analysis: An update for 2020–2021. World Mycotoxin J. 2022;15:3–25. doi: 10.3920/WMJ2021.2752. DOI
Steiner D., Krska R., Malachová A., Taschl I., Sulyok M. Evaluation of Matrix Effects and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020;68:3868–3880. doi: 10.1021/acs.jafc.9b07706. PubMed DOI PMC
Sulyok M., Stadler D., Steiner D., Krska R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020;412:2607–2620. doi: 10.1007/s00216-020-02489-9. PubMed DOI PMC
General Requirements for the Competence of Testing and Calibration Laboratories. Vol. 2005 International Standard Organization; Geneva, Switzerland: 2005.
Sibanda L., McCallum K., Plotan M., Webb S., Snodgras B., Muenks Q., Porter J., Fitzgerald P. Interlaboratory collaboration to determine the performance of the Randox food diagnostics biochip array technology for the simultaneous quantitative detection of seven mycotoxins in feed. World Mycotoxin J. 2022;15:241–250. doi: 10.3920/WMJ2021.2696. DOI
Statistical methods for use in proficiency testing by interlaboratory comparison. International Standard Organization; Geneva, Switzerland: 2015. p. 207.
Commission of the European Union. COMMISSION REGULATION (EC) No 1881/2006. Off. J. Eur. Union. 2006;364:15–24.
Thompson M., Ellison S.L.R., Wood R. The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories (IUPAC Technical Report) Pure Appl. Chem. 2006;78:145–196. doi: 10.1351/pac200678010145. DOI
Asuero A.G., Sayago A., Gonzalez A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006;36:41–59. doi: 10.1080/10408340500526766. DOI
Häggblom P., Nordkvist E. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales. Mycotoxin Res. 2015;31:101–107. doi: 10.1007/s12550-015-0220-z. PubMed DOI PMC
Rheeder J.P., Marasas W.F.O., Vismer H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002;68:2101–2105. doi: 10.1128/AEM.68.5.2101-2105.2002. PubMed DOI PMC
Jestoi M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008;48:21–49. doi: 10.1080/10408390601062021. PubMed DOI
Ropejko K., Twarużek M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins. 2021;13:35. doi: 10.3390/toxins13010035. PubMed DOI PMC
Streit E., Schwab C., Sulyok M., Naehrer K., Krska R., Schatzmayr G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins. 2013;5:504–523. doi: 10.3390/toxins5030504. PubMed DOI PMC
Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017;65:7052–7070. doi: 10.1021/acs.jafc.6b03413. PubMed DOI
Martínez-Domínguez G., Romero-González R., Arrebola F.J., Garrido Frenich A. Multi-class determination of pesticides and mycotoxins in isoflavones supplements obtained from soy by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Control. 2016;59:218–224. doi: 10.1016/j.foodcont.2015.05.033. PubMed DOI
Habinshuti I., Chen X., Yu J., Mukeshimana O., Duhoranimana E., Karangwa E., Muhoza B., Zhang M., Xia S., Zhang X. Antimicrobial, antioxidant and sensory properties of Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT. 2019;101:694–702. doi: 10.1016/j.lwt.2018.11.083. DOI
Patil U.S., King S., Holleran S., White K., Stephenson C., Reuther J. Identifying challenges and risks associated with the analysis of major mycotoxins in feed and botanicals. J. AOAC Int. 2019;102:1689–1694. doi: 10.5740/jaoacint.19-0105. PubMed DOI
Rao Z.-X., Tokach M.D., Woodworth J.C., DeRouchey J.M., Goodband R.D., Calderón H.I., Dritz S.S. Effects of fumonisin-contaminated corn on growth performance of 9 to 28 kg nursery pigs. Toxins. 2020;12:604. doi: 10.3390/toxins12090604. PubMed DOI PMC
Kovalsky P., Kos G., Nährer K., Schwab C., Jenkins T., Schatzmayr G., Sulyok M., Krska R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize–An extensive survey. Toxins. 2016;8:363. doi: 10.3390/toxins8120363. PubMed DOI PMC
Vohra M., Manwar J., Manmode R., Padgilwar S., Patil S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014;2:573–584. doi: 10.1016/j.jece.2013.10.013. DOI
Saunders D.S., Meredith F.I., Voss K.A. Control of Fumonisin: Effects of Processing. Environ. Health Perspect. 2001;109:333–336. doi: 10.2307/3435027. PubMed DOI PMC
Prettl Z.S., Lepossa A., Tóth É., Kelemen-Horváth I., Németh Á.S., Nagy E. Effects and changes of zearalenone and fumonisin contamination in corn-based bioethanol process. Hung. J. Ind. Chem. 2011;39:427–431.
Berwanger E., Nunes R.V., Pasquetti T.J., Murakami A.E., De Oliveira T.M.M., Bayerle D.F., Frank R. Sunflower cake with or without enzymatic complex for broiler chickens feeding. Asian-Australasian J. Anim. Sci. 2017;30:410–416. doi: 10.5713/ajas.15.0644. PubMed DOI PMC
Varga E., Glauner T., Köppen R., Mayer K., Sulyok M., Schuhmacher R., Krska R., Berthiller F. Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Anal. Bioanal. Chem. 2012;402:2675–2686. doi: 10.1007/s00216-012-5757-5. PubMed DOI PMC
Wang J., Cheung W. Determination of pesticides in soy-based infant formula using liquid chromatography with electrospray ionization tandem mass spectrometry. J. AOAC Int. 2006;89:214–224. doi: 10.1093/jaoac/89.1.214. PubMed DOI
Meneely J.P., Ricci F., Van Egmond H.P., Elliott C.T. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal. Chem. 2011;30:192–203. doi: 10.1016/j.trac.2010.06.012. DOI
Guide 35—Reference Materials—Guidance for Characterization and Assessment of Homogeneity and Stability. Vol. 8. International Standard Organization; Geneva, Switzerland: 2017. p. 114.
Linsinger T.P.J., Pauwels J., Van Der Veen A.M.H., Schimmel H., Lamberty A. Homogeneity and stability of reference materials. Accredit. Qual. Assur. 2001;6:20–25. doi: 10.1007/s007690000261. DOI
Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed. European Commission; Brussels, Belgium: 2021.
Bao L., Bao Z., Zhang Y., Liang C., Lu N., Liu X., Jin Y., Pei J.Z., Ge M., Tian L. Aflatoxin Testing in Peanuts: A Proficiency Assessment Scheme for Chinese Analytic Laboratories. Food Chem. Contam. 2009;92:481–486. doi: 10.1093/jaoac/92.2.481. PubMed DOI
Thompson M. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Anal. Commun. 2000;125:385–386. doi: 10.1039/b000282h. DOI